MyoPose: position-limb-robust neuromechanical features for enhanced hand gesture recognition in colocated sEMG-pFMG armbands

Objective . Surface electromyography (sEMG) and pressure-based force myography (pFMG) are two complementary modalities adopted in hand gesture recognition due to their ability to capture muscle electrical and mechanical activity, respectively. While sEMG carries rich neural information about the int...

Full description

Saved in:
Bibliographic Details
Published inJournal of neural engineering Vol. 22; no. 4; pp. 46044 - 46060
Main Authors Mobarak, Rami, Zhang, Shen, Zhou, Hao, Mengarelli, Alessandro, Verdini, Federica, Burattini, Laura, Tigrini, Andrea, Alici, Gursel
Format Journal Article
LanguageEnglish
Published England IOP Publishing 01.08.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Objective . Surface electromyography (sEMG) and pressure-based force myography (pFMG) are two complementary modalities adopted in hand gesture recognition due to their ability to capture muscle electrical and mechanical activity, respectively. While sEMG carries rich neural information about the intended gestures and has long been established as the primary control signal in myoelectric interfaces, pFMG has recently emerged as a stable modality that is less sensitive to sweat and can indicate motion onset earlier than sEMG, making their fusion promising for robust pattern recognition. However, gesture classification systems based on these signals often suffer from performance degradation due to limb position changes, which affect signal characteristics. Approach . To address this, we introduce MyoPose, a novel and lightweight spatial synergy-based feature set for enhancing neuromechanical control. MyoPose works on effectively decoding colocated sEMG-pFMG information to improve hand gesture recognition under limb position variability while remaining computationally efficient for resource-constrained hardware. Main results . The proposed MyoPose feature combined with linear discriminant analysis, achieved 87.7% accuracy (ACC) in a nine-hand gesture recognition task, outperforming standard myoelectric feature sets and comparable to a state-of-the-art decision-level multimodal fusion parallel convolutional neural network. Notably, MyoPose maintained computational efficiency, achieving real-time feasibility with an estimated controller delay of 110.62 ms, well within the operational requirement of 100–125 ms, as well as ultra-light memory requirement of 0.011 KB. Significance . The novelty of this study lies in providing an effective feature set for multimodal driven hand gesture recognition, handling limb position variations with robust ACC, and showing potential for real-time feasibility for human–machine interfaces without the need for deep learning.
AbstractList Objective . Surface electromyography (sEMG) and pressure-based force myography (pFMG) are two complementary modalities adopted in hand gesture recognition due to their ability to capture muscle electrical and mechanical activity, respectively. While sEMG carries rich neural information about the intended gestures and has long been established as the primary control signal in myoelectric interfaces, pFMG has recently emerged as a stable modality that is less sensitive to sweat and can indicate motion onset earlier than sEMG, making their fusion promising for robust pattern recognition. However, gesture classification systems based on these signals often suffer from performance degradation due to limb position changes, which affect signal characteristics. Approach . To address this, we introduce MyoPose, a novel and lightweight spatial synergy-based feature set for enhancing neuromechanical control. MyoPose works on effectively decoding colocated sEMG-pFMG information to improve hand gesture recognition under limb position variability while remaining computationally efficient for resource-constrained hardware. Main results . The proposed MyoPose feature combined with linear discriminant analysis, achieved 87.7% accuracy (ACC) in a nine-hand gesture recognition task, outperforming standard myoelectric feature sets and comparable to a state-of-the-art decision-level multimodal fusion parallel convolutional neural network. Notably, MyoPose maintained computational efficiency, achieving real-time feasibility with an estimated controller delay of 110.62 ms, well within the operational requirement of 100–125 ms, as well as ultra-light memory requirement of 0.011 KB. Significance . The novelty of this study lies in providing an effective feature set for multimodal driven hand gesture recognition, handling limb position variations with robust ACC, and showing potential for real-time feasibility for human–machine interfaces without the need for deep learning.
Surface electromyography (sEMG) and pressure-based force myography (pFMG) are two complementary modalities adopted in hand gesture recognition due to their ability to capture muscle electrical and mechanical activity, respectively. While sEMG carries rich neural information about the intended gestures and has long been established as the primary control signal in myoelectric interfaces, pFMG has recently emerged as a stable modality that is less sensitive to sweat and can indicate motion onset earlier than sEMG, making their fusion promising for robust pattern recognition. However, gesture classification systems based on these signals often suffer from performance degradation due to limb position changes, which affect signal characteristics. To address this, we introduce MyoPose, a novel and lightweight spatial synergy-based feature set for enhancing neuromechanical control. MyoPose works on effectively decoding colocated sEMG-pFMG information to improve hand gesture recognition under limb position variability while remaining computationally efficient for resource-constrained hardware. The proposed MyoPose feature combined with Linear Discriminant Analysis (LDA), achieved 87.7% accuracy in a nine-hand gesture recognition task, outperforming standard myoelectric feature sets and comparable to a state-of-the-art decision-level multimodal fusion parallel CNN. Notably, MyoPose maintained computational efficiency, achieving real-time feasibility with an estimated controller delay of 110.62 ms, well within the operational requirement of 100-125 ms, as well as ultra-light memory requirement of 0.011 KB. The novelty of this study lies in providing an effective feature set for multimodal driven hand gesture recognition, handling limb position variations with robust accuracy, and showing potential for real-time feasibility for human-machine interfaces without the need for deep learning.Surface electromyography (sEMG) and pressure-based force myography (pFMG) are two complementary modalities adopted in hand gesture recognition due to their ability to capture muscle electrical and mechanical activity, respectively. While sEMG carries rich neural information about the intended gestures and has long been established as the primary control signal in myoelectric interfaces, pFMG has recently emerged as a stable modality that is less sensitive to sweat and can indicate motion onset earlier than sEMG, making their fusion promising for robust pattern recognition. However, gesture classification systems based on these signals often suffer from performance degradation due to limb position changes, which affect signal characteristics. To address this, we introduce MyoPose, a novel and lightweight spatial synergy-based feature set for enhancing neuromechanical control. MyoPose works on effectively decoding colocated sEMG-pFMG information to improve hand gesture recognition under limb position variability while remaining computationally efficient for resource-constrained hardware. The proposed MyoPose feature combined with Linear Discriminant Analysis (LDA), achieved 87.7% accuracy in a nine-hand gesture recognition task, outperforming standard myoelectric feature sets and comparable to a state-of-the-art decision-level multimodal fusion parallel CNN. Notably, MyoPose maintained computational efficiency, achieving real-time feasibility with an estimated controller delay of 110.62 ms, well within the operational requirement of 100-125 ms, as well as ultra-light memory requirement of 0.011 KB. The novelty of this study lies in providing an effective feature set for multimodal driven hand gesture recognition, handling limb position variations with robust accuracy, and showing potential for real-time feasibility for human-machine interfaces without the need for deep learning.
. Surface electromyography (sEMG) and pressure-based force myography (pFMG) are two complementary modalities adopted in hand gesture recognition due to their ability to capture muscle electrical and mechanical activity, respectively. While sEMG carries rich neural information about the intended gestures and has long been established as the primary control signal in myoelectric interfaces, pFMG has recently emerged as a stable modality that is less sensitive to sweat and can indicate motion onset earlier than sEMG, making their fusion promising for robust pattern recognition. However, gesture classification systems based on these signals often suffer from performance degradation due to limb position changes, which affect signal characteristics. . To address this, we introduce MyoPose, a novel and lightweight spatial synergy-based feature set for enhancing neuromechanical control. MyoPose works on effectively decoding colocated sEMG-pFMG information to improve hand gesture recognition under limb position variability while remaining computationally efficient for resource-constrained hardware. . The proposed MyoPose feature combined with linear discriminant analysis, achieved 87.7% accuracy (ACC) in a nine-hand gesture recognition task, outperforming standard myoelectric feature sets and comparable to a state-of-the-art decision-level multimodal fusion parallel convolutional neural network. Notably, MyoPose maintained computational efficiency, achieving real-time feasibility with an estimated controller delay of 110.62 ms, well within the operational requirement of 100-125 ms, as well as ultra-light memory requirement of 0.011 KB. . The novelty of this study lies in providing an effective feature set for multimodal driven hand gesture recognition, handling limb position variations with robust ACC, and showing potential for real-time feasibility for human-machine interfaces without the need for deep learning.
Author Zhou, Hao
Burattini, Laura
Zhang, Shen
Tigrini, Andrea
Mengarelli, Alessandro
Alici, Gursel
Mobarak, Rami
Verdini, Federica
Author_xml – sequence: 1
  givenname: Rami
  orcidid: 0009-0004-3929-084X
  surname: Mobarak
  fullname: Mobarak, Rami
  organization: Universitá Politecnica delle Marche Department of Information Engineering, Via Brecce Bianche, 12, 60131 Ancona, Italy
– sequence: 2
  givenname: Shen
  surname: Zhang
  fullname: Zhang, Shen
  organization: University of Wollongong School of Mechanical, Materials, Mechatronic and Biomedical Engineering, Wollongong, NSW 2522, Australia
– sequence: 3
  givenname: Hao
  orcidid: 0000-0002-3530-4747
  surname: Zhou
  fullname: Zhou, Hao
  organization: University of Wollongong School of Mechanical, Materials, Mechatronic and Biomedical Engineering, Wollongong, NSW 2522, Australia
– sequence: 4
  givenname: Alessandro
  orcidid: 0000-0002-6087-6763
  surname: Mengarelli
  fullname: Mengarelli, Alessandro
  organization: Universitá Politecnica delle Marche Department of Information Engineering, Via Brecce Bianche, 12, 60131 Ancona, Italy
– sequence: 5
  givenname: Federica
  surname: Verdini
  fullname: Verdini, Federica
  organization: Universitá Politecnica delle Marche Department of Information Engineering, Via Brecce Bianche, 12, 60131 Ancona, Italy
– sequence: 6
  givenname: Laura
  surname: Burattini
  fullname: Burattini, Laura
  organization: Universitá Politecnica delle Marche Department of Information Engineering, Via Brecce Bianche, 12, 60131 Ancona, Italy
– sequence: 7
  givenname: Andrea
  orcidid: 0000-0002-1600-2137
  surname: Tigrini
  fullname: Tigrini, Andrea
  organization: Universitá Politecnica delle Marche Department of Information Engineering, Via Brecce Bianche, 12, 60131 Ancona, Italy
– sequence: 8
  givenname: Gursel
  orcidid: 0000-0001-6527-2881
  surname: Alici
  fullname: Alici, Gursel
  organization: University of Wollongong School of Mechanical, Materials, Mechatronic and Biomedical Engineering, Wollongong, NSW 2522, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40769169$$D View this record in MEDLINE/PubMed
BookMark eNp1kUFv2zAMhYWhxZpmu-806NhD3UiWbMu7FUGTFUiwHbazQMtU58KWPMk-BOiPr9J0ue1EgvweQfJdkwvnHRLyhbM7zpRa8UryLC-KfAWtVUp9IItz6eKcl-yKXMf4zJjgVc0-kivJqrLmZb0gL_uD_-kjfqOjj93UeZf13dBkwTdznKjDOfgBzR9wnYGeWoRpDhip9YGiS2WDLU2hpU8Yjy0a0Pgn9zaKdo4a33sDU6Liw36bjZv9lkIYmiSJn8ilhT7i5_e4JL83D7_W37Pdj-3j-n6XmZyVU9YUFVdMMWSsYhVIoYwpG2hrbEWOAMaIorBcWQGyMQClyBsrpbXcAPKSiyW5Oc0dg_87pz310EWDfQ8O_Ry1yEUlZZ3LKqFf39G5GbDVY-gGCAf972MJYCfABB9jQHtGONNHU_Tx6_rogD6ZkiS3J0nnR_3s5-DSsf_HXwHZR484
CODEN JNEOBH
Cites_doi 10.1109/JBHI.2012.2236563
10.3390/s22041321
10.1109/TII.2024.3375376
10.1109/JBHI.2020.2993697
10.1109/TMRB.2023.3292451
10.1109/THMS.2021.3087902
10.1371/journal.pone.0321319
10.1016/S1672-6529(16)60435-3
10.1186/s12984-023-01222-8
10.1109/LRA.2021.3111850
10.1109/TBME.2011.2161671
10.1109/TNSRE.2015.2445634
10.1109/TNSRE.2022.3179327
10.1109/LSENS.2024.3417278
10.1109/THMS.2022.3146053
10.1109/TBME.2023.3292032
10.1109/TNSRE.2014.2305111
10.1682/JRRD.2015.03.0041
10.1098/rsif.2017.0734
10.1109/LRA.2023.3235680
10.1109/ACCESS.2023.3304544
10.1016/j.bspc.2020.101881
10.1109/TNSRE.2010.2100828
10.1109/JSEN.2024.3389963
10.1016/j.jvs.2016.03.403
10.1007/BF00431022
10.3389/fnbot.2022.880073
10.1109/TFUZZ.2024.3505260
10.1038/s41598-024-82519-z
10.1016/j.bspc.2021.103364
10.1109/TMECH.2024.3386929
10.1038/sdata.2014.53
10.1088/1741-2552/ad692e
10.1109/TNSRE.2011.2163529
10.1109/JSEN.2021.3071669
10.1109/JSEN.2022.3169492
10.1088/1741-2560/11/5/056021
10.1109/THMS.2021.3086003
10.1109/TBME.2019.2900415
10.1016/j.bspc.2023.104936
10.1016/j.sna.2019.111738
10.3389/fnins.2021.621885
10.1002/aisy.202300207
10.1186/s12984-022-01019-1
10.1016/j.eswa.2012.02.192
10.1109/10.204774
10.1109/TNSRE.2007.891391
10.1088/1741-2552/ac1176
10.1109/JBHI.2022.3159792
10.1109/TBME.2022.3140269
10.3390/bioengineering11050458
10.1109/MRA.2017.2747899
10.1186/1751-0473-8-11
10.1109/TNSRE.2018.2861465
10.1016/j.eswa.2013.02.023
10.1016/j.apmr.2011.11.010
10.1109/TNSRE.2024.3364976
10.1109/THMS.2023.3287594
10.3390/bdcc2030021
10.1038/s41598-024-56706-x
10.1109/THMS.2015.2470657
10.1109/MSP.2021.3057042
10.1016/j.neunet.2014.03.010
10.1109/THMS.2018.2860598
10.3390/s24175828
10.3390/s20174775
10.1109/TNSRE.2017.2687520
ContentType Journal Article
Copyright 2025 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Copyright_xml – notice: 2025 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1088/1741-2552/adf888
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1741-2552
ExternalDocumentID 40769169
10_1088_1741_2552_adf888
jneadf888
Genre Journal Article
GrantInformation_xml – fundername: ARC-Discovery Project
  grantid: DP210102911
GroupedDBID ---
1JI
4.4
53G
5B3
5GY
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
ADEQX
AEFHF
AEINN
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
IHE
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
P2P
PJBAE
RIN
RO9
ROL
RPA
SY9
W28
XPP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c206t-b5718080e00707a438cc6bad9ed32eaacc355f18f3a4bcaa632bf44ff1cae1613
IEDL.DBID IOP
ISSN 1741-2560
1741-2552
IngestDate Thu Aug 07 17:41:10 EDT 2025
Thu Aug 28 04:49:10 EDT 2025
Thu Aug 21 00:06:08 EDT 2025
Wed Aug 20 00:37:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords sEMG
armband
pFMG
prosthetics
myoelectric control
Language English
License This article is available under the terms of the IOP-Standard License.
2025 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c206t-b5718080e00707a438cc6bad9ed32eaacc355f18f3a4bcaa632bf44ff1cae1613
Notes JNE-108913.R2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6527-2881
0000-0002-6087-6763
0000-0002-1600-2137
0009-0004-3929-084X
0000-0002-3530-4747
PMID 40769169
PQID 3237449247
PQPubID 23479
PageCount 17
ParticipantIDs proquest_miscellaneous_3237449247
iop_journals_10_1088_1741_2552_adf888
pubmed_primary_40769169
crossref_primary_10_1088_1741_2552_adf888
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of neural engineering
PublicationTitleAbbrev JNE
PublicationTitleAlternate J. Neural Eng
PublicationYear 2025
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Cimolato (jneadf888bib12) 2022; 19
Gaballa (jneadf888bib2) 2022; 30
Gantenbein (jneadf888bib68) 2023; 20
Battraw (jneadf888bib58) 2024; 14
Eddy (jneadf888bib47) 2023; 11
Ahmadizadeh (jneadf888bib37) 2017; 24
Khushaba (jneadf888bib20) 2012; 39
Fujiwara (jneadf888bib62) 2021; 21
Mobarak (jneadf888bib26) 2024
Zhang (jneadf888bib28) 2012; 17
Phinyomark (jneadf888bib57) 2017; 14
Feix (jneadf888bib53) 2015; 46
Tigrini (jneadf888bib43) 2024; 24
De Silva (jneadf888bib51) 2020
Phinyomark (jneadf888bib55) 2013; 40
Fang (jneadf888bib22) 2024; 33
Rainio (jneadf888bib65) 2024; 14
D’Accolti (jneadf888bib9) 2023; 8
Resnik (jneadf888bib1) 2012; 93
Khushaba (jneadf888bib6) 2017; 25
Ortiz-Catalan (jneadf888bib7) 2013; 8
Farrell (jneadf888bib69) 2007; 15
Fleming (jneadf888bib19) 2021; 18
Ferigo (jneadf888bib30) 2017; 14
Sitole (jneadf888bib59) 2023; 5
Meredith (jneadf888bib75) 2024; 21
Cavanagh (jneadf888bib17) 1979; 42
Radmand (jneadf888bib35) 2016; 53
Zhou (jneadf888bib40) 2022; 22
Godiyal (jneadf888bib25) 2018; 48
Chen (jneadf888bib32) 2023; 53
Al-Timemy (jneadf888bib46) 2015; 24
Atzori (jneadf888bib54) 2014; 1
Xu (jneadf888bib29) 2022; 73
Farina (jneadf888bib15) 2014; 22
Tigrini (jneadf888bib66) 2024; 11
Chen (jneadf888bib70) 2022; 16
Mendez (jneadf888bib71) 2023; 71
Kumar (jneadf888bib23) 2020; 25
Belyea (jneadf888bib21) 2019; 66
Benalcázar (jneadf888bib52) 2018
Hargrove (jneadf888bib74) 2016; 63
Phinyomark (jneadf888bib67) 2018; 2
Zhang (jneadf888bib36) 2024; 24
Mobarak (jneadf888bib16) 2024; 32
Fedorov (jneadf888bib72) 2019; vol
Du (jneadf888bib56) 2013
Khushaba (jneadf888bib45) 2014; 55
Alfaro (jneadf888bib48) 2022; 22
Guo (jneadf888bib14) 2021; 51
Young (jneadf888bib34) 2025; 20
Ke (jneadf888bib38) 2020; 20
Zhang (jneadf888bib31) 2024; 30
Zakia (jneadf888bib33) 2021; 51
Khushaba (jneadf888bib63) 2024
Tigrini (jneadf888bib61) 2023; 85
Hudgins (jneadf888bib4) 1993; 40
Li (jneadf888bib13) 2021; 15
Khushaba (jneadf888bib41) 2022; 52
Fougner (jneadf888bib50) 2011; 19
Fora (jneadf888bib42) 2023
Williams (jneadf888bib49) 2022; 69
Lin (jneadf888bib73) 2020; vol 33
Onay (jneadf888bib44) 2020; 59
Kanitz (jneadf888bib10) 2018; 26
Schaumann (jneadf888bib18) 2024; 8
Ahmadizadeh (jneadf888bib8) 2021; 38
Bao (jneadf888bib11) 2022; 26
Khushaba (jneadf888bib5) 2021; 6
Huang (jneadf888bib24) 2011; 58
Smith (jneadf888bib64) 2010; 19
Young (jneadf888bib27) 2014; 11
Tchantchane (jneadf888bib3) 2023; 5
Jiang (jneadf888bib39) 2020; 301
Zhou (jneadf888bib60) 2024; 20
References_xml – volume: 17
  start-page: 907
  year: 2012
  ident: jneadf888bib28
  article-title: Source selection for real-time user intent recognition toward volitional control of artificial legs
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2012.2236563
– volume: 22
  start-page: 1321
  year: 2022
  ident: jneadf888bib48
  article-title: User-independent hand gesture recognition classification models using sensor fusion
  publication-title: Sensors
  doi: 10.3390/s22041321
– volume: 20
  start-page: 8838
  year: 2024
  ident: jneadf888bib60
  article-title: A multipurpose human–machine interface via 3D-printed pressure-based force myography
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2024.3375376
– volume: 25
  start-page: 701
  year: 2020
  ident: jneadf888bib23
  article-title: A new force myography-based approach for continuous estimation of knee joint angle in lower limb amputees and able-bodied subjects
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2020.2993697
– volume: 5
  start-page: 528
  year: 2023
  ident: jneadf888bib59
  article-title: Continuous prediction of human joint mechanics using emg signals: a review of model-based and model-free approaches
  publication-title: IEEE Trans. Med. Rob. Bion.
  doi: 10.1109/TMRB.2023.3292451
– volume: 51
  start-page: 310
  year: 2021
  ident: jneadf888bib33
  article-title: Toward long-term fmg model-based estimation of applied hand force in dynamic motion during human–robot interactions
  publication-title: IEEE Trans. Hum.-Mach. Syst.
  doi: 10.1109/THMS.2021.3087902
– start-page: pp 22
  year: 2023
  ident: jneadf888bib42
  article-title: Features selection for force myography based hand gesture recognition
– volume: 20
  year: 2025
  ident: jneadf888bib34
  article-title: The effects of limb position and grasped load on hand gesture classification using electromyography, force myography and their combination
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0321319
– volume: 14
  start-page: 692
  year: 2017
  ident: jneadf888bib30
  article-title: A case study of a force-myography controlled bionic hand mitigating limb position effect
  publication-title: J. Bionic Eng.
  doi: 10.1016/S1672-6529(16)60435-3
– volume: 20
  start-page: 101
  year: 2023
  ident: jneadf888bib68
  article-title: Feasibility of force myography for the direct control of an assistive robotic hand orthosis in non-impaired individuals
  publication-title: J. NeuroEng. Rehab.
  doi: 10.1186/s12984-023-01222-8
– volume: 6
  start-page: 8569
  year: 2021
  ident: jneadf888bib5
  article-title: Decoding HD-EMG signals for myoelectric control-how small can the analysis window size be?
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2021.3111850
– volume: 58
  start-page: 2867
  year: 2011
  ident: jneadf888bib24
  article-title: Continuous locomotion-mode identification for prosthetic legs based on neuromuscular–mechanical fusion
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2011.2161671
– volume: 24
  start-page: 650
  year: 2015
  ident: jneadf888bib46
  article-title: Improving the performance against force variation of EMG controlled multifunctional upper-limb prostheses for transradial amputees
  publication-title: IEEE Trans. Neural Syst. Rehab. Eng.
  doi: 10.1109/TNSRE.2015.2445634
– volume: 30
  start-page: 1652
  year: 2022
  ident: jneadf888bib2
  article-title: Extended reality ‘x-reality’ for prosthesis training of upper-limb amputees: a review on current and future clinical potential
  publication-title: IEEE Trans. Neural Syst. Rehab. Eng.
  doi: 10.1109/TNSRE.2022.3179327
– volume: 8
  start-page: 1
  year: 2024
  ident: jneadf888bib18
  article-title: Force myography for motion intention detection based on 3d-printed piezoelectric sensors
  publication-title: IEEE Sens. Lett.
  doi: 10.1109/LSENS.2024.3417278
– volume: 52
  start-page: 1247
  year: 2022
  ident: jneadf888bib41
  article-title: Myoelectric control with fixed convolution-based time-domain feature extraction: exploring the spatio–temporal interaction
  publication-title: IEEE Trans. Hum.-Mach. Syst.
  doi: 10.1109/THMS.2022.3146053
– volume: 71
  start-page: 56
  year: 2023
  ident: jneadf888bib71
  article-title: Continuous a-mode ultrasound-based prediction of transfemoral amputee prosthesis kinematics across different ambulation tasks
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2023.3292032
– volume: 22
  start-page: 797
  year: 2014
  ident: jneadf888bib15
  article-title: The extraction of neural information from the surface EMG for the control of upper-limb prostheses: emerging avenues and challenges
  publication-title: IEEE Trans. Neural Syst. Rehab. Eng.
  doi: 10.1109/TNSRE.2014.2305111
– volume: 53
  start-page: 443
  year: 2016
  ident: jneadf888bib35
  article-title: High-density force myography: a possible alternative for upper-limb prosthetic control
  publication-title: J. Rehab. Res. Dev.
  doi: 10.1682/JRRD.2015.03.0041
– start-page: pp 1299
  year: 2020
  ident: jneadf888bib51
  article-title: Real-time hand gesture recognition using temporal muscle activation maps of multi-channel semg signals
– volume: 14
  year: 2017
  ident: jneadf888bib57
  article-title: Navigating features: a topologically informed chart of electromyographic features space
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2017.0734
– volume: 8
  start-page: 1045
  year: 2023
  ident: jneadf888bib9
  article-title: Online classification of transient EMG patterns for the control of the wrist and hand in a transradial prosthesis
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2023.3235680
– volume: 11
  start-page: 87380
  year: 2023
  ident: jneadf888bib47
  article-title: Libemg: an open source library to facilitate the exploration of myoelectric control
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3304544
– volume: 59
  year: 2020
  ident: jneadf888bib44
  article-title: Phasor represented emg feature extraction against varying contraction level of prosthetic control
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.101881
– volume: 19
  start-page: 186
  year: 2010
  ident: jneadf888bib64
  article-title: Determining the optimal window length for pattern recognition-based myoelectric control: balancing the competing effects of classification error and controller delay
  publication-title: IEEE Trans. Neural Syst. Rehab. Eng.
  doi: 10.1109/TNSRE.2010.2100828
– volume: 24
  start-page: 18633
  year: 2024
  ident: jneadf888bib36
  article-title: Hand gesture recognition across various limb positions using a multi-modal sensing system based on self-adaptive data-fusion and convolutional neural networks (CNNS)
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2024.3389963
– volume: 63
  start-page: 1405
  year: 2016
  ident: jneadf888bib74
  article-title: Intuitive control of a powered prosthetic leg during ambulation: a randomized clinical trial
  publication-title: J. Vasc. Surg.
  doi: 10.1016/j.jvs.2016.03.403
– volume: 42
  start-page: 159
  year: 1979
  ident: jneadf888bib17
  article-title: Electromechanical delay in human skeletal muscle under concentric and eccentric contractions
  publication-title: Eur. J. Appl. Physiol. Occupat. Physiol.
  doi: 10.1007/BF00431022
– start-page: pp 1571
  year: 2013
  ident: jneadf888bib56
  article-title: Improving the performance of a neural-machine interface for prosthetic legs using adaptive pattern classifiers
– volume: 16
  year: 2022
  ident: jneadf888bib70
  article-title: A real-time EMG-based fixed-bandwidth frequency-domain embedded system for robotic hand
  publication-title: Front. Neurorobot.
  doi: 10.3389/fnbot.2022.880073
– volume: 33
  start-page: 2425
  year: 2024
  ident: jneadf888bib22
  article-title: A hybrid semg-fmg sensor fusion approach under muscle fatigue using cascade fuzzy forest
  doi: 10.1109/TFUZZ.2024.3505260
– start-page: pp 1492
  year: 2018
  ident: jneadf888bib52
  article-title: Real-time hand gesture recognition based on artificial feed-forward neural networks and EMG
– start-page: pp 1
  year: 2024
  ident: jneadf888bib26
  article-title: Neuromechanical-driven ankle angular position control during gait using minimal setup and lstm model
– volume: 14
  year: 2024
  ident: jneadf888bib58
  article-title: Surface electromyography evaluation for decoding hand motor intent in children with congenital upper limb deficiency
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-82519-z
– start-page: pp 1
  year: 2024
  ident: jneadf888bib63
  article-title: Modem myoelectric control–is it time to change the algorithmic focus?
– volume: vol 33
  start-page: pp 11711
  year: 2020
  ident: jneadf888bib73
  article-title: Mcunet: tiny deep learning on iot devices
– volume: 73
  year: 2022
  ident: jneadf888bib29
  article-title: Gesture recognition using dual-stream cnn based on fusion of semg energy Kernel phase portrait and imu amplitude image
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.103364
– volume: 30
  start-page: 369
  year: 2024
  ident: jneadf888bib31
  article-title: A wearable human–machine-interface (HMI) system based on colocated EMG-PFMG sensing for hand gesture recognition
  publication-title: IEEE/ASME Trans. Mech.
  doi: 10.1109/TMECH.2024.3386929
– volume: 1
  start-page: 1
  year: 2014
  ident: jneadf888bib54
  article-title: Electromyography data for non-invasive naturally-controlled robotic hand prostheses
  publication-title: Sci. Data
  doi: 10.1038/sdata.2014.53
– volume: 21
  year: 2024
  ident: jneadf888bib75
  article-title: Comparing online wrist and forearm emg-based control using a rhythm game-inspired evaluation environment
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ad692e
– volume: 19
  start-page: 644
  year: 2011
  ident: jneadf888bib50
  article-title: Resolving the limb position effect in myoelectric pattern recognition
  publication-title: IEEE Trans. Neural Syst. Rehab. Eng.
  doi: 10.1109/TNSRE.2011.2163529
– volume: 21
  start-page: 13916
  year: 2021
  ident: jneadf888bib62
  article-title: Identification of hand gestures using the inertial measurement unit of a smartphone: a proof-of-concept study
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3071669
– volume: 22
  start-page: 10292
  year: 2022
  ident: jneadf888bib40
  article-title: Non-invasive human-machine interface (HMI) systems with hybrid on-body sensors for controlling upper-limb prosthesis: a review
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2022.3169492
– volume: 11
  year: 2014
  ident: jneadf888bib27
  article-title: Analysis of using emg and mechanical sensors to enhance intent recognition in powered lower limb prostheses
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/11/5/056021
– volume: 51
  start-page: 300
  year: 2021
  ident: jneadf888bib14
  article-title: Human-machine interaction sensing technology based on hand gesture recognition: a review
  publication-title: IEEE Trans. Hum.-Mach. Syst.
  doi: 10.1109/THMS.2021.3086003
– volume: vol
  start-page: 32
  year: 2019
  ident: jneadf888bib72
  article-title: Sparse: sparse architecture search for cnns on resource-constrained microcontrollers
– volume: 66
  start-page: 3098
  year: 2019
  ident: jneadf888bib21
  article-title: Fmg versus EMG: a comparison of usability for real-time pattern recognition based control
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2019.2900415
– volume: 85
  year: 2023
  ident: jneadf888bib61
  article-title: Decoding transient semg data for intent motion recognition in transhumeral amputees
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2023.104936
– volume: 301
  year: 2020
  ident: jneadf888bib39
  article-title: A novel, co-located emg-fmg-sensing wearable armband for hand gesture recognition
  publication-title: Sens. Actuators A
  doi: 10.1016/j.sna.2019.111738
– volume: 15
  year: 2021
  ident: jneadf888bib13
  article-title: Gesture recognition using surface electromyography and deep learning for prostheses hand: state-of-the-art, challenges and future
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2021.621885
– volume: 5
  year: 2023
  ident: jneadf888bib3
  article-title: A review of hand gesture recognition systems based on noninvasive wearable sensors
  publication-title: Adv. Intell. Syst.
  doi: 10.1002/aisy.202300207
– volume: 19
  start-page: 1
  year: 2022
  ident: jneadf888bib12
  article-title: EMG-driven control in lower limb prostheses: a topic-based systematic review
  publication-title: J. NeuroEng. Rehab.
  doi: 10.1186/s12984-022-01019-1
– volume: 39
  start-page: 10731
  year: 2012
  ident: jneadf888bib20
  article-title: Toward improved control of prosthetic fingers using surface electromyogram (EMG) signals
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.02.192
– volume: 40
  start-page: 82
  year: 1993
  ident: jneadf888bib4
  article-title: A new strategy for multifunction myoelectric control
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.204774
– volume: 15
  start-page: 111
  year: 2007
  ident: jneadf888bib69
  article-title: The optimal controller delay for myoelectric prostheses
  publication-title: IEEE Trans. Neural Syst. Rehab. Eng.
  doi: 10.1109/TNSRE.2007.891391
– volume: 18
  year: 2021
  ident: jneadf888bib19
  article-title: Myoelectric control of robotic lower limb prostheses: a review of electromyography interfaces, control paradigms, challenges and future directions
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ac1176
– volume: 26
  start-page: 3822
  year: 2022
  ident: jneadf888bib11
  article-title: Toward robust, adaptiveand reliable upper-limb motion estimation using machine learning and deep learning–a survey in myoelectric control
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2022.3159792
– volume: 69
  start-page: 2243
  year: 2022
  ident: jneadf888bib49
  article-title: Recurrent convolutional neural networks as an approach to position-aware myoelectric prosthesis control
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2022.3140269
– volume: 11
  start-page: 458
  year: 2024
  ident: jneadf888bib66
  article-title: Intelligent human–computer interaction: combined wrist and forearm myoelectric signals for handwriting recognition
  publication-title: Bioengineering
  doi: 10.3390/bioengineering11050458
– volume: 24
  start-page: 102
  year: 2017
  ident: jneadf888bib37
  article-title: Toward intuitive prosthetic control: solving common issues using force myography, surface electromyography and pattern recognition in a pilot case study
  publication-title: IEEE Robot. Autom. Mag.
  doi: 10.1109/MRA.2017.2747899
– volume: 8
  start-page: 1
  year: 2013
  ident: jneadf888bib7
  article-title: Biopatrec: a modular research platform for the control of artificial limbs based on pattern recognition algorithms
  publication-title: Source Code Biol. Med.
  doi: 10.1186/1751-0473-8-11
– volume: 26
  start-page: 1756
  year: 2018
  ident: jneadf888bib10
  article-title: Classification of transient myoelectric signals for the control of multi-grasp hand prostheses
  publication-title: IEEE Trans. Neural Syst. Rehab. Eng.
  doi: 10.1109/TNSRE.2018.2861465
– volume: 40
  start-page: 4832
  year: 2013
  ident: jneadf888bib55
  article-title: Emg feature evaluation for improving myoelectric pattern recognition robustness
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.02.023
– volume: 93
  start-page: 710
  year: 2012
  ident: jneadf888bib1
  article-title: Advanced upper limb prosthetic devices: implications for upper limb prosthetic rehabilitation
  publication-title: Arch. Phys. Med. Rehab.
  doi: 10.1016/j.apmr.2011.11.010
– volume: 32
  start-page: 812
  year: 2024
  ident: jneadf888bib16
  article-title: A minimal and multi-source recording setup for ankle joint kinematics estimation during walking using only proximal information from lower limb
  publication-title: IEEE Trans. Neural Syst. Rehab. Eng.
  doi: 10.1109/TNSRE.2024.3364976
– volume: 53
  start-page: 935
  year: 2023
  ident: jneadf888bib32
  article-title: A layered semg–fmg hybrid sensor for hand motion recognition from forearm muscle activities
  publication-title: IEEE Trans. Hum.-Mach. Syst.
  doi: 10.1109/THMS.2023.3287594
– volume: 2
  start-page: 21
  year: 2018
  ident: jneadf888bib67
  article-title: EMG pattern recognition in the era of big data and deep learning
  publication-title: Big Data Cogn. Comput.
  doi: 10.3390/bdcc2030021
– volume: 14
  start-page: 6086
  year: 2024
  ident: jneadf888bib65
  article-title: Evaluation metrics and statistical tests for machine learning
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-56706-x
– volume: 46
  start-page: 66
  year: 2015
  ident: jneadf888bib53
  article-title: The grasp taxonomy of human grasp types
  publication-title: IEEE Trans. Hum.-Mach. Syst.
  doi: 10.1109/THMS.2015.2470657
– volume: 38
  start-page: 12
  year: 2021
  ident: jneadf888bib8
  article-title: Human machine interfaces in upper-limb prosthesis control: a survey of techniques for preprocessing and processing of biosignals
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2021.3057042
– volume: 55
  start-page: 42
  year: 2014
  ident: jneadf888bib45
  article-title: Towards limb position invariant myoelectric pattern recognition using time-dependent spectral features
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.03.010
– volume: 48
  start-page: 648
  year: 2018
  ident: jneadf888bib25
  article-title: Force myography based novel strategy for locomotion classification
  publication-title: IEEE Trans. Hum.-Mach. Syst.
  doi: 10.1109/THMS.2018.2860598
– volume: 24
  start-page: 5828
  year: 2024
  ident: jneadf888bib43
  article-title: Phasor-based myoelectric synergy features: a fast hand-crafted feature extraction scheme for boosting performance in gait phase recognition
  publication-title: Sensors
  doi: 10.3390/s24175828
– volume: 20
  start-page: 4775
  year: 2020
  ident: jneadf888bib38
  article-title: An ultra-sensitive modular hybrid emg–fmg sensor with floating electrodes
  publication-title: Sensors
  doi: 10.3390/s20174775
– volume: 25
  start-page: 1821
  year: 2017
  ident: jneadf888bib6
  article-title: A framework of temporal-spatial descriptors-based feature extraction for improved myoelectric pattern recognition
  publication-title: IEEE Trans. Neural Syst. Rehab. Eng.
  doi: 10.1109/TNSRE.2017.2687520
SSID ssj0031790
Score 2.4283059
Snippet Objective . Surface electromyography (sEMG) and pressure-based force myography (pFMG) are two complementary modalities adopted in hand gesture recognition due...
. Surface electromyography (sEMG) and pressure-based force myography (pFMG) are two complementary modalities adopted in hand gesture recognition due to their...
Surface electromyography (sEMG) and pressure-based force myography (pFMG) are two complementary modalities adopted in hand gesture recognition due to their...
SourceID proquest
pubmed
crossref
iop
SourceType Aggregation Database
Index Database
Publisher
StartPage 46044
SubjectTerms Adult
Arm - physiology
armband
Electromyography - methods
Female
Gestures
Hand - physiology
Humans
Male
Muscle, Skeletal - physiology
myoelectric control
Myography - methods
Pattern Recognition, Automated - methods
pFMG
prosthetics
sEMG
Young Adult
Title MyoPose: position-limb-robust neuromechanical features for enhanced hand gesture recognition in colocated sEMG-pFMG armbands
URI https://iopscience.iop.org/article/10.1088/1741-2552/adf888
https://www.ncbi.nlm.nih.gov/pubmed/40769169
https://www.proquest.com/docview/3237449247
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB215cIFCuVjKSBXAiQO3mZjJ3HhVKFuq0oLPVCpB6Ro_CUq2GS1yR5a9cczdpKVQICq3iLFihN74nnjefMM8CbBIrHJxHPMfMFlkSBXMiVbdpinhXYyi2LPs8_5ybk8vcguNuDjuhamXvRL_5guO6Hgbgh7QpzaJww94YSE0320ngK4TbgnFDnOUL335WxYhkWQnuqqIUPrPOlzlH97wm8-aZP6_TfcjG5n-hC-DS_csU1-jFetHpvrP7Qc7_hF2_Cgh6PssGv6CDZc9Rh2DisKxedX7B2LBNG4874DN7Or-qxu3Ac2ML34z8u55star5qWRWXMuQuVxGHimXdRM7RhBIuZq75HqgELG_Us5LToFluzl-qKXVYsCGgHgpZlzdHsmC-ms2OGy7kO1chP4Hx69PXTCe8Pb-AmTfKW64y8HsFRFwWFUAplTK7RHjgrUodoDCEdP1FeoNQGMRep9lJ6PzHoCIaKp7BV1ZV7DsySQVmFhhYLJ62xOpeZspigRl1Q_DSC98P0lYtOo6OMuXWlyjC0ZRjashvaEbylWSj7H7X5T7u9wQJK-uFCFgUrV6-aUqSikJLC1mIEzzrTWPdK0XFOePvgxS172YX7aThPOBIKX8JWu1y5VwRyWv06GvMvGy_2fw
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIiEuvMpjeRoJkDh4m42dR7lV0G15bNkDlXpzxy9RtZusNtlDET-esZNUAgFC4hYpTpyMx55vPDOfAV4kWCQ2mXiOmS-4LBLkpUxJlx3maaGdzCLZ8-wwPziSH46z4_6c01gLUy_7pX9Mlx1RcCfCPiGu3CYMPeGEhNNttD44cEvrN-BqJsh2hgq-z_NhKRaBfqqriAxP5Ekfp_zdW36ySxvU958hZzQ905twMnx0l3FyNl63emy-_cLn-B9_dQtu9LCU7XbNb8MVV92Brd2KXPLFBXvFYqJo3IHfgu-zi3peN-4NGzK--PnpQvNVrddNyyJD5sKFiuKgAMy7yB3aMILHzFVfY8oBCxv2LMS26Ba7zGKqK3ZasUCkHRK1LGv2Zvt8OZ3tM1wtdKhKvgtH070vbw94f4gDN2mSt1xnZP0IlrpILIRSlMbkGu2OsyJ1iMYQ4vGT0guU2iDmItVeSu8nBh3BUXEPNqu6cg-AWVIsW6KhRcNJa6zOZVZaTFCjLsiPGsHrYQjVsuPqUDHGXpYqiFcF8apOvCN4SSOh-gnb_KXd80ELFE28EE3BytXrRolUFFKS-1qM4H6nHpe9kpecE-7eefiPvTyDa_N3U_Xp_eHHR3A9DUcMxxzDx7DZrtbuCeGeVj-Nuv0DuRj74w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MyoPose%3A+position-limb-robust+neuromechanical+features+for+enhanced+hand+gesture+recognition+in+colocated+sEMG-pFMG+armbands&rft.jtitle=Journal+of+neural+engineering&rft.au=Mobarak%2C+Rami&rft.au=Zhang%2C+Shen&rft.au=Zhou%2C+Hao&rft.au=Mengarelli%2C+Alessandro&rft.date=2025-08-01&rft.eissn=1741-2552&rft.volume=22&rft.issue=4&rft_id=info:doi/10.1088%2F1741-2552%2Fadf888&rft_id=info%3Apmid%2F40769169&rft.externalDocID=40769169
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon