Automatic Detection of Congestive Heart Failure Based on Multiscale Residual UNet++: From Centralized Learning to Federated Learning

Congestive heart failure (CHF) is a progressive and complex syndrome resulted from ventricular dysfunction, which is difficult to detect at early stages. Heart rate variability (HRV) has been identified as a prognostic indicator for CHF. The traditional diagnosis methods based on analyzing the elect...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 72; pp. 1 - 13
Main Authors Zou, Liang, Huang, Zexin, Yu, Xinhui, Zheng, Jiannan, Liu, Aiping, Lei, Meng
Format Journal Article
LanguageEnglish
Published New York IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9456
1557-9662
DOI10.1109/TIM.2022.3227955

Cover

Abstract Congestive heart failure (CHF) is a progressive and complex syndrome resulted from ventricular dysfunction, which is difficult to detect at early stages. Heart rate variability (HRV) has been identified as a prognostic indicator for CHF. The traditional diagnosis methods based on analyzing the electrocardiogram (ECG) are time-consuming and laborious, and the interpretation of the results is subjective. Inspired by the outstanding performance of U-shaped networks in medical image segmentation, in this article, we propose a novel end-to-end classification model based on 2000 intervals between successive R-peaks of ECG signals. The proposed model integrates the outputs of encoders, decoders, and intermediate units through a unified scale operation, which can not only preserve low-level details from the input signals but also extract the high-level pathology-related information. We further employ a variant of residual module with group convolution and squeeze-and-excitation (SE) block, enhancing the network's expression capability. In addition, considering the challenge of collecting large and diverse samples by individual institutions, we decentralize the data across different clients and extend the proposed model with a federated version, which is able to facilitate multi-institutional collaborations while maintaining data anonymity. A total of 29 CHF patients and 177 non-CHF subjects (i.e., 54 normal sinus rhythm (NSR) subjects, 84 atrial fibrillation (AF), and 39 Apnea subjects) from PhysioBank are included in this article. The experimental results show that the proposed model outperforms the state of the art both in centralized and decentralized learning, with an accuracy of 89.83% and 87.54%, respectively. The diagnosis model trained in federated framework provides competitive performance to that in centralized learning, which demonstrates its potential of utilizing multisite data to improve CHF detection performance without sharing patient privacy.
AbstractList Congestive heart failure (CHF) is a progressive and complex syndrome resulted from ventricular dysfunction, which is difficult to detect at early stages. Heart rate variability (HRV) has been identified as a prognostic indicator for CHF. The traditional diagnosis methods based on analyzing the electrocardiogram (ECG) are time-consuming and laborious, and the interpretation of the results is subjective. Inspired by the outstanding performance of U-shaped networks in medical image segmentation, in this article, we propose a novel end-to-end classification model based on 2000 intervals between successive R-peaks of ECG signals. The proposed model integrates the outputs of encoders, decoders, and intermediate units through a unified scale operation, which can not only preserve low-level details from the input signals but also extract the high-level pathology-related information. We further employ a variant of residual module with group convolution and squeeze-and-excitation (SE) block, enhancing the network’s expression capability. In addition, considering the challenge of collecting large and diverse samples by individual institutions, we decentralize the data across different clients and extend the proposed model with a federated version, which is able to facilitate multi-institutional collaborations while maintaining data anonymity. A total of 29 CHF patients and 177 non-CHF subjects (i.e., 54 normal sinus rhythm (NSR) subjects, 84 atrial fibrillation (AF), and 39 Apnea subjects) from PhysioBank are included in this article. The experimental results show that the proposed model outperforms the state of the art both in centralized and decentralized learning, with an accuracy of 89.83% and 87.54%, respectively. The diagnosis model trained in federated framework provides competitive performance to that in centralized learning, which demonstrates its potential of utilizing multisite data to improve CHF detection performance without sharing patient privacy.
Author Yu, Xinhui
Huang, Zexin
Zheng, Jiannan
Liu, Aiping
Zou, Liang
Lei, Meng
Author_xml – sequence: 1
  givenname: Liang
  orcidid: 0000-0001-7322-5735
  surname: Zou
  fullname: Zou, Liang
  email: liangzou@cumt.edu.cn
  organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
– sequence: 2
  givenname: Zexin
  orcidid: 0000-0003-3835-7163
  surname: Huang
  fullname: Huang, Zexin
  email: zexin_huang@cumt.edu.cn
  organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
– sequence: 3
  givenname: Xinhui
  orcidid: 0000-0002-0916-8569
  surname: Yu
  fullname: Yu, Xinhui
  email: xinhuiyu@ece.ubc.ca
  organization: Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, BC, Canada
– sequence: 4
  givenname: Jiannan
  orcidid: 0000-0001-9174-810X
  surname: Zheng
  fullname: Zheng, Jiannan
  email: jiannan.zheng@altumview.com
  organization: Altumview Systems Inc., Burnaby, BC, Canada
– sequence: 5
  givenname: Aiping
  orcidid: 0000-0001-8849-5228
  surname: Liu
  fullname: Liu, Aiping
  email: aipingl@ustc.edu.cn
  organization: School of Information Science and Technology, University of Science and Technology of China, Hefei, China
– sequence: 6
  givenname: Meng
  orcidid: 0000-0001-6810-156X
  surname: Lei
  fullname: Lei, Meng
  email: lmsiee@cumt.edu.cn
  organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
BookMark eNp9kEFrGzEQRkVJoI7Te6EXQY9hnZF2Ja16c9y4MTgplOS8yNrZILNeOZI20J77wyPjUEoOOQ0M75vhe2fkZPADEvKZwYwx0Jf3q9sZB85nJedKC_GBTJgQqtBS8hMyAWB1oSshP5KzGLcAoGSlJuTvfEx-Z5Kz9DsmtMn5gfqOLvzwiDG5Z6Q3aEKiS-P6MSC9MhFbmqHbsU8uWtMj_YXRtaPp6cMdpouLb3QZ_I4ucEjB9O5P5tf5xuCGR5o8XWKLwaT_tufktDN9xE-vc0oeltf3i5ti_fPHajFfF5aDTMXGQMtL0RrgbccBayiBbWqda2vLRSWEruoKZFdtoGRYKqw5MsGlkMJa1ZVT8vV4dx_805jrNVs_hiG_bLiSUjKhZJ0peaRs8DEG7BrrkjmIyXVc3zBoDsabbLw5GG9ejecgvAnug9uZ8Pu9yJdjxCHiP1xrVcuqLF8AknuNJQ
CODEN IEIMAO
CitedBy_id crossref_primary_10_3389_fmed_2023_1273441
crossref_primary_10_1109_TIM_2025_3527597
crossref_primary_10_3390_math11071724
crossref_primary_10_1109_TIM_2023_3336453
crossref_primary_10_1109_TIM_2023_3325522
crossref_primary_10_1109_TIM_2025_3541691
crossref_primary_10_1109_TAI_2023_3298297
crossref_primary_10_1109_JSEN_2024_3366968
crossref_primary_10_3390_s23167296
Cites_doi 10.1007/s42600-021-00193-w
10.1016/j.cogsys.2018.12.017
10.1523/ENEURO.0200-19.2019
10.1109/TMI.2019.2959609
10.1109/TIM.2019.2910342
10.1016/j.ejmp.2019.05.004
10.1109/MSP.2020.2975749
10.1016/j.artmed.2020.101919
10.1109/JBHI.2018.2872038
10.1109/JTEHM.2021.3064675
10.1038/s41746-020-00323-1
10.1016/j.imu.2020.100441
10.1038/s41746-020-0261-3
10.1109/ACCESS.2018.2855420
10.3390/s19071502
10.3934/mbe.2021004
10.1609/aaai.v34i04.5744
10.1016/j.bspc.2022.104164
10.1016/j.ijcard.2020.09.014
10.1109/JSEN.2019.2942099
10.1016/j.compbiomed.2018.07.001
10.1111/exsy.12903
10.3390/bioengineering8100138
10.1016/j.fuel.2021.120475
10.1177/09544119211036806
10.1109/ACCESS.2019.2912226
10.1016/j.cmpb.2019.03.008
10.3390/e19060251
10.1016/j.cmpb.2011.12.015
10.1109/JSTARS.2020.2968179
10.1109/TCE.2017.015063
10.1038/s41467-020-15706-x
10.1161/01.CTR.101.23.e215
10.1016/j.artmed.2020.101856
10.3390/diagnostics11030534
10.1016/j.bbe.2021.04.004
10.1109/ICCV.2017.97
10.1007/s11432-020-2806-8
10.1109/ICASSP40776.2020.9053405
10.1016/j.cardfail.2021.01.022
10.1093/bioinformatics/btp621
10.1016/j.bbe.2018.10.001
10.1109/EMBC.2017.8037578
10.3390/e23121669
10.1109/JSEN.2020.3030321
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2022.3227955
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 13
ExternalDocumentID 10_1109_TIM_2022_3227955
9978643
Genre orig-research
GrantInformation_xml – fundername: Scientific Innovation 2030 Major Project for New Generation of AI
  grantid: 2020AAA0107300
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 2019ZDPY17
  funderid: 10.13039/501100012226
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYOK
AAYXX
CITATION
RIG
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c206t-ba0d235da02df20e80301b892029c25455948406f4b031e37e82e1526565cc7f3
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Tue Aug 12 13:40:32 EDT 2025
Thu Apr 24 23:05:32 EDT 2025
Tue Jul 01 03:07:21 EDT 2025
Wed Aug 27 02:14:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c206t-ba0d235da02df20e80301b892029c25455948406f4b031e37e82e1526565cc7f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3835-7163
0000-0001-9174-810X
0000-0001-7322-5735
0000-0001-6810-156X
0000-0002-0916-8569
0000-0001-8849-5228
PQID 2766615768
PQPubID 85462
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TIM_2022_3227955
crossref_primary_10_1109_TIM_2022_3227955
ieee_primary_9978643
proquest_journals_2766615768
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref19
ref18
ref24
ref46
ref23
ref45
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
McMahan (ref38); 54
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref20
  doi: 10.1007/s42600-021-00193-w
– ident: ref23
  doi: 10.1016/j.cogsys.2018.12.017
– ident: ref46
  doi: 10.1523/ENEURO.0200-19.2019
– ident: ref41
  doi: 10.1109/TMI.2019.2959609
– ident: ref6
  doi: 10.1109/TIM.2019.2910342
– ident: ref8
  doi: 10.1016/j.ejmp.2019.05.004
– ident: ref43
  doi: 10.1109/MSP.2020.2975749
– ident: ref44
  doi: 10.1016/j.artmed.2020.101919
– ident: ref1
  doi: 10.1109/JBHI.2018.2872038
– ident: ref5
  doi: 10.1109/JTEHM.2021.3064675
– ident: ref39
  doi: 10.1038/s41746-020-00323-1
– ident: ref13
  doi: 10.1016/j.imu.2020.100441
– ident: ref4
  doi: 10.1038/s41746-020-0261-3
– ident: ref45
  doi: 10.1109/ACCESS.2018.2855420
– ident: ref33
  doi: 10.3390/s19071502
– ident: ref21
  doi: 10.3934/mbe.2021004
– ident: ref27
  doi: 10.1609/aaai.v34i04.5744
– volume: 54
  start-page: 1273
  volume-title: Proc. 20th Int. Conf. Artif. Intell. Statist.
  ident: ref38
  article-title: Communication-efficient learning of deep networks from decentralized data
– ident: ref18
  doi: 10.1016/j.bspc.2022.104164
– ident: ref2
  doi: 10.1016/j.ijcard.2020.09.014
– ident: ref36
  doi: 10.1109/JSEN.2019.2942099
– ident: ref14
  doi: 10.1016/j.compbiomed.2018.07.001
– ident: ref17
  doi: 10.1111/exsy.12903
– ident: ref9
  doi: 10.3390/bioengineering8100138
– ident: ref30
  doi: 10.1016/j.fuel.2021.120475
– ident: ref19
  doi: 10.1177/09544119211036806
– ident: ref26
  doi: 10.1109/ACCESS.2019.2912226
– ident: ref12
  doi: 10.1016/j.cmpb.2019.03.008
– ident: ref24
  doi: 10.3390/e19060251
– ident: ref22
  doi: 10.1016/j.cmpb.2011.12.015
– ident: ref31
  doi: 10.1109/JSTARS.2020.2968179
– ident: ref11
  doi: 10.1109/TCE.2017.015063
– ident: ref16
  doi: 10.1038/s41467-020-15706-x
– ident: ref40
  doi: 10.1161/01.CTR.101.23.e215
– ident: ref7
  doi: 10.1016/j.artmed.2020.101856
– ident: ref34
  doi: 10.3390/diagnostics11030534
– ident: ref15
  doi: 10.1016/j.bbe.2021.04.004
– ident: ref35
  doi: 10.1109/ICCV.2017.97
– ident: ref37
  doi: 10.1007/s11432-020-2806-8
– ident: ref42
  doi: 10.1109/ICASSP40776.2020.9053405
– ident: ref3
  doi: 10.1016/j.cardfail.2021.01.022
– ident: ref28
  doi: 10.1093/bioinformatics/btp621
– ident: ref25
  doi: 10.1016/j.bbe.2018.10.001
– ident: ref32
  doi: 10.1109/EMBC.2017.8037578
– ident: ref10
  doi: 10.3390/e23121669
– ident: ref29
  doi: 10.1109/JSEN.2020.3030321
SSID ssj0007647
Score 2.3676324
Snippet Congestive heart failure (CHF) is a progressive and complex syndrome resulted from ventricular dysfunction, which is difficult to detect at early stages. Heart...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Cardiovascular diseases
Centralized learning
Coders
congestive heart failure (CHF) detection
Decoders
Diagnosis
Electrocardiography
Feature extraction
Federated learning
federated learning (FL)
Heart
Heart failure
Heart rate
Heart rate variability
Image segmentation
Medical imaging
multiscale residual module
Training
UNet
Title Automatic Detection of Congestive Heart Failure Based on Multiscale Residual UNet++: From Centralized Learning to Federated Learning
URI https://ieeexplore.ieee.org/document/9978643
https://www.proquest.com/docview/2766615768
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED8B0qTtgW2wiTKY_MDLxNImrtM0ewO2qEMqDxOVeIts54wqIEHUfeGZP3x3TtqhbZr2Fllnycqd78t3vwM40mOVWGdUFOtER8qhinTqqoi0pUGVGZlp7kaeXowmM3V-lV5twOd1LwwihuIz7PNneMuvGrvkVNkgp5CHLOgmbJKYtb1aa62bjVSLj5nQBSavYPUkGeeDy-9TCgSl7A8ZLo-b-p6ZoDBT5Q9FHKxL8Rqmq3O1RSU3_aU3ffv4G2Tj_x78DWx3bqY4aeXiLWxgvQOvnoEP7sCLUPxpF7vwdLL0TYBuFV_Rh9qsWjROnDU1vz6RPhQTuhBeFHrOVezilExfJYgotO8uiM0ofuAi9HWJ2QX64-Mvonho7kSXPJ4_En0H5XotfCMKxrAgN_fX6juYFd8uzyZRN50hsjIe-cjouJLDtNKxrJyMcczBlRnn9KdzS2FnykAw5C44ZUhx4DDDscSE0fhHqbWZG76HrbqpcQ9Eqiw6azFRFRlL5UyMnJ3VuSP_ENO8B4MVw0rbQZfzBI3bMoQwcV4Si0tmcdmxuAef1jvuW9iOf9DuMsfWdB2zenCwkomyu9eLUmYU7iUco-3_fdcHeMkD6dskzQFs-YclHpLb4s3HIK8_AZzc6R4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6VIgQ98GiLCBTYAxdUnNibdRz3VgpWCk0OKJF6s3bXs6gCbNRsLj33hzOzdtIKEOJmWbOS5W93XjvzDcAbPVaJdUZFsU50pByqSKeuikhbGlSZkZnmbuTpbDRZqE_n6fkWvNv0wiBiKD7DPj-Gu_yqsStOlQ1yCnnIgt6Bu2T3Vdp2a230bjZSLUNmQkeY_IL1pWScD-anUwoFpewPmTCP2_puGaEwVeUPVRzsS_EIpusva8tKvvVX3vTt1W-kjf_76Y_hYedoiuN2ZzyBLax3YecW_eAu3Avln3a5B9fHK98E8lbxAX2ozqpF48RJU_P9E2lEMaEj4UWhL7iOXbwn41cJEgoNvEsCGsUXXIbOLrGYoT88PBLFZfNDdOnjiyuS78hcvwrfiIJZLMjRvXm7D4vi4_xkEnXzGSIr45GPjI4rOUwrHcvKyRjHHF6ZcU5_OrcUeKZMBUMOg1OGVAcOMxxLTJiPf5Ram7nhU9iumxqfgUiVRWctJqoic6mciZHzszp35CFimvdgsAastB15Oc_Q-F6GICbOS4K4ZIjLDuIevN2s-NkSd_xDdo8R28h1YPXgYL0nyu5kL0uZUcCXcJT2_O-rXsP9yXx6Vp6dzj6_gAc8nr5N2RzAtr9c4UtyYrx5FfbuL_hV7Gs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Detection+of+Congestive+Heart+Failure+Based+on+Multiscale+Residual+UNet%2B%2B%3A+From+Centralized+Learning+to+Federated+Learning&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Zou%2C+Liang&rft.au=Huang%2C+Zexin&rft.au=Yu%2C+Xinhui&rft.au=Zheng%2C+Jiannan&rft.date=2023&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=72&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTIM.2022.3227955&rft.externalDocID=9978643
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon