A Real-Time Defect Detection Method for Digital Signal Processing of Industrial Inspection Applications

The signal processing of industrial big data (IBD) is a challenging task, owing to the complex working scenarios and the lack of annotations. Defect detection, which is an important subject of IBD research works, has shown its effectiveness in digital signal processing of industrial inspection appli...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial informatics Vol. 17; no. 5; pp. 3450 - 3459
Main Authors Gao, Ying, Lin, Jiqiang, Xie, Jie, Ning, Zhaolong
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.05.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The signal processing of industrial big data (IBD) is a challenging task, owing to the complex working scenarios and the lack of annotations. Defect detection, which is an important subject of IBD research works, has shown its effectiveness in digital signal processing of industrial inspection applications in many previous studies. This article proposes a novel defect detection method based on deep learning for digital signal processing of industrial inspection applications. In our method, a module named feature collection and compression network is applied to merge multiscale feature information. Then, a new pooling method named Gaussian weighted pooling, which provides more precise location information, is used to replace region of interest (ROI) pooling. Experiment results show that our method gets improvements in both accuracy and efficiency, with mAP/AP50 of 41.8/80.2 at 33 fps on NEUDET, which satisfies the requirement of real-time systems.
AbstractList The signal processing of industrial big data (IBD) is a challenging task, owing to the complex working scenarios and the lack of annotations. Defect detection, which is an important subject of IBD research works, has shown its effectiveness in digital signal processing of industrial inspection applications in many previous studies. This article proposes a novel defect detection method based on deep learning for digital signal processing of industrial inspection applications. In our method, a module named feature collection and compression network is applied to merge multiscale feature information. Then, a new pooling method named Gaussian weighted pooling, which provides more precise location information, is used to replace region of interest (ROI) pooling. Experiment results show that our method gets improvements in both accuracy and efficiency, with mAP/AP50 of 41.8/80.2 at 33 fps on NEUDET, which satisfies the requirement of real-time systems.
The signal processing of industrial big data (IBD) is a challenging task, owing to the complex working scenarios and the lack of annotations. Defect detection, which is an important subject of IBD research works, has shown its effectiveness in digital signal processing of industrial inspection applications in many previous studies. This article proposes a novel defect detection method based on deep learning for digital signal processing of industrial inspection applications. In our method, a module named feature collection and compression network is applied to merge multiscale feature information. Then, a new pooling method named Gaussian weighted pooling, which provides more precise location information, is used to replace region of interest (ROI) pooling. Experiment results show that our method gets improvements in both accuracy and efficiency, with mAP/[Formula Omitted] of 41.8/80.2 at 33 fps on NEU-DET, which satisfies the requirement of real-time systems.
Author Gao, Ying
Lin, Jiqiang
Xie, Jie
Ning, Zhaolong
Author_xml – sequence: 1
  givenname: Ying
  orcidid: 0000-0002-8925-8192
  surname: Gao
  fullname: Gao, Ying
  email: gaoying@scut.edu.cn
  organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 2
  givenname: Jiqiang
  orcidid: 0000-0003-4107-3938
  surname: Lin
  fullname: Lin, Jiqiang
  email: csljquality@mail.scut.edu.cn
  organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 3
  givenname: Jie
  orcidid: 0000-0001-8947-3995
  surname: Xie
  fullname: Xie, Jie
  email: csxiejie@mail.scut.edu.cn
  organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 4
  givenname: Zhaolong
  orcidid: 0000-0001-6731-2103
  surname: Ning
  fullname: Ning, Zhaolong
  email: zhaolongning@dlut.edu.cn
  organization: National Mobile Communications Research Laboratory, Southeast University, Nanjing, China
BookMark eNp9kM9LwzAUx4NMcJveBS8Fz50vSX_lODZ_FCaKznNJ29ea0TU1yQ7-96ZsePAgIXwf5Pt57-U7I5Ne90jINYUFpSDutnm-YMBgwYFylqZnZEpFREOAGCa-jmMacgb8gsys3QHwFLiYknYZvKHswq3aY7DGBivnxXlRug-e0X3qOmi0CdaqVU52wbtqey-vRldorerbQDdB3tcH64zyD3lvhxO9HIZOVXKs7SU5b2Rn8eqkc_LxcL9dPYWbl8d8tdyEFYPEhbyEupEMK4oi4iwSjNMSI0GzuExrUWbU2yqg_ghEjLFJ6hpKYBzKRNaSz8ntse9g9NcBrSt2-mD8xrbw3XgS0SwR3gVHV2W0tQabYjBqL813QaEY4yx8nMUYZ3GK0yPJH6TyeYx_c0aq7j_w5ggqv_DvHEFjnvn7AzsKg9U
CODEN ITIICH
CitedBy_id crossref_primary_10_1016_j_measurement_2025_116704
crossref_primary_10_1016_j_engappai_2023_107717
crossref_primary_10_1016_j_measurement_2023_112467
crossref_primary_10_1109_TII_2023_3301065
crossref_primary_10_1109_TIM_2023_3271723
crossref_primary_10_1109_TIM_2024_3353860
crossref_primary_10_1109_TIM_2022_3193204
crossref_primary_10_1016_j_rineng_2024_101992
crossref_primary_10_1109_TCYB_2024_3424430
crossref_primary_10_1016_j_cad_2022_103281
crossref_primary_10_1109_TII_2024_3370228
crossref_primary_10_1007_s10845_023_02097_1
crossref_primary_10_1007_s10845_022_02022_y
crossref_primary_10_1109_TIM_2024_3398131
crossref_primary_10_1016_j_measurement_2023_113957
crossref_primary_10_1016_j_compind_2023_103919
crossref_primary_10_1109_TIM_2024_3427806
crossref_primary_10_1007_s11042_023_14861_9
crossref_primary_10_1016_j_jksuci_2024_102179
crossref_primary_10_1038_s41598_024_69207_8
crossref_primary_10_1016_j_ins_2022_06_076
crossref_primary_10_1109_TII_2022_3226246
crossref_primary_10_1002_int_22606
crossref_primary_10_1109_TII_2021_3126098
crossref_primary_10_1016_j_mfglet_2023_08_036
crossref_primary_10_3390_s22207971
crossref_primary_10_1016_j_measurement_2024_115189
crossref_primary_10_1109_TII_2024_3371982
crossref_primary_10_1016_j_measurement_2023_112614
crossref_primary_10_4018_IJSI_309726
crossref_primary_10_1109_ACCESS_2024_3407019
crossref_primary_10_1109_TIM_2023_3300421
crossref_primary_10_1016_j_isatra_2022_08_003
crossref_primary_10_3390_rs14061445
crossref_primary_10_1016_j_aei_2023_102205
crossref_primary_10_1109_ACCESS_2024_3486176
crossref_primary_10_3390_app13021054
crossref_primary_10_3934_mbe_2023670
crossref_primary_10_1109_TIM_2021_3128208
crossref_primary_10_1109_TIM_2023_3238698
crossref_primary_10_3390_s24206553
crossref_primary_10_1155_2022_1172654
Cites_doi 10.1109/TII.2020.2992658
10.1109/TITS.2020.2997832
10.1109/TII.2019.2935153
10.1016/j.imavis.2006.04.023
10.1109/TII.2017.2668438
10.1109/CVPR.2014.81
10.1109/TII.2019.2959069
10.1109/TII.2018.2873237
10.1109/TII.2019.2950255
10.1109/TII.2019.2958826
10.1109/TII.2019.2896357
10.1007/s00371-018-1588-5
10.1109/TPAMI.2017.2699184
10.1109/TPAMI.2016.2577031
10.1016/j.apsusc.2013.09.002
10.1109/TII.2018.2887145
10.1109/ICCV.2015.169
10.1109/CVPR.2016.91
10.1109/CVPR.2017.75
10.1002/srin.201600068
10.17222/mit.2015.335
10.1109/ICCV.2017.322
10.1109/JIOT.2017.2787785
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TII.2020.3013277
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0050
EndPage 3459
ExternalDocumentID 10_1109_TII_2020_3013277
9153815
Genre orig-research
GrantInformation_xml – fundername: Industrial Internet Innovation and Development
  grantid: MIZ1824020
– fundername: National Mobile Communications Research Laboratory, Southeast University
  funderid: 10.13039/501100015013
– fundername: Key R&D Program in Key Areas of Guangdong Province
  grantid: 2019B010137001; 2020B010166001
– fundername: National Natural Science Foundation of China; National Natural Science Foundation of Chongqing
  grantid: cstc2019jcyj-msxmX0208
  funderid: 10.13039/501100001809
– fundername: Southeast University
  grantid: 2020D05
  funderid: 10.13039/501100008081
– fundername: Guangzhou City Industrial Technology Major Research
  grantid: 201802010035
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c206t-3b0dfa2ec1e943249231be49185b7d9b81206c010109eee5ef6dd0b0230b6ada3
IEDL.DBID RIE
ISSN 1551-3203
IngestDate Mon Jun 30 10:08:06 EDT 2025
Thu Apr 24 23:11:51 EDT 2025
Tue Jul 01 03:00:11 EDT 2025
Wed Aug 27 02:30:25 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c206t-3b0dfa2ec1e943249231be49185b7d9b81206c010109eee5ef6dd0b0230b6ada3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6731-2103
0000-0002-8925-8192
0000-0003-4107-3938
0000-0001-8947-3995
PQID 2493641869
PQPubID 85507
PageCount 10
ParticipantIDs crossref_primary_10_1109_TII_2020_3013277
proquest_journals_2493641869
crossref_citationtrail_10_1109_TII_2020_3013277
ieee_primary_9153815
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on industrial informatics
PublicationTitleAbbrev TII
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref30
ref11
ref10
everingham (ref26) 2012
ref1
ref16
ref19
liu (ref21) 0
ref18
everingham (ref25) 2007
ning (ref2) 0
tang (ref17) 2019; abs 1902 6197
ref24
ref23
ref20
yu (ref22) 2015
ref28
ref29
ref8
lin (ref27) 0
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref1
  doi: 10.1109/TII.2020.2992658
– ident: ref29
  doi: 10.1109/TITS.2020.2997832
– ident: ref7
  doi: 10.1109/TII.2019.2935153
– ident: ref10
  doi: 10.1016/j.imavis.2006.04.023
– ident: ref6
  doi: 10.1109/TII.2017.2668438
– volume: abs 1902 6197
  year: 2019
  ident: ref17
  article-title: Online PCB defect detector on a new PCB defect dataset
  publication-title: CoRR
– ident: ref18
  doi: 10.1109/CVPR.2014.81
– ident: ref4
  doi: 10.1109/TII.2019.2959069
– ident: ref3
  doi: 10.1109/TII.2018.2873237
– year: 2012
  ident: ref26
  article-title: The PASCAL visual object classes challenge 2012 (VOC2012) development kit
– ident: ref5
  doi: 10.1109/TII.2019.2950255
– ident: ref16
  doi: 10.1109/TII.2019.2958826
– year: 0
  ident: ref2
  article-title: Mobile edge computing enabled 5G health monitoring for internet of medical things: A decentralized game theoretic approach
  publication-title: IEEE J Sel Areas Commun
– year: 2007
  ident: ref25
  article-title: The PASCAL visual object classes challenge 2007 (VOC2007) development kit
– ident: ref8
  doi: 10.1109/TII.2019.2896357
– start-page: 21
  year: 0
  ident: ref21
  article-title: SSD: Single shot multibox detector
  publication-title: Proc Eur Conf Comput Vis
– start-page: 740
  year: 0
  ident: ref27
  article-title: Microsoft COCO: Common Objects in Context
  publication-title: Proc Eur Conf Comput Vis
– ident: ref28
  doi: 10.1007/s00371-018-1588-5
– ident: ref24
  doi: 10.1109/TPAMI.2017.2699184
– ident: ref13
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref9
  doi: 10.1016/j.apsusc.2013.09.002
– ident: ref15
  doi: 10.1109/TII.2018.2887145
– ident: ref19
  doi: 10.1109/ICCV.2015.169
– year: 2015
  ident: ref22
  article-title: Multi-scale context aggregation by dilated convolutions
– ident: ref20
  doi: 10.1109/CVPR.2016.91
– ident: ref23
  doi: 10.1109/CVPR.2017.75
– ident: ref11
  doi: 10.1002/srin.201600068
– ident: ref12
  doi: 10.17222/mit.2015.335
– ident: ref14
  doi: 10.1109/ICCV.2017.322
– ident: ref30
  doi: 10.1109/JIOT.2017.2787785
SSID ssj0037039
Score 2.4555914
Snippet The signal processing of industrial big data (IBD) is a challenging task, owing to the complex working scenarios and the lack of annotations. Defect detection,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3450
SubjectTerms Annotations
Convolution
Defect detection
Detectors
Digital signal processing
dilated convolution
Feature extraction
Head
industrial big data (IBD)
industrial inspection application
Inspection
Real time
Signal processing
Task analysis
Title A Real-Time Defect Detection Method for Digital Signal Processing of Industrial Inspection Applications
URI https://ieeexplore.ieee.org/document/9153815
https://www.proquest.com/docview/2493641869
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG6Qkx58oRFF04MXEwvd7T6PRCRgggeFhNuGPpYQzWJ0ufjrnenuIj5iPG0PbdPm62NmO_N9hFyGcma4k-Li9Xzm-VHKIscxTCHRihKuSC2l0Og-GEy8u6k_rZHrdS6MMcYGn5k2Fu1bvl6qFf4q68S4PTGjfAsctyJXqzp1oWerGoYWABMuF9WTJI874-EQHEEX_FN8WAjDL1eQ1VT5cRDb26W_R0bVuIqgkqf2Kpdt9f6NsvG_A98nu6WZSbvFujggNZMdkp0N8sEGmXfpA1iJDJNAaM9gWAd8chualdGRVZamYNLS3mKOyiL0cTHHPsvUAuiDLlP6Kf0BxSJtE1p3N57Fj8ikfzu-GbBSdoEplwc5E5LrdOYa5ZgY-frQBJTGi-Fml6GOJZgEPFDITcdjmKlv0kBrLtGZkcFMz8QxqWfLzJwQGorI1R64oFEAlo8B1LQvpFZcuY7S3GmSToVEokpOcpTGeE6sb8LjBLBLELukxK5JrtYtXgo-jj_qNhCKdb0ShSZpVWAn5YZ9S2CaIvBQn-v091ZnZNvFcBYb69gi9fx1Zc7BHsnlhV2IH5Rq2p8
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5VMAADr4IoTw8sSKR14jyasaJULbQdoEhsUf1IhUAtgnTh13PnJOUpxBQPtmXrbN9d7u77AE4jOTbcTenw-oHjB83UabqucRQBrSjhidRCCg2GYffOv7oP7itwvqiFMcbY5DNTp6aN5euZmtOvskZM15MqypdR7wduXq1Vvrs4t-UNIxvAER4XZVCSx41Rr4euoIceKoUWouiLErKsKj-eYqtfOhswKFeWp5U81ueZrKu3b6CN_136JqwXhiZr5SdjCypmug1rn-AHqzBpsRu0Ex0qA2FtQ4kd-MlsctaUDSy3NEOjlrUfJsQtwm4fJjRnUVyAc7BZyj7IP7CZF27i6NanwPgO3HUuRxddpyBecJTHw8wRkut07BnlmpgQ-8gIlMaPUbfLSMcSjQIeKkKn4zHuNDBpqDWX5M7IcKzHYheWprOp2QMWiaanfXRCmyHaPgYdbh0IqRVXnqs0d2vQKCWRqAKVnMgxnhLrnfA4QdklJLukkF0NzhYjnnNEjj_6VkkUi36FFGpwWAo7Ka7sa4LbFKFPDF37v486gZXuaNBP-r3h9QGsepTcYjMfD2Epe5mbI7ROMnlsD-U7Jd3d6A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Real-Time+Defect+Detection+Method+for+Digital+Signal+Processing+of+Industrial+Inspection+Applications&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Gao%2C+Ying&rft.au=Lin%2C+Jiqiang&rft.au=Xie%2C+Jie&rft.au=Ning%2C+Zhaolong&rft.date=2021-05-01&rft.pub=IEEE&rft.issn=1551-3203&rft.volume=17&rft.issue=5&rft.spage=3450&rft.epage=3459&rft_id=info:doi/10.1109%2FTII.2020.3013277&rft.externalDocID=9153815
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon