A Real-Time Defect Detection Method for Digital Signal Processing of Industrial Inspection Applications
The signal processing of industrial big data (IBD) is a challenging task, owing to the complex working scenarios and the lack of annotations. Defect detection, which is an important subject of IBD research works, has shown its effectiveness in digital signal processing of industrial inspection appli...
Saved in:
Published in | IEEE transactions on industrial informatics Vol. 17; no. 5; pp. 3450 - 3459 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.05.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The signal processing of industrial big data (IBD) is a challenging task, owing to the complex working scenarios and the lack of annotations. Defect detection, which is an important subject of IBD research works, has shown its effectiveness in digital signal processing of industrial inspection applications in many previous studies. This article proposes a novel defect detection method based on deep learning for digital signal processing of industrial inspection applications. In our method, a module named feature collection and compression network is applied to merge multiscale feature information. Then, a new pooling method named Gaussian weighted pooling, which provides more precise location information, is used to replace region of interest (ROI) pooling. Experiment results show that our method gets improvements in both accuracy and efficiency, with mAP/AP50 of 41.8/80.2 at 33 fps on NEUDET, which satisfies the requirement of real-time systems. |
---|---|
AbstractList | The signal processing of industrial big data (IBD) is a challenging task, owing to the complex working scenarios and the lack of annotations. Defect detection, which is an important subject of IBD research works, has shown its effectiveness in digital signal processing of industrial inspection applications in many previous studies. This article proposes a novel defect detection method based on deep learning for digital signal processing of industrial inspection applications. In our method, a module named feature collection and compression network is applied to merge multiscale feature information. Then, a new pooling method named Gaussian weighted pooling, which provides more precise location information, is used to replace region of interest (ROI) pooling. Experiment results show that our method gets improvements in both accuracy and efficiency, with mAP/AP50 of 41.8/80.2 at 33 fps on NEUDET, which satisfies the requirement of real-time systems. The signal processing of industrial big data (IBD) is a challenging task, owing to the complex working scenarios and the lack of annotations. Defect detection, which is an important subject of IBD research works, has shown its effectiveness in digital signal processing of industrial inspection applications in many previous studies. This article proposes a novel defect detection method based on deep learning for digital signal processing of industrial inspection applications. In our method, a module named feature collection and compression network is applied to merge multiscale feature information. Then, a new pooling method named Gaussian weighted pooling, which provides more precise location information, is used to replace region of interest (ROI) pooling. Experiment results show that our method gets improvements in both accuracy and efficiency, with mAP/[Formula Omitted] of 41.8/80.2 at 33 fps on NEU-DET, which satisfies the requirement of real-time systems. |
Author | Gao, Ying Lin, Jiqiang Xie, Jie Ning, Zhaolong |
Author_xml | – sequence: 1 givenname: Ying orcidid: 0000-0002-8925-8192 surname: Gao fullname: Gao, Ying email: gaoying@scut.edu.cn organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 2 givenname: Jiqiang orcidid: 0000-0003-4107-3938 surname: Lin fullname: Lin, Jiqiang email: csljquality@mail.scut.edu.cn organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 3 givenname: Jie orcidid: 0000-0001-8947-3995 surname: Xie fullname: Xie, Jie email: csxiejie@mail.scut.edu.cn organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 4 givenname: Zhaolong orcidid: 0000-0001-6731-2103 surname: Ning fullname: Ning, Zhaolong email: zhaolongning@dlut.edu.cn organization: National Mobile Communications Research Laboratory, Southeast University, Nanjing, China |
BookMark | eNp9kM9LwzAUx4NMcJveBS8Fz50vSX_lODZ_FCaKznNJ29ea0TU1yQ7-96ZsePAgIXwf5Pt57-U7I5Ne90jINYUFpSDutnm-YMBgwYFylqZnZEpFREOAGCa-jmMacgb8gsys3QHwFLiYknYZvKHswq3aY7DGBivnxXlRug-e0X3qOmi0CdaqVU52wbtqey-vRldorerbQDdB3tcH64zyD3lvhxO9HIZOVXKs7SU5b2Rn8eqkc_LxcL9dPYWbl8d8tdyEFYPEhbyEupEMK4oi4iwSjNMSI0GzuExrUWbU2yqg_ghEjLFJ6hpKYBzKRNaSz8ntse9g9NcBrSt2-mD8xrbw3XgS0SwR3gVHV2W0tQabYjBqL813QaEY4yx8nMUYZ3GK0yPJH6TyeYx_c0aq7j_w5ggqv_DvHEFjnvn7AzsKg9U |
CODEN | ITIICH |
CitedBy_id | crossref_primary_10_1016_j_measurement_2025_116704 crossref_primary_10_1016_j_engappai_2023_107717 crossref_primary_10_1016_j_measurement_2023_112467 crossref_primary_10_1109_TII_2023_3301065 crossref_primary_10_1109_TIM_2023_3271723 crossref_primary_10_1109_TIM_2024_3353860 crossref_primary_10_1109_TIM_2022_3193204 crossref_primary_10_1016_j_rineng_2024_101992 crossref_primary_10_1109_TCYB_2024_3424430 crossref_primary_10_1016_j_cad_2022_103281 crossref_primary_10_1109_TII_2024_3370228 crossref_primary_10_1007_s10845_023_02097_1 crossref_primary_10_1007_s10845_022_02022_y crossref_primary_10_1109_TIM_2024_3398131 crossref_primary_10_1016_j_measurement_2023_113957 crossref_primary_10_1016_j_compind_2023_103919 crossref_primary_10_1109_TIM_2024_3427806 crossref_primary_10_1007_s11042_023_14861_9 crossref_primary_10_1016_j_jksuci_2024_102179 crossref_primary_10_1038_s41598_024_69207_8 crossref_primary_10_1016_j_ins_2022_06_076 crossref_primary_10_1109_TII_2022_3226246 crossref_primary_10_1002_int_22606 crossref_primary_10_1109_TII_2021_3126098 crossref_primary_10_1016_j_mfglet_2023_08_036 crossref_primary_10_3390_s22207971 crossref_primary_10_1016_j_measurement_2024_115189 crossref_primary_10_1109_TII_2024_3371982 crossref_primary_10_1016_j_measurement_2023_112614 crossref_primary_10_4018_IJSI_309726 crossref_primary_10_1109_ACCESS_2024_3407019 crossref_primary_10_1109_TIM_2023_3300421 crossref_primary_10_1016_j_isatra_2022_08_003 crossref_primary_10_3390_rs14061445 crossref_primary_10_1016_j_aei_2023_102205 crossref_primary_10_1109_ACCESS_2024_3486176 crossref_primary_10_3390_app13021054 crossref_primary_10_3934_mbe_2023670 crossref_primary_10_1109_TIM_2021_3128208 crossref_primary_10_1109_TIM_2023_3238698 crossref_primary_10_3390_s24206553 crossref_primary_10_1155_2022_1172654 |
Cites_doi | 10.1109/TII.2020.2992658 10.1109/TITS.2020.2997832 10.1109/TII.2019.2935153 10.1016/j.imavis.2006.04.023 10.1109/TII.2017.2668438 10.1109/CVPR.2014.81 10.1109/TII.2019.2959069 10.1109/TII.2018.2873237 10.1109/TII.2019.2950255 10.1109/TII.2019.2958826 10.1109/TII.2019.2896357 10.1007/s00371-018-1588-5 10.1109/TPAMI.2017.2699184 10.1109/TPAMI.2016.2577031 10.1016/j.apsusc.2013.09.002 10.1109/TII.2018.2887145 10.1109/ICCV.2015.169 10.1109/CVPR.2016.91 10.1109/CVPR.2017.75 10.1002/srin.201600068 10.17222/mit.2015.335 10.1109/ICCV.2017.322 10.1109/JIOT.2017.2787785 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TII.2020.3013277 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-0050 |
EndPage | 3459 |
ExternalDocumentID | 10_1109_TII_2020_3013277 9153815 |
Genre | orig-research |
GrantInformation_xml | – fundername: Industrial Internet Innovation and Development grantid: MIZ1824020 – fundername: National Mobile Communications Research Laboratory, Southeast University funderid: 10.13039/501100015013 – fundername: Key R&D Program in Key Areas of Guangdong Province grantid: 2019B010137001; 2020B010166001 – fundername: National Natural Science Foundation of China; National Natural Science Foundation of Chongqing grantid: cstc2019jcyj-msxmX0208 funderid: 10.13039/501100001809 – fundername: Southeast University grantid: 2020D05 funderid: 10.13039/501100008081 – fundername: Guangzhou City Industrial Technology Major Research grantid: 201802010035 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c206t-3b0dfa2ec1e943249231be49185b7d9b81206c010109eee5ef6dd0b0230b6ada3 |
IEDL.DBID | RIE |
ISSN | 1551-3203 |
IngestDate | Mon Jun 30 10:08:06 EDT 2025 Thu Apr 24 23:11:51 EDT 2025 Tue Jul 01 03:00:11 EDT 2025 Wed Aug 27 02:30:25 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c206t-3b0dfa2ec1e943249231be49185b7d9b81206c010109eee5ef6dd0b0230b6ada3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6731-2103 0000-0002-8925-8192 0000-0003-4107-3938 0000-0001-8947-3995 |
PQID | 2493641869 |
PQPubID | 85507 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1109_TII_2020_3013277 proquest_journals_2493641869 crossref_citationtrail_10_1109_TII_2020_3013277 ieee_primary_9153815 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-01 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on industrial informatics |
PublicationTitleAbbrev | TII |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref30 ref11 ref10 everingham (ref26) 2012 ref1 ref16 ref19 liu (ref21) 0 ref18 everingham (ref25) 2007 ning (ref2) 0 tang (ref17) 2019; abs 1902 6197 ref24 ref23 ref20 yu (ref22) 2015 ref28 ref29 ref8 lin (ref27) 0 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref1 doi: 10.1109/TII.2020.2992658 – ident: ref29 doi: 10.1109/TITS.2020.2997832 – ident: ref7 doi: 10.1109/TII.2019.2935153 – ident: ref10 doi: 10.1016/j.imavis.2006.04.023 – ident: ref6 doi: 10.1109/TII.2017.2668438 – volume: abs 1902 6197 year: 2019 ident: ref17 article-title: Online PCB defect detector on a new PCB defect dataset publication-title: CoRR – ident: ref18 doi: 10.1109/CVPR.2014.81 – ident: ref4 doi: 10.1109/TII.2019.2959069 – ident: ref3 doi: 10.1109/TII.2018.2873237 – year: 2012 ident: ref26 article-title: The PASCAL visual object classes challenge 2012 (VOC2012) development kit – ident: ref5 doi: 10.1109/TII.2019.2950255 – ident: ref16 doi: 10.1109/TII.2019.2958826 – year: 0 ident: ref2 article-title: Mobile edge computing enabled 5G health monitoring for internet of medical things: A decentralized game theoretic approach publication-title: IEEE J Sel Areas Commun – year: 2007 ident: ref25 article-title: The PASCAL visual object classes challenge 2007 (VOC2007) development kit – ident: ref8 doi: 10.1109/TII.2019.2896357 – start-page: 21 year: 0 ident: ref21 article-title: SSD: Single shot multibox detector publication-title: Proc Eur Conf Comput Vis – start-page: 740 year: 0 ident: ref27 article-title: Microsoft COCO: Common Objects in Context publication-title: Proc Eur Conf Comput Vis – ident: ref28 doi: 10.1007/s00371-018-1588-5 – ident: ref24 doi: 10.1109/TPAMI.2017.2699184 – ident: ref13 doi: 10.1109/TPAMI.2016.2577031 – ident: ref9 doi: 10.1016/j.apsusc.2013.09.002 – ident: ref15 doi: 10.1109/TII.2018.2887145 – ident: ref19 doi: 10.1109/ICCV.2015.169 – year: 2015 ident: ref22 article-title: Multi-scale context aggregation by dilated convolutions – ident: ref20 doi: 10.1109/CVPR.2016.91 – ident: ref23 doi: 10.1109/CVPR.2017.75 – ident: ref11 doi: 10.1002/srin.201600068 – ident: ref12 doi: 10.17222/mit.2015.335 – ident: ref14 doi: 10.1109/ICCV.2017.322 – ident: ref30 doi: 10.1109/JIOT.2017.2787785 |
SSID | ssj0037039 |
Score | 2.4555914 |
Snippet | The signal processing of industrial big data (IBD) is a challenging task, owing to the complex working scenarios and the lack of annotations. Defect detection,... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3450 |
SubjectTerms | Annotations Convolution Defect detection Detectors Digital signal processing dilated convolution Feature extraction Head industrial big data (IBD) industrial inspection application Inspection Real time Signal processing Task analysis |
Title | A Real-Time Defect Detection Method for Digital Signal Processing of Industrial Inspection Applications |
URI | https://ieeexplore.ieee.org/document/9153815 https://www.proquest.com/docview/2493641869 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG6Qkx58oRFF04MXEwvd7T6PRCRgggeFhNuGPpYQzWJ0ufjrnenuIj5iPG0PbdPm62NmO_N9hFyGcma4k-Li9Xzm-VHKIscxTCHRihKuSC2l0Og-GEy8u6k_rZHrdS6MMcYGn5k2Fu1bvl6qFf4q68S4PTGjfAsctyJXqzp1oWerGoYWABMuF9WTJI874-EQHEEX_FN8WAjDL1eQ1VT5cRDb26W_R0bVuIqgkqf2Kpdt9f6NsvG_A98nu6WZSbvFujggNZMdkp0N8sEGmXfpA1iJDJNAaM9gWAd8chualdGRVZamYNLS3mKOyiL0cTHHPsvUAuiDLlP6Kf0BxSJtE1p3N57Fj8ikfzu-GbBSdoEplwc5E5LrdOYa5ZgY-frQBJTGi-Fml6GOJZgEPFDITcdjmKlv0kBrLtGZkcFMz8QxqWfLzJwQGorI1R64oFEAlo8B1LQvpFZcuY7S3GmSToVEokpOcpTGeE6sb8LjBLBLELukxK5JrtYtXgo-jj_qNhCKdb0ShSZpVWAn5YZ9S2CaIvBQn-v091ZnZNvFcBYb69gi9fx1Zc7BHsnlhV2IH5Rq2p8 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5VMAADr4IoTw8sSKR14jyasaJULbQdoEhsUf1IhUAtgnTh13PnJOUpxBQPtmXrbN9d7u77AE4jOTbcTenw-oHjB83UabqucRQBrSjhidRCCg2GYffOv7oP7itwvqiFMcbY5DNTp6aN5euZmtOvskZM15MqypdR7wduXq1Vvrs4t-UNIxvAER4XZVCSx41Rr4euoIceKoUWouiLErKsKj-eYqtfOhswKFeWp5U81ueZrKu3b6CN_136JqwXhiZr5SdjCypmug1rn-AHqzBpsRu0Ex0qA2FtQ4kd-MlsctaUDSy3NEOjlrUfJsQtwm4fJjRnUVyAc7BZyj7IP7CZF27i6NanwPgO3HUuRxddpyBecJTHw8wRkut07BnlmpgQ-8gIlMaPUbfLSMcSjQIeKkKn4zHuNDBpqDWX5M7IcKzHYheWprOp2QMWiaanfXRCmyHaPgYdbh0IqRVXnqs0d2vQKCWRqAKVnMgxnhLrnfA4QdklJLukkF0NzhYjnnNEjj_6VkkUi36FFGpwWAo7Ka7sa4LbFKFPDF37v486gZXuaNBP-r3h9QGsepTcYjMfD2Epe5mbI7ROMnlsD-U7Jd3d6A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Real-Time+Defect+Detection+Method+for+Digital+Signal+Processing+of+Industrial+Inspection+Applications&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Gao%2C+Ying&rft.au=Lin%2C+Jiqiang&rft.au=Xie%2C+Jie&rft.au=Ning%2C+Zhaolong&rft.date=2021-05-01&rft.pub=IEEE&rft.issn=1551-3203&rft.volume=17&rft.issue=5&rft.spage=3450&rft.epage=3459&rft_id=info:doi/10.1109%2FTII.2020.3013277&rft.externalDocID=9153815 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon |