Dependency of Conductive Atomic Force Microscopy and Lateral Force Microscopy Signals on Scan Parameters for Zinc Oxide Nanorods

Conductive atomic force microscopy (C-AFM) is one of the most commonly used characterization techniques for piezoelectric one-dimensional nanomaterials. However, a comprehensive understanding of the effects of certain scan parameters on the C-AFM signals remains elusive. In the present work, the dep...

Full description

Saved in:
Bibliographic Details
Published inKorean Journal of Metals and Materials Vol. 60; no. 2; pp. 149 - 159
Main Authors Yang, Yijun, Kim, Kwanlae
Format Journal Article
LanguageEnglish
Published 대한금속·재료학회 01.02.2022
Subjects
Online AccessGet full text
ISSN1738-8228
2288-8241
DOI10.3365/KJMM.2022.60.2.149

Cover

Abstract Conductive atomic force microscopy (C-AFM) is one of the most commonly used characterization techniques for piezoelectric one-dimensional nanomaterials. However, a comprehensive understanding of the effects of certain scan parameters on the C-AFM signals remains elusive. In the present work, the dependency of C-AFM signals on the normal force, scan speed, and Z scanner feedback gain was studied in conjunction with lateral force microscopy (LFM) signals. As the normal force increased, the C-AFM and the LFM signals increased for the following two possible reasons. When larger normal force was applied, ZnO nanorods were more effectively deflected, intensifying the piezoelectric effect. Additionally, the triboelectric effect was enhanced via the increased force of friction between the AFM tip and the ZnO nanorods. When the scan speed increased to 0.5 Hz, the LFM signals and the C-AFM signals increased owing to the enhanced degree of deflection in the ZnO nanorods. However, when exceeding 0.5 Hz, both the LFM signals and the C-AFM signals started to decrease because the AFM tip did not come into contact with the short ZnO nanorods at a high scan speed. Finally, with an increase in the feedback gain to 0.5, both the LFM signals and the C-AFM signals increased. However, when the feedback gain exceeded 1.0, the Z scanner feedback loop was too sensitive to deflect the ZnO nanorod, considerably reducing the total LFM signals. In contrast, the total C-AFM signal showed only a moderate decrease.
AbstractList Conductive atomic force microscopy (C-AFM) is one of the most commonly used characterization techniques for piezoelectric one-dimensional nanomaterials. However, a comprehensive understanding of the effects of certain scan parameters on the C-AFM signals remains elusive. In the present work, the dependency of C-AFM signals on the normal force, scan speed, and Z scanner feedback gain was studied in conjunction with lateral force microscopy (LFM) signals. As the normal force increased, the C-AFM and the LFM signals increased for the following two possible reasons. When larger normal force was applied, ZnO nanorods were more effectively deflected, intensifying the piezoelectric effect. Additionally, the triboelectric effect was enhanced via the increased force of friction between the AFM tip and the ZnO nanorods. When the scan speed increased to 0.5 Hz, the LFM signals and the C-AFM signals increased owing to the enhanced degree of deflection in the ZnO nanorods. However, when exceeding 0.5 Hz, both the LFM signals and the C-AFM signals started to decrease because the AFM tip did not come into contact with the short ZnO nanorods at a high scan speed. Finally, with an increase in the feedback gain to 0.5, both the LFM signals and the C-AFM signals increased. However, when the feedback gain exceeded 1.0, the Z scanner feedback loop was too sensitive to deflect the ZnO nanorod, considerably reducing the total LFM signals. In contrast, the total C-AFM signal showed only a moderate decrease.
Conductive atomic force microscopy (C-AFM) is one of the most commonly used characterization techniques for piezoelectric one-dimensional nanomaterials. However, a comprehensive understanding of the effects of certain scan parameters on the C-AFM signals remains elusive. In the present work, the dependency of C-AFM signals on the normal force, scan speed, and Z scanner feedback gain was studied in conjunction with lateral force microscopy (LFM) signals. As the normal force increased, the C-AFM and the LFM signals increased for the following two possible reasons. When larger normal force was applied, ZnO nanorods were more effectively deflected, intensifying the piezoelectric effect. Additionally, the triboelectric effect was enhanced via the increased force of friction between the AFM tip and the ZnO nanorods. When the scan speed increased to 0.5 Hz, the LFM signals and the C-AFM signals increased owing to the enhanced degree of deflection in the ZnO nanorods. However, when exceeding 0.5 Hz, both the LFM signals and the C-AFM signals started to decrease because the AFM tip did not come into contact with the short ZnO nanorods at a high scan speed. Finally, with an increase in the feedback gain to 0.5, both the LFM signals and the CAFM signals increased. However, when the feedback gain exceeded 1.0, the Z scanner feedback loop was too sensitive to deflect the ZnO nanorod, considerably reducing the total LFM signals. In contrast, the total CAFM signal showed only a moderate decrease. KCI Citation Count: 1
Author Kim, Kwanlae
Yang, Yijun
Author_xml – sequence: 1
  givenname: Yijun
  surname: Yang
  fullname: Yang, Yijun
– sequence: 2
  givenname: Kwanlae
  surname: Kim
  fullname: Kim, Kwanlae
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002805361$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNplkM1OAjEURhuDiYi8gKtuXczYaaftzJKgKApihJWbpr-kAVrSQSM7H90Zcefqu8k99ybfuQS9EIMF4LpAOSGM3j4_zec5RhjnDOU4L8r6DPQxrqqswmXRA_2Ck27G1QUYNo1XCDHMMC1RH3zf2b0NxgZ9hNHBcQzmQx_8p4WjQ9x5DScxaQvnXqfY6Lg_QhkMnMmDTXL7f7n06yC3DYwBLrUM8FUmubMt3EAXE3z3QcPFlzcWvsgQUzTNFTh37YUd_uUArCb3q_FjNls8TMejWaYxYodMG1VSarlytWo7I8ZqUyNpCatLThxVFS9owTUjpmQF55QwRbmqpJQVd4oMwM3pbUhObLQXUfrfXEexSWL0tpqKusaIENSy-MR2tZpkndgnv5PpKAokOuOiMy4644IhgUVrnPwArqx2pg
Cites_doi 10.1016/S1369-7021(07)70078-0
10.1016/j.ijleo.2018.06.016
10.1007/s10832-007-9095-5
10.1016/j.jallcom.2020.156172
10.1039/C6TA09590A
10.1002/anie.201201656
10.1007/s12540-019-00601-y
10.1002/adma.201000981
10.1002/jemt.22945
10.1039/C8NR05292A
10.1038/s41598-021-82506-8
10.1016/j.compscitech.2017.03.015
10.1002/smll.201604245
10.1002/sca.21099
10.1021/nn301814w
10.1021/acsami.7b13767
10.1063/1.2830663
10.1016/j.sna.2019.111789
10.1126/science.1124005
10.1103/RevModPhys.75.949
10.3365/KJMM.2021.59.3.209
10.1063/1.4761922
10.1103/PhysRev.111.143
10.1021/nl900115y
10.1063/1.2831901
10.1021/nn3022074
10.1021/nl060820v
10.1088/1361-6463/aa920b
10.1016/j.nanoen.2012.01.003
10.1021/nn800804r
10.1021/acsami.9b00447
ContentType Journal Article
DBID AAYXX
CITATION
ACYCR
DOI 10.3365/KJMM.2022.60.2.149
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
EISSN 2288-8241
EndPage 159
ExternalDocumentID oai_kci_go_kr_ARTI_9920330
10_3365_KJMM_2022_60_2_149
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
M~E
ACYCR
ID FETCH-LOGICAL-c206t-cdb455e7bf9b3650669d90ae369473f5b871517c63d46177536b57b8aaa87fb3
ISSN 1738-8228
IngestDate Tue Nov 21 21:39:27 EST 2023
Tue Jul 01 02:39:38 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c206t-cdb455e7bf9b3650669d90ae369473f5b871517c63d46177536b57b8aaa87fb3
OpenAccessLink http://kjmm.org/upload/pdf/kjmm-2022-60-2-149.pdf
PageCount 11
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9920330
crossref_primary_10_3365_KJMM_2022_60_2_149
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Korean Journal of Metals and Materials
PublicationYear 2022
Publisher 대한금속·재료학회
Publisher_xml – name: 대한금속·재료학회
References ref13
ref15
ref14
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
Li (ref5) 2016
ref17
ref16
ref19
ref18
Wang (ref12) 2004
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
References_xml – ident: ref11
  doi: 10.1016/S1369-7021(07)70078-0
– ident: ref14
  doi: 10.1016/j.ijleo.2018.06.016
– start-page: 1
  year: 2016
  ident: ref5
– ident: ref10
  doi: 10.1007/s10832-007-9095-5
– ident: ref16
  doi: 10.1016/j.jallcom.2020.156172
– ident: ref9
  doi: 10.1039/C6TA09590A
– ident: ref1
  doi: 10.1002/anie.201201656
– ident: ref32
  doi: 10.1007/s12540-019-00601-y
– ident: ref23
  doi: 10.1002/adma.201000981
– ident: ref28
  doi: 10.1002/jemt.22945
– ident: ref2
  doi: 10.1039/C8NR05292A
– ident: ref27
  doi: 10.1038/s41598-021-82506-8
– ident: ref6
  doi: 10.1016/j.compscitech.2017.03.015
– ident: ref7
  doi: 10.1002/smll.201604245
– ident: ref29
  doi: 10.1002/sca.21099
– ident: ref25
  doi: 10.1021/nn301814w
– ident: ref4
  doi: 10.1021/acsami.7b13767
– ident: ref15
  doi: 10.1063/1.2830663
– ident: ref3
  doi: 10.1016/j.sna.2019.111789
– ident: ref17
  doi: 10.1126/science.1124005
– ident: ref31
  doi: 10.1103/RevModPhys.75.949
– ident: ref33
  doi: 10.3365/KJMM.2021.59.3.209
– year: 2004
  ident: ref12
– ident: ref30
  doi: 10.1063/1.4761922
– ident: ref8
  doi: 10.1103/PhysRev.111.143
– ident: ref19
  doi: 10.1021/nl900115y
– ident: ref24
  doi: 10.1063/1.2831901
– ident: ref22
  doi: 10.1021/nn3022074
– ident: ref18
  doi: 10.1021/nl060820v
– ident: ref13
  doi: 10.1088/1361-6463/aa920b
– ident: ref20
  doi: 10.1016/j.nanoen.2012.01.003
– ident: ref21
  doi: 10.1021/nn800804r
– ident: ref26
  doi: 10.1021/acsami.9b00447
SSID ssib006262540
ssib022232341
ssib044734076
ssib023167440
ssib036264765
ssib001148846
ssib002806993
ssib014806100
ssib005195854
Score 2.2316713
Snippet Conductive atomic force microscopy (C-AFM) is one of the most commonly used characterization techniques for piezoelectric one-dimensional nanomaterials....
SourceID nrf
crossref
SourceType Open Website
Index Database
StartPage 149
SubjectTerms 재료공학
Title Dependency of Conductive Atomic Force Microscopy and Lateral Force Microscopy Signals on Scan Parameters for Zinc Oxide Nanorods
URI https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002805361
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 대한금속·재료학회지, 2022, 60(2), 583, pp.149-159
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db5RAFJ1s64svRqPG-pWJ8W0DAjPMMI-Ntqld0QfXpPoyGWBotm3AIBuND8Zf4G_2XoYF2tXE-rIfA0xg5nA4F-49EPI847HFmlwvCGzscW6El5VWeNIymduCiaS7dZG-FUcf-PFJfDKb_ZpkLa3bzM-__7Gu5H9mFdpgXrFK9hozO3QKDfAb5hc-YYbh85_m-FX_BtvcZVXUFZq3YirQfovFxvPDusHTFnPusPrEWS29MVh0fLG98P3q1Jkp4xmP3GgwcQvdN7tcxE-rKp-_-7YqLFJyDcT7ZapsF3VjN6VQTuCmtsXuXCZH68ZjIJn-NvXH1dl6kgfQgXPx1VQXxk7vR0AoGwy5HY5CJVAoyA7HqrZrg3_Y5iyuNrzr3iPQ4yuakGjoTEz763HoHMOvUj1jAl0xFsdp6uNu-CLwI3_YdOqrfeV6N2QhQvyDvWjsQ2MfWgQ6gmBI7ZAbkZTdY__0x8EoLyF2TPjlp9Jqwm8QHEK8PfAfrA1qabQ_RCkWsVF-RuhCwMf10RmIy_GpM-eSQbzdFchtBtXVfeFuv9g-9EvaaqdqyolUWt4mt3oI0H0H2DtkZqu75OcIVlqXdAQrdWClHR7piEcKwKE9WLcX9mCldUURrHQEKwWwUgQr7cBKN2C9R5aHB8uXR17_-g8vjwLRenkBRBJbmZUqg-MFbawKFRjLhIKBKeMMYv04lLlgBQcdDnG3yGKZJcaYRJYZu092q7qyDwgNrYXNwzIoecRLG6syUSpmsTQhN6CB98h8M276szN50X8Hxx55BkOrz_OVRm92_D6t9XmjIQJ9rZWKAsaCh9fq8hG5OZ5Kj8lu26ztExC7bfa0Q-Bvjuqb0g
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dependency+of+Conductive+Atomic+Force+Microscopy+and+Lateral+Force+Microscopy+Signals+on+Scan+Parameters+for+Zinc+Oxide+Nanorods&rft.jtitle=Korean+Journal+of+Metals+and+Materials&rft.au=Yang%2C+Yijun&rft.au=Kim%2C+Kwanlae&rft.date=2022-02-01&rft.issn=1738-8228&rft.eissn=2288-8241&rft.volume=60&rft.issue=2&rft.spage=149&rft.epage=159&rft_id=info:doi/10.3365%2FKJMM.2022.60.2.149&rft.externalDBID=n%2Fa&rft.externalDocID=10_3365_KJMM_2022_60_2_149
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1738-8228&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1738-8228&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1738-8228&client=summon