Automatic Detection of Congestive Heart Failure Based on Multiscale Residual UNet++: From Centralized Learning to Federated Learning
Congestive heart failure (CHF) is a progressive and complex syndrome resulted from ventricular dysfunction, which is difficult to detect at early stages. Heart rate variability (HRV) has been identified as a prognostic indicator for CHF. The traditional diagnosis methods based on analyzing the elect...
Saved in:
Published in | IEEE transactions on instrumentation and measurement Vol. 72; pp. 1 - 13 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9456 1557-9662 |
DOI | 10.1109/TIM.2022.3227955 |
Cover
Abstract | Congestive heart failure (CHF) is a progressive and complex syndrome resulted from ventricular dysfunction, which is difficult to detect at early stages. Heart rate variability (HRV) has been identified as a prognostic indicator for CHF. The traditional diagnosis methods based on analyzing the electrocardiogram (ECG) are time-consuming and laborious, and the interpretation of the results is subjective. Inspired by the outstanding performance of U-shaped networks in medical image segmentation, in this article, we propose a novel end-to-end classification model based on 2000 intervals between successive R-peaks of ECG signals. The proposed model integrates the outputs of encoders, decoders, and intermediate units through a unified scale operation, which can not only preserve low-level details from the input signals but also extract the high-level pathology-related information. We further employ a variant of residual module with group convolution and squeeze-and-excitation (SE) block, enhancing the network's expression capability. In addition, considering the challenge of collecting large and diverse samples by individual institutions, we decentralize the data across different clients and extend the proposed model with a federated version, which is able to facilitate multi-institutional collaborations while maintaining data anonymity. A total of 29 CHF patients and 177 non-CHF subjects (i.e., 54 normal sinus rhythm (NSR) subjects, 84 atrial fibrillation (AF), and 39 Apnea subjects) from PhysioBank are included in this article. The experimental results show that the proposed model outperforms the state of the art both in centralized and decentralized learning, with an accuracy of 89.83% and 87.54%, respectively. The diagnosis model trained in federated framework provides competitive performance to that in centralized learning, which demonstrates its potential of utilizing multisite data to improve CHF detection performance without sharing patient privacy. |
---|---|
AbstractList | Congestive heart failure (CHF) is a progressive and complex syndrome resulted from ventricular dysfunction, which is difficult to detect at early stages. Heart rate variability (HRV) has been identified as a prognostic indicator for CHF. The traditional diagnosis methods based on analyzing the electrocardiogram (ECG) are time-consuming and laborious, and the interpretation of the results is subjective. Inspired by the outstanding performance of U-shaped networks in medical image segmentation, in this article, we propose a novel end-to-end classification model based on 2000 intervals between successive R-peaks of ECG signals. The proposed model integrates the outputs of encoders, decoders, and intermediate units through a unified scale operation, which can not only preserve low-level details from the input signals but also extract the high-level pathology-related information. We further employ a variant of residual module with group convolution and squeeze-and-excitation (SE) block, enhancing the network’s expression capability. In addition, considering the challenge of collecting large and diverse samples by individual institutions, we decentralize the data across different clients and extend the proposed model with a federated version, which is able to facilitate multi-institutional collaborations while maintaining data anonymity. A total of 29 CHF patients and 177 non-CHF subjects (i.e., 54 normal sinus rhythm (NSR) subjects, 84 atrial fibrillation (AF), and 39 Apnea subjects) from PhysioBank are included in this article. The experimental results show that the proposed model outperforms the state of the art both in centralized and decentralized learning, with an accuracy of 89.83% and 87.54%, respectively. The diagnosis model trained in federated framework provides competitive performance to that in centralized learning, which demonstrates its potential of utilizing multisite data to improve CHF detection performance without sharing patient privacy. |
Author | Yu, Xinhui Huang, Zexin Zheng, Jiannan Liu, Aiping Zou, Liang Lei, Meng |
Author_xml | – sequence: 1 givenname: Liang orcidid: 0000-0001-7322-5735 surname: Zou fullname: Zou, Liang email: liangzou@cumt.edu.cn organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China – sequence: 2 givenname: Zexin orcidid: 0000-0003-3835-7163 surname: Huang fullname: Huang, Zexin email: zexin_huang@cumt.edu.cn organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China – sequence: 3 givenname: Xinhui orcidid: 0000-0002-0916-8569 surname: Yu fullname: Yu, Xinhui email: xinhuiyu@ece.ubc.ca organization: Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, BC, Canada – sequence: 4 givenname: Jiannan orcidid: 0000-0001-9174-810X surname: Zheng fullname: Zheng, Jiannan email: jiannan.zheng@altumview.com organization: Altumview Systems Inc., Burnaby, BC, Canada – sequence: 5 givenname: Aiping orcidid: 0000-0001-8849-5228 surname: Liu fullname: Liu, Aiping email: aipingl@ustc.edu.cn organization: School of Information Science and Technology, University of Science and Technology of China, Hefei, China – sequence: 6 givenname: Meng orcidid: 0000-0001-6810-156X surname: Lei fullname: Lei, Meng email: lmsiee@cumt.edu.cn organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China |
BookMark | eNp9kEFrGzEQRkVJoI7Te6EXQY9hnZF2Ja16c9y4MTgplOS8yNrZILNeOZI20J77wyPjUEoOOQ0M75vhe2fkZPADEvKZwYwx0Jf3q9sZB85nJedKC_GBTJgQqtBS8hMyAWB1oSshP5KzGLcAoGSlJuTvfEx-Z5Kz9DsmtMn5gfqOLvzwiDG5Z6Q3aEKiS-P6MSC9MhFbmqHbsU8uWtMj_YXRtaPp6cMdpouLb3QZ_I4ucEjB9O5P5tf5xuCGR5o8XWKLwaT_tufktDN9xE-vc0oeltf3i5ti_fPHajFfF5aDTMXGQMtL0RrgbccBayiBbWqda2vLRSWEruoKZFdtoGRYKqw5MsGlkMJa1ZVT8vV4dx_805jrNVs_hiG_bLiSUjKhZJ0peaRs8DEG7BrrkjmIyXVc3zBoDsabbLw5GG9ejecgvAnug9uZ8Pu9yJdjxCHiP1xrVcuqLF8AknuNJQ |
CODEN | IEIMAO |
CitedBy_id | crossref_primary_10_3389_fmed_2023_1273441 crossref_primary_10_1109_TIM_2025_3527597 crossref_primary_10_3390_math11071724 crossref_primary_10_1109_TIM_2023_3336453 crossref_primary_10_1109_TIM_2023_3325522 crossref_primary_10_1109_TIM_2025_3541691 crossref_primary_10_1109_TAI_2023_3298297 crossref_primary_10_1109_JSEN_2024_3366968 crossref_primary_10_3390_s23167296 |
Cites_doi | 10.1007/s42600-021-00193-w 10.1016/j.cogsys.2018.12.017 10.1523/ENEURO.0200-19.2019 10.1109/TMI.2019.2959609 10.1109/TIM.2019.2910342 10.1016/j.ejmp.2019.05.004 10.1109/MSP.2020.2975749 10.1016/j.artmed.2020.101919 10.1109/JBHI.2018.2872038 10.1109/JTEHM.2021.3064675 10.1038/s41746-020-00323-1 10.1016/j.imu.2020.100441 10.1038/s41746-020-0261-3 10.1109/ACCESS.2018.2855420 10.3390/s19071502 10.3934/mbe.2021004 10.1609/aaai.v34i04.5744 10.1016/j.bspc.2022.104164 10.1016/j.ijcard.2020.09.014 10.1109/JSEN.2019.2942099 10.1016/j.compbiomed.2018.07.001 10.1111/exsy.12903 10.3390/bioengineering8100138 10.1016/j.fuel.2021.120475 10.1177/09544119211036806 10.1109/ACCESS.2019.2912226 10.1016/j.cmpb.2019.03.008 10.3390/e19060251 10.1016/j.cmpb.2011.12.015 10.1109/JSTARS.2020.2968179 10.1109/TCE.2017.015063 10.1038/s41467-020-15706-x 10.1161/01.CTR.101.23.e215 10.1016/j.artmed.2020.101856 10.3390/diagnostics11030534 10.1016/j.bbe.2021.04.004 10.1109/ICCV.2017.97 10.1007/s11432-020-2806-8 10.1109/ICASSP40776.2020.9053405 10.1016/j.cardfail.2021.01.022 10.1093/bioinformatics/btp621 10.1016/j.bbe.2018.10.001 10.1109/EMBC.2017.8037578 10.3390/e23121669 10.1109/JSEN.2020.3030321 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/TIM.2022.3227955 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1557-9662 |
EndPage | 13 |
ExternalDocumentID | 10_1109_TIM_2022_3227955 9978643 |
Genre | orig-research |
GrantInformation_xml | – fundername: Scientific Innovation 2030 Major Project for New Generation of AI grantid: 2020AAA0107300 – fundername: Fundamental Research Funds for the Central Universities grantid: 2019ZDPY17 funderid: 10.13039/501100012226 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYOK AAYXX CITATION RIG 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c206t-ba0d235da02df20e80301b892029c25455948406f4b031e37e82e1526565cc7f3 |
IEDL.DBID | RIE |
ISSN | 0018-9456 |
IngestDate | Tue Aug 12 13:40:32 EDT 2025 Thu Apr 24 23:05:32 EDT 2025 Tue Jul 01 03:07:21 EDT 2025 Wed Aug 27 02:14:42 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c206t-ba0d235da02df20e80301b892029c25455948406f4b031e37e82e1526565cc7f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3835-7163 0000-0001-9174-810X 0000-0001-7322-5735 0000-0001-6810-156X 0000-0002-0916-8569 0000-0001-8849-5228 |
PQID | 2766615768 |
PQPubID | 85462 |
PageCount | 13 |
ParticipantIDs | crossref_citationtrail_10_1109_TIM_2022_3227955 crossref_primary_10_1109_TIM_2022_3227955 ieee_primary_9978643 proquest_journals_2766615768 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230000 2023-00-00 20230101 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – year: 2023 text: 20230000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on instrumentation and measurement |
PublicationTitleAbbrev | TIM |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref19 ref18 ref24 ref46 ref23 ref45 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 McMahan (ref38); 54 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref20 doi: 10.1007/s42600-021-00193-w – ident: ref23 doi: 10.1016/j.cogsys.2018.12.017 – ident: ref46 doi: 10.1523/ENEURO.0200-19.2019 – ident: ref41 doi: 10.1109/TMI.2019.2959609 – ident: ref6 doi: 10.1109/TIM.2019.2910342 – ident: ref8 doi: 10.1016/j.ejmp.2019.05.004 – ident: ref43 doi: 10.1109/MSP.2020.2975749 – ident: ref44 doi: 10.1016/j.artmed.2020.101919 – ident: ref1 doi: 10.1109/JBHI.2018.2872038 – ident: ref5 doi: 10.1109/JTEHM.2021.3064675 – ident: ref39 doi: 10.1038/s41746-020-00323-1 – ident: ref13 doi: 10.1016/j.imu.2020.100441 – ident: ref4 doi: 10.1038/s41746-020-0261-3 – ident: ref45 doi: 10.1109/ACCESS.2018.2855420 – ident: ref33 doi: 10.3390/s19071502 – ident: ref21 doi: 10.3934/mbe.2021004 – ident: ref27 doi: 10.1609/aaai.v34i04.5744 – volume: 54 start-page: 1273 volume-title: Proc. 20th Int. Conf. Artif. Intell. Statist. ident: ref38 article-title: Communication-efficient learning of deep networks from decentralized data – ident: ref18 doi: 10.1016/j.bspc.2022.104164 – ident: ref2 doi: 10.1016/j.ijcard.2020.09.014 – ident: ref36 doi: 10.1109/JSEN.2019.2942099 – ident: ref14 doi: 10.1016/j.compbiomed.2018.07.001 – ident: ref17 doi: 10.1111/exsy.12903 – ident: ref9 doi: 10.3390/bioengineering8100138 – ident: ref30 doi: 10.1016/j.fuel.2021.120475 – ident: ref19 doi: 10.1177/09544119211036806 – ident: ref26 doi: 10.1109/ACCESS.2019.2912226 – ident: ref12 doi: 10.1016/j.cmpb.2019.03.008 – ident: ref24 doi: 10.3390/e19060251 – ident: ref22 doi: 10.1016/j.cmpb.2011.12.015 – ident: ref31 doi: 10.1109/JSTARS.2020.2968179 – ident: ref11 doi: 10.1109/TCE.2017.015063 – ident: ref16 doi: 10.1038/s41467-020-15706-x – ident: ref40 doi: 10.1161/01.CTR.101.23.e215 – ident: ref7 doi: 10.1016/j.artmed.2020.101856 – ident: ref34 doi: 10.3390/diagnostics11030534 – ident: ref15 doi: 10.1016/j.bbe.2021.04.004 – ident: ref35 doi: 10.1109/ICCV.2017.97 – ident: ref37 doi: 10.1007/s11432-020-2806-8 – ident: ref42 doi: 10.1109/ICASSP40776.2020.9053405 – ident: ref3 doi: 10.1016/j.cardfail.2021.01.022 – ident: ref28 doi: 10.1093/bioinformatics/btp621 – ident: ref25 doi: 10.1016/j.bbe.2018.10.001 – ident: ref32 doi: 10.1109/EMBC.2017.8037578 – ident: ref10 doi: 10.3390/e23121669 – ident: ref29 doi: 10.1109/JSEN.2020.3030321 |
SSID | ssj0007647 |
Score | 2.3676324 |
Snippet | Congestive heart failure (CHF) is a progressive and complex syndrome resulted from ventricular dysfunction, which is difficult to detect at early stages. Heart... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Cardiovascular diseases Centralized learning Coders congestive heart failure (CHF) detection Decoders Diagnosis Electrocardiography Feature extraction Federated learning federated learning (FL) Heart Heart failure Heart rate Heart rate variability Image segmentation Medical imaging multiscale residual module Training UNet |
Title | Automatic Detection of Congestive Heart Failure Based on Multiscale Residual UNet++: From Centralized Learning to Federated Learning |
URI | https://ieeexplore.ieee.org/document/9978643 https://www.proquest.com/docview/2766615768 |
Volume | 72 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED8B0qTtgW2wiTKY_MDLxNImrtM0ewO2qEMqDxOVeIts54wqIEHUfeGZP3x3TtqhbZr2Fllnycqd78t3vwM40mOVWGdUFOtER8qhinTqqoi0pUGVGZlp7kaeXowmM3V-lV5twOd1LwwihuIz7PNneMuvGrvkVNkgp5CHLOgmbJKYtb1aa62bjVSLj5nQBSavYPUkGeeDy-9TCgSl7A8ZLo-b-p6ZoDBT5Q9FHKxL8Rqmq3O1RSU3_aU3ffv4G2Tj_x78DWx3bqY4aeXiLWxgvQOvnoEP7sCLUPxpF7vwdLL0TYBuFV_Rh9qsWjROnDU1vz6RPhQTuhBeFHrOVezilExfJYgotO8uiM0ofuAi9HWJ2QX64-Mvonho7kSXPJ4_En0H5XotfCMKxrAgN_fX6juYFd8uzyZRN50hsjIe-cjouJLDtNKxrJyMcczBlRnn9KdzS2FnykAw5C44ZUhx4DDDscSE0fhHqbWZG76HrbqpcQ9Eqiw6azFRFRlL5UyMnJ3VuSP_ENO8B4MVw0rbQZfzBI3bMoQwcV4Si0tmcdmxuAef1jvuW9iOf9DuMsfWdB2zenCwkomyu9eLUmYU7iUco-3_fdcHeMkD6dskzQFs-YclHpLb4s3HIK8_AZzc6R4 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6VIgQ98GiLCBTYAxdUnNibdRz3VgpWCk0OKJF6s3bXs6gCbNRsLj33hzOzdtIKEOJmWbOS5W93XjvzDcAbPVaJdUZFsU50pByqSKeuikhbGlSZkZnmbuTpbDRZqE_n6fkWvNv0wiBiKD7DPj-Gu_yqsStOlQ1yCnnIgt6Bu2T3Vdp2a230bjZSLUNmQkeY_IL1pWScD-anUwoFpewPmTCP2_puGaEwVeUPVRzsS_EIpusva8tKvvVX3vTt1W-kjf_76Y_hYedoiuN2ZzyBLax3YecW_eAu3Avln3a5B9fHK98E8lbxAX2ozqpF48RJU_P9E2lEMaEj4UWhL7iOXbwn41cJEgoNvEsCGsUXXIbOLrGYoT88PBLFZfNDdOnjiyuS78hcvwrfiIJZLMjRvXm7D4vi4_xkEnXzGSIr45GPjI4rOUwrHcvKyRjHHF6ZcU5_OrcUeKZMBUMOg1OGVAcOMxxLTJiPf5Ram7nhU9iumxqfgUiVRWctJqoic6mciZHzszp35CFimvdgsAastB15Oc_Q-F6GICbOS4K4ZIjLDuIevN2s-NkSd_xDdo8R28h1YPXgYL0nyu5kL0uZUcCXcJT2_O-rXsP9yXx6Vp6dzj6_gAc8nr5N2RzAtr9c4UtyYrx5FfbuL_hV7Gs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Detection+of+Congestive+Heart+Failure+Based+on+Multiscale+Residual+UNet%2B%2B%3A+From+Centralized+Learning+to+Federated+Learning&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Zou%2C+Liang&rft.au=Huang%2C+Zexin&rft.au=Yu%2C+Xinhui&rft.au=Zheng%2C+Jiannan&rft.date=2023&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=72&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTIM.2022.3227955&rft.externalDocID=9978643 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |