Fourier analysis of the local discontinuous Galerkin method for the linearized KdV equation
A Fourier/stability analysis of the third-order Korteweg–de Vries equation is presented subject to a class of local discontinuous Galerkin discretization using high-degree Lagrange polynomials. The selection of stability parameters involved in the method is made on the basis of the study of the high...
Saved in:
Published in | GEM international journal on geomathematics Vol. 13; no. 1; pp. 1845 - 1866 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2022
Springer |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A Fourier/stability analysis of the third-order Korteweg–de Vries equation is presented subject to a class of local discontinuous Galerkin discretization using high-degree Lagrange polynomials. The selection of stability parameters involved in the method is made on the basis of the study of the higher frequency eigenmodes and the Fourier analysis. Explicit analytical dispersion relation and group velocity are obtained and the stability study of the discrete frequency is performed. The emergence of gaps in the imaginary part of the computed frequency is observed and studied for the first time to our knowledge. Further, a superconvergent result is demonstrated for the discrete frequency by obtaining an explicit analytical asymptotic formula for the latter. |
---|---|
AbstractList | A Fourier/stability analysis of the third-order Korteweg–de Vries equation is presented subject to a class of local discontinuous Galerkin discretization using high-degree Lagrange polynomials. The selection of stability parameters involved in the method is made on the basis of the study of the higher frequency eigenmodes and the Fourier analysis. Explicit analytical dispersion relation and group velocity are obtained and the stability study of the discrete frequency is performed. The emergence of gaps in the imaginary part of the computed frequency is observed and studied for the first time to our knowledge. Further, a superconvergent result is demonstrated for the discrete frequency by obtaining an explicit analytical asymptotic formula for the latter. |
ArticleNumber | 19 |
Author | Le Roux, Daniel Y. |
Author_xml | – sequence: 1 givenname: Daniel Y. orcidid: 0000-0001-8799-5159 surname: Le Roux fullname: Le Roux, Daniel Y. email: dleroux@math.univ-lyon1.fr organization: CNRS, Université Lyon 1, Institut Camille Jordan, Université de Lyon |
BackLink | https://hal.science/hal-04455001$$DView record in HAL |
BookMark | eNp9kEFLwzAYhoNMcM79AU-5eqh-SdqmPY7hNnHgRb14CGmTuswu0aQVtl9vZmVHQyAv4Xk_-J5LNLLOaoSuCdwSAH4XCCOMJ0BpAkChTOgZGpMijyEvYHTKnF6gaQhbiIeVZUnoGL0tXO-N9lha2e6DCdg1uNto3LpatliZUDvbGdu7PuClbLX_MBbvdLdxCjfOD6yxWnpz0Ao_qlesv3rZGWev0Hkj26Cnf-8EvSzun-erZP20fJjP1klNIe8SVuZSlpmWilcFcJCEVKVmteJA04ZCUWSpZpzSquKKsprWkS_iZVIRFleZoJth7ka24tObnfR74aQRq9laHP8gTbMMgHyTyNKBrb0LwevmVCAgjjbFYFNEm-LXpqCxxIZSiLB9115so7UoLPzX-gHQEXk8 |
Cites_doi | 10.1137/19M1289595 10.2307/2686755 10.1016/j.jcp.2004.01.004 10.1137/11082258X 10.1016/j.cma.2011.05.010 10.1016/j.jcp.2012.10.020 10.1016/j.jcp.2015.06.020 10.1016/j.cma.2006.10.043 10.1137/S0036142901390378 10.1016/j.jcp.2005.10.016 10.1006/jcph.1999.6227 10.1016/j.cam.2013.06.004 10.1007/s10915-017-0377-z 10.1007/978-0-387-72067-8 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC |
DOI | 10.1007/s13137-022-00209-2 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Mathematics |
EISSN | 1869-2680 |
EndPage | 1866 |
ExternalDocumentID | oai_HAL_hal_04455001v1 10_1007_s13137_022_00209_2 |
GroupedDBID | -EM 06D 0R~ 0VY 1N0 203 2JY 2VQ 30V 4.4 406 408 409 40D 96X AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBXA ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AUKKA AXYYD AYJHY BAPOH BGNMA CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 H13 HF~ HMJXF HQYDN HRMNR HZ~ I0C IKXTQ IWAJR IXD IZIGR J-C J0Z J9A JBSCW JCJTX JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9- O93 O9J P9R PT4 QOS R89 R9I RLLFE ROL RSV S27 S3B SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z5O ZMTXR ~A9 AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 1XC ABRTQ |
ID | FETCH-LOGICAL-c206t-396aa95ead7b8070a11b9e3cd7024f208854e3722bb7d23c2c6aa8aa83ad13003 |
IEDL.DBID | U2A |
ISSN | 1869-2672 |
IngestDate | Sat Jul 26 06:30:42 EDT 2025 Tue Jul 01 01:20:39 EDT 2025 Fri Feb 21 02:44:33 EST 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 1 |
Keywords | Discontinuous Galerkin methods 74S05 Eigenvalue problems Korteweg–de Vries equation 76B15 Finite-element method Fourier analysis 35Q53 Dispersive waves 35P20 35L99 65M12 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c206t-396aa95ead7b8070a11b9e3cd7024f208854e3722bb7d23c2c6aa8aa83ad13003 |
ORCID | 0000-0001-8799-5159 |
PageCount | 22 |
ParticipantIDs | hal_primary_oai_HAL_hal_04455001v1 crossref_primary_10_1007_s13137_022_00209_2 springer_journals_10_1007_s13137_022_00209_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg |
PublicationTitle | GEM international journal on geomathematics |
PublicationTitleAbbrev | Int J Geomath |
PublicationYear | 2022 |
Publisher | Springer Berlin Heidelberg Springer |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer |
References | CR4 Hufford, Xing (CR6) 2014; 255 Hu, Hussaini, Rasetarinera (CR5) 1999; 151 Xu, Shu (CR12) 2012; 50 Moura, Shervin, Peiró (CR10) 2015; 298 Le Roux, Eldred, Taylor (CR7) 2020; 58 Xu, Shu (CR11) 2007; 196 Zhong, Shu (CR14) 2011; 200 Marcus (CR9) 1990; 21 Liu, Yan (CR8) 2006; 215 Ainsworth (CR1) 2004; 198 Cao, Huang (CR2) 2017; 72 Guo, Zhong, Qiu (CR3) 2013; 235 Yan, Shu (CR13) 2002; 40 Y Xu (209_CR12) 2012; 50 FQ Hu (209_CR5) 1999; 151 W Guo (209_CR3) 2013; 235 Y Xu (209_CR11) 2007; 196 RC Moura (209_CR10) 2015; 298 H Liu (209_CR8) 2006; 215 X Zhong (209_CR14) 2011; 200 DY Le Roux (209_CR7) 2020; 58 M Marcus (209_CR9) 1990; 21 209_CR4 M Ainsworth (209_CR1) 2004; 198 J Yan (209_CR13) 2002; 40 C Hufford (209_CR6) 2014; 255 W Cao (209_CR2) 2017; 72 |
References_xml | – volume: 58 start-page: 1845 year: 2020 end-page: 1866 ident: CR7 article-title: Fourier analyses of high order continuous and discontinuous Galerkin methods publication-title: SIAM J. Numer. Anal. doi: 10.1137/19M1289595 – volume: 21 start-page: 130 year: 1990 end-page: 135 ident: CR9 article-title: Determinants of sums publication-title: Coll. Math. J. doi: 10.2307/2686755 – volume: 198 start-page: 106 year: 2004 end-page: 130 ident: CR1 article-title: Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2004.01.004 – volume: 50 start-page: 79 year: 2012 end-page: 104 ident: CR12 article-title: Optimal error estimates of the semidiscrete local discontinuous Galerkin methods for high order wave equations publication-title: SIAM J. Numer. Anal. doi: 10.1137/11082258X – ident: CR4 – volume: 200 start-page: 2814 year: 2011 end-page: 2827 ident: CR14 article-title: Numerical resolution of discontinuous Galerkin methods for time dependent wave equations publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2011.05.010 – volume: 235 start-page: 458 year: 2013 end-page: 485 ident: CR3 article-title: Superconvergence of discontinuous Galerkin and local discontinuous Galerkin methods: eigen-structure analysis based on Fourier approach publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2012.10.020 – volume: 298 start-page: 695 year: 2015 end-page: 710 ident: CR10 article-title: Linear dispersion-diffusion analysis and its application to under-resolved turbulence simulations using discontinuous Galerkin spectral/hp methods publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2015.06.020 – volume: 196 start-page: 3805 year: 2007 end-page: 3822 ident: CR11 article-title: Error estimates of the semi-discrete local discontinuous Galerkin method for nonlinear convection-diffusion and KdV equations publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2006.10.043 – volume: 40 start-page: 769 year: 2002 end-page: 791 ident: CR13 article-title: A local discontinuous Galerkin method for KdV type equations publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142901390378 – volume: 215 start-page: 197 year: 2006 end-page: 218 ident: CR8 article-title: A local discontinuous Galerkin method for the Korteweg–de Vries equation with boundary effect publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2005.10.016 – volume: 151 start-page: 921 year: 1999 end-page: 946 ident: CR5 article-title: An analysis of the discontinuous Galerkin method for wave propagation problems publication-title: J. Comput. Phys. doi: 10.1006/jcph.1999.6227 – volume: 255 start-page: 441 year: 2014 end-page: 455 ident: CR6 article-title: Superconvergence of the local discontinuous Galerkin method for the linearized Korteweg–de Vries equation publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2013.06.004 – volume: 72 start-page: 761 year: 2017 end-page: 791 ident: CR2 article-title: Superconvergence of local discontinuous Galerkin methods for partial differential equations with higher order derivatives publication-title: J. Sci. Comput. doi: 10.1007/s10915-017-0377-z – volume: 196 start-page: 3805 year: 2007 ident: 209_CR11 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2006.10.043 – ident: 209_CR4 doi: 10.1007/978-0-387-72067-8 – volume: 72 start-page: 761 year: 2017 ident: 209_CR2 publication-title: J. Sci. Comput. doi: 10.1007/s10915-017-0377-z – volume: 198 start-page: 106 year: 2004 ident: 209_CR1 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2004.01.004 – volume: 235 start-page: 458 year: 2013 ident: 209_CR3 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2012.10.020 – volume: 21 start-page: 130 year: 1990 ident: 209_CR9 publication-title: Coll. Math. J. doi: 10.2307/2686755 – volume: 40 start-page: 769 year: 2002 ident: 209_CR13 publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142901390378 – volume: 255 start-page: 441 year: 2014 ident: 209_CR6 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2013.06.004 – volume: 58 start-page: 1845 year: 2020 ident: 209_CR7 publication-title: SIAM J. Numer. Anal. doi: 10.1137/19M1289595 – volume: 215 start-page: 197 year: 2006 ident: 209_CR8 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2005.10.016 – volume: 200 start-page: 2814 year: 2011 ident: 209_CR14 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2011.05.010 – volume: 298 start-page: 695 year: 2015 ident: 209_CR10 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2015.06.020 – volume: 151 start-page: 921 year: 1999 ident: 209_CR5 publication-title: J. Comput. Phys. doi: 10.1006/jcph.1999.6227 – volume: 50 start-page: 79 year: 2012 ident: 209_CR12 publication-title: SIAM J. Numer. Anal. doi: 10.1137/11082258X |
SSID | ssj0000399912 ssib031263397 |
Score | 2.2251992 |
Snippet | A Fourier/stability analysis of the third-order Korteweg–de Vries equation is presented subject to a class of local discontinuous Galerkin discretization using... |
SourceID | hal crossref springer |
SourceType | Open Access Repository Index Database Publisher |
StartPage | 1845 |
SubjectTerms | Applications of Mathematics Computational Science and Engineering Earth Sciences Mathematics Mathematics and Statistics Numerical Methods for Global and Regional Ocean Modeling Original Paper |
Title | Fourier analysis of the local discontinuous Galerkin method for the linearized KdV equation |
URI | https://link.springer.com/article/10.1007/s13137-022-00209-2 https://hal.science/hal-04455001 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA66IeiD6FSclxHENy00SZu0j53sgnN7cjLxoeTS4tOmbhP013uSthuKCEKh0J6mcHI537kjdBnEShqdA3LLs8gLuIo8yVjsEaY5yznRvrT2juGI98fB7SSclElh8yravXJJupN6nezGCBOejT63GCf24OCth6C720CuMU2qVcQI5fA3sbK0-MyCIOf2jDh8xgUts2d-H_abhNp8tvGRP5ykTvZ099BuCRpxUszyPtrIpg201XNNeT8aaGe4qr06P0BP3aINHZZlvRE8yzG8x05sYZuGO7PtIZag8-MeyAdrLcdFJ2kMELagBfAJWvRnZvDAPODstagIfojG3c79Td8rWyh4mvp84bGYSxmHsFyEimB3S0JUnDFtBMjmnMIREwYZE5QqJQxlmmqgj-Bi0lhHFztCtelsmh0jbHwOqhmJDBegVYk4Ur6WhOcB4zwWWjXRVcW29KWolJGuayJbJqfA5NQxOaVNdAGcXRHaItf95C61z_zAZlr75J000XXF-LTcWvM_xjz5H_kp2qZ22l1syhmqLd6W2TkgjIVqoXrSbbdH9t57HHRaboF9Af1bxkM |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60IupBtCrW5yLedCG7m-4mxyLWaB-nVgoewr6Cp1ZtK-ivdzaPFkUEIadksoHJ7M43b4Quw1grazJAbpmLSCh0RBTnMaHcCJ4JagLl_R29vkiG4cOoOSqLwqZVtnsVksxP6mWxG6dcEp997jFOTODgXQMwEHlZHrJWJUWcMgFfkwtPS8A9CMrDnpGA14RkZfXM78t-01Crzz4_8keQNNc97R20XYJG3Cr-8i5aceM6Wr_Lh_J-1NFWb9F7dbqHntrFGDqsyn4jeJJheI5ztYV9Ge7Ej4eYg82P70A_eG85LiZJY4CwBS2AT7CiP53FHfuI3WvREXwfDdu3g5uElCMUiGGBmBEeC6XiJoiL1BHsbkWpjh03VoJuzhgcMc3QccmY1tIybpgB-ggurqwPdPEDVBtPxu4QYRsIMM1oZIUEq0rGkQ6MoiILuRCxNLqBriq2pS9Fp4x02RPZMzkFJqc5k1PWQBfA2QWhb3KdtLqpvxeEvtI6oO-0ga4rxqfl1pr-sebR_8jP0UYy6HXT7n2_c4w2mReBPE_lBNVmb3N3Cmhjps9y4foCDf_GJg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60ouhBtCrW5yLeNDS7m-4mx6K21T7wYKXgIewjwVNabSror3c2j1ZFBCGnZLKByezON2-Ezr1ASaNjQG5x5DseV74jGQscwjRnMSfaldbf0R_wztC7GzVGX6r4s2z3MiSZ1zTYLk1JWp-YuL4ofGOECcdmolu8EzhwCK94thoYJHpIm6VEMUI5fFnMvS4us4AoC4H6HF7jghaVNL8v-01bLT_bXMkfAdNMD7W20GYBIHEz_-PbaClKqmi1nQ3ofa-ijf68D-t0Bz218pF0WBa9R_A4xvAcZyoM25LcsR0VMQP7H7dBV1jPOc6nSmOAszktAFGwqD8ig7vmEUcveXfwXTRs3TxcdZxinIKjqctThwVcyqABoiOUDztdEqKCiGkjQE_HFI6bhhcxQalSwlCmqQZ6Hy4mjQ16sT1UScZJtI-wcTmYacQ3XICFJQJfuVoSHnuM80BoVUMXJdvCSd41I1z0R7ZMDoHJYcbkkNbQGXB2TmgbXneavdDecz1bde2SN1JDlyXjw2KbTf9Y8-B_5Kdo7f66FfZuB91DtE6tBGQpK0eokr7OomMAHqk6yWTrE-yZylk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fourier+analysis+of+the+local+discontinuous+Galerkin+method+for+the+linearized+KdV+equation&rft.jtitle=GEM+international+journal+on+geomathematics&rft.au=Le+Roux%2C+Daniel+Y.&rft.date=2022-12-01&rft.issn=1869-2672&rft.eissn=1869-2680&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1007%2Fs13137-022-00209-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13137_022_00209_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1869-2672&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1869-2672&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1869-2672&client=summon |