Online Estimating State of Health of Lithium-Ion Batteries Using Hierarchical Extreme Learning Machine

Battery state-of-health (SoH) monitoring is of great importance to ensure the safety and reliability of battery systems. This study proposed an innovative SoH estimation method using hierarchical extreme learning machine (HELM) to improve the estimation robustness and accuracy without the complex pa...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on transportation electrification Vol. 8; no. 1; pp. 965 - 975
Main Authors Chen, Lin, Ding, Yunhui, Wang, Huimin, Wang, Yijue, Liu, Bohao, Wu, Shuxiao, Li, Hao, Pan, Haihong
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.03.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Battery state-of-health (SoH) monitoring is of great importance to ensure the safety and reliability of battery systems. This study proposed an innovative SoH estimation method using hierarchical extreme learning machine (HELM) to improve the estimation robustness and accuracy without the complex parameter model was directly applied to establish the HELM-oriented online SoH estimation framework. First, the increase in mean ohmic resistance was constructed as a novel health indicator (HI) to characterize battery aging. Then, the HI was adopted for offline training to build an HELM model, which captures the underlying correlation between the extracted HI and capacity degradation. Finally, the datasets of four batteries at three different temperatures with dynamic loading profiles were used for validation. The results show that the SoH estimation errors are no more than 1.5%, while the training and estimation datasets are from the same temperature; when the SoH estimation is conducted at different temperatures, the maximum error is only 3.36%. The results indicate that the proposed method had good generalization and reliability for SoH estimation, which is applicable for dynamic scenarios with different temperatures.
AbstractList Battery state-of-health (SoH) monitoring is of great importance to ensure the safety and reliability of battery systems. This study proposed an innovative SoH estimation method using hierarchical extreme learning machine (HELM) to improve the estimation robustness and accuracy without the complex parameter model was directly applied to establish the HELM-oriented online SoH estimation framework. First, the increase in mean ohmic resistance was constructed as a novel health indicator (HI) to characterize battery aging. Then, the HI was adopted for offline training to build an HELM model, which captures the underlying correlation between the extracted HI and capacity degradation. Finally, the datasets of four batteries at three different temperatures with dynamic loading profiles were used for validation. The results show that the SoH estimation errors are no more than 1.5%, while the training and estimation datasets are from the same temperature; when the SoH estimation is conducted at different temperatures, the maximum error is only 3.36%. The results indicate that the proposed method had good generalization and reliability for SoH estimation, which is applicable for dynamic scenarios with different temperatures.
Author Wang, Yijue
Wang, Huimin
Wu, Shuxiao
Chen, Lin
Liu, Bohao
Li, Hao
Pan, Haihong
Ding, Yunhui
Author_xml – sequence: 1
  givenname: Lin
  orcidid: 0000-0001-5927-571X
  surname: Chen
  fullname: Chen, Lin
  email: gxdxcl@163.com
  organization: Department of Mechatronics Engineering, College of Mechanical Engineering, Guangxi University, Nanning, China
– sequence: 2
  givenname: Yunhui
  surname: Ding
  fullname: Ding, Yunhui
  email: yunhuiding05@qq.com
  organization: Department of Mechatronics Engineering, College of Mechanical Engineering, Guangxi University, Nanning, China
– sequence: 3
  givenname: Huimin
  surname: Wang
  fullname: Wang, Huimin
  email: wanghmhit@foxmail.com
  organization: School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, China
– sequence: 4
  givenname: Yijue
  orcidid: 0000-0002-9977-6065
  surname: Wang
  fullname: Wang, Yijue
  email: yijue.wang@uconn.edu
  organization: Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, USA
– sequence: 5
  givenname: Bohao
  surname: Liu
  fullname: Liu, Bohao
  email: 522719708@qq.com
  organization: Department of Mechatronics Engineering, College of Mechanical Engineering, Guangxi University, Nanning, China
– sequence: 6
  givenname: Shuxiao
  surname: Wu
  fullname: Wu, Shuxiao
  email: m13055774581@163.com
  organization: Department of Mechatronics Engineering, College of Mechanical Engineering, Guangxi University, Nanning, China
– sequence: 7
  givenname: Hao
  surname: Li
  fullname: Li, Hao
  email: 13120506670@163.com
  organization: Department of Mechatronics Engineering, College of Mechanical Engineering, Guangxi University, Nanning, China
– sequence: 8
  givenname: Haihong
  orcidid: 0000-0002-7182-0263
  surname: Pan
  fullname: Pan, Haihong
  email: hustphh@163.com
  organization: Department of Mechatronics Engineering, College of Mechanical Engineering, Guangxi University, Nanning, China
BookMark eNpNUM9PwjAYbQwmInI38bLE8_BrR1t2VDKFZIaDcF667puUQIdtSfS_twvEeHovee99P94tGdjOIiH3FCaUQv60XhcTBoxOMgpSMnlFhizLWCrljA3-8Rsy9n4HAJRnPKdiSNqV3RuLSeGDOahg7GfyEVTApGuTBap92PasNGFrTod02dnkRYWAzqBPNr63Lww65fTWaLVPiu_g8IBJicrZXn1XUbF4R65btfc4vuCIbF6L9XyRlqu35fy5TDUDEVLGG02lbKDRLSKICHUrMpnLaSuo1gLaRmODnNFG55xLgbRmYsa55o2s62xEHs9zj677OqEP1a47ORtXVkxMGQADKaILzi7tOu8dttXRxe_dT0Wh6gutYqFVX2h1KTRGHs4Rg4h_9jweksM0-wUNvnPb
CODEN ITTEBP
CitedBy_id crossref_primary_10_1109_JESTIE_2023_3287513
crossref_primary_10_1002_batt_202300596
crossref_primary_10_1016_j_electacta_2023_143525
crossref_primary_10_1109_TTE_2023_3317449
crossref_primary_10_1149_1945_7111_ac8ee0
crossref_primary_10_1039_D2SE01209J
crossref_primary_10_1149_1945_7111_acd8fa
crossref_primary_10_1016_j_est_2023_107365
crossref_primary_10_1016_j_etran_2023_100260
crossref_primary_10_1016_j_energy_2024_131392
crossref_primary_10_1016_j_energy_2024_132048
crossref_primary_10_1109_TTE_2023_3264438
crossref_primary_10_3390_en16186673
crossref_primary_10_1016_j_energy_2023_129597
crossref_primary_10_1016_j_energy_2023_129279
crossref_primary_10_1016_j_est_2024_111834
crossref_primary_10_1109_TEC_2022_3142818
crossref_primary_10_1016_j_est_2023_109195
crossref_primary_10_1109_TTE_2023_3304670
crossref_primary_10_1016_j_ensm_2023_102967
crossref_primary_10_1016_j_energy_2024_130849
crossref_primary_10_1109_TTE_2022_3191136
crossref_primary_10_3390_batteries9020099
crossref_primary_10_1016_j_energy_2023_128776
crossref_primary_10_1016_j_ijepes_2023_109233
crossref_primary_10_1016_j_eswa_2023_122034
crossref_primary_10_3390_en16031240
Cites_doi 10.1109/TII.2012.2222650
10.1137/080716542
10.1016/j.measurement.2017.11.016
10.1049/iet-pel.2015.0182
10.1016/j.rser.2015.11.042
10.1016/j.jpowsour.2010.08.035
10.1016/j.apenergy.2017.08.096
10.1016/j.jpowsour.2017.05.004
10.1016/j.apenergy.2016.01.125
10.1016/j.jpowsour.2020.228740
10.1016/j.apenergy.2018.01.008
10.1109/TPEL.2009.2034966
10.1109/TVT.2017.2751613
10.1016/j.jpowsour.2011.10.013
10.1016/j.energy.2018.06.220
10.1016/j.apenergy.2017.05.124
10.1016/j.jpowsour.2012.11.146
10.1109/ACCESS.2019.2925468
10.1016/j.neucom.2005.12.126
10.1109/TNNLS.2015.2424995
10.1016/j.jpowsour.2009.05.036
10.1109/TSMC.2015.2389757
10.1016/j.jpowsour.2015.03.178
10.1016/j.jpowsour.2014.02.064
10.1016/j.apenergy.2016.05.051
10.1016/j.energy.2015.05.148
10.3390/en10010137
10.1002/er.5413
10.1016/j.apenergy.2016.08.016
10.1016/j.jpowsour.2012.10.001
10.1016/j.jpowsour.2019.227401
10.1016/j.jpowsour.2013.03.158
10.1016/j.neucom.2007.07.025
10.1109/TNN.2006.875977
10.1016/j.rser.2017.05.001
10.1016/j.apenergy.2018.05.066
10.1109/AUTEST.2007.4374280
10.1016/j.apenergy.2016.07.126
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TTE.2021.3107727
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library Online
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2332-7782
EndPage 975
ExternalDocumentID 10_1109_TTE_2021_3107727
9521904
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 52067003; 51667006
  funderid: 10.13039/501100001809
GroupedDBID 0R~
97E
AAJGR
AASAJ
ABQJQ
ABVLG
ACGFS
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
JAVBF
M43
O9-
OCL
RIA
RIE
RIG
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c206t-25dc177d0dcfee06dcfbf637974f61cc60fdcede521dc95576e1b26855c5d7bb3
IEDL.DBID RIE
ISSN 2332-7782
2577-4212
IngestDate Fri Sep 13 02:35:49 EDT 2024
Fri Aug 23 04:06:42 EDT 2024
Wed Jun 26 19:25:32 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c206t-25dc177d0dcfee06dcfbf637974f61cc60fdcede521dc95576e1b26855c5d7bb3
ORCID 0000-0002-9977-6065
0000-0001-5927-571X
0000-0002-7182-0263
PQID 2642002076
PQPubID 4437205
PageCount 11
ParticipantIDs proquest_journals_2642002076
ieee_primary_9521904
crossref_primary_10_1109_TTE_2021_3107727
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on transportation electrification
PublicationTitleAbbrev TTE
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref30
ref11
ref33
ref10
ref32
Pan (ref31) 2017; 32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref22
  doi: 10.1109/TII.2012.2222650
– ident: ref37
  doi: 10.1137/080716542
– ident: ref33
  doi: 10.1016/j.measurement.2017.11.016
– ident: ref38
  doi: 10.1049/iet-pel.2015.0182
– volume: 32
  start-page: 1
  year: 2017
  ident: ref31
  article-title: Estimation of lithium-ion battery state of charge based on grey prediction model-extended Kalman filter
  publication-title: Trans. China Electrotech. Soc.
  contributor:
    fullname: Pan
– ident: ref1
  doi: 10.1016/j.rser.2015.11.042
– ident: ref4
  doi: 10.1016/j.jpowsour.2010.08.035
– ident: ref24
  doi: 10.1016/j.apenergy.2017.08.096
– ident: ref26
  doi: 10.1016/j.jpowsour.2017.05.004
– ident: ref20
  doi: 10.1016/j.apenergy.2016.01.125
– ident: ref6
  doi: 10.1016/j.jpowsour.2020.228740
– ident: ref12
  doi: 10.1016/j.apenergy.2018.01.008
– ident: ref13
  doi: 10.1109/TPEL.2009.2034966
– ident: ref14
  doi: 10.1109/TVT.2017.2751613
– ident: ref29
  doi: 10.1016/j.jpowsour.2011.10.013
– ident: ref8
  doi: 10.1016/j.energy.2018.06.220
– ident: ref17
  doi: 10.1016/j.apenergy.2017.05.124
– ident: ref23
  doi: 10.1016/j.jpowsour.2012.11.146
– ident: ref25
  doi: 10.1109/ACCESS.2019.2925468
– ident: ref34
  doi: 10.1016/j.neucom.2005.12.126
– ident: ref36
  doi: 10.1109/TNNLS.2015.2424995
– ident: ref5
  doi: 10.1016/j.jpowsour.2009.05.036
– ident: ref16
  doi: 10.1109/TSMC.2015.2389757
– ident: ref39
  doi: 10.1016/j.jpowsour.2015.03.178
– ident: ref9
  doi: 10.1016/j.jpowsour.2014.02.064
– ident: ref21
  doi: 10.1016/j.apenergy.2016.05.051
– ident: ref7
  doi: 10.1016/j.energy.2015.05.148
– ident: ref11
  doi: 10.3390/en10010137
– ident: ref27
  doi: 10.1002/er.5413
– ident: ref2
  doi: 10.1016/j.apenergy.2016.08.016
– ident: ref10
  doi: 10.1016/j.jpowsour.2012.10.001
– ident: ref15
  doi: 10.1016/j.jpowsour.2019.227401
– ident: ref18
  doi: 10.1016/j.jpowsour.2013.03.158
– ident: ref28
  doi: 10.1016/j.neucom.2007.07.025
– ident: ref35
  doi: 10.1109/TNN.2006.875977
– ident: ref3
  doi: 10.1016/j.rser.2017.05.001
– ident: ref30
  doi: 10.1016/j.apenergy.2018.05.066
– ident: ref32
  doi: 10.1109/AUTEST.2007.4374280
– ident: ref19
  doi: 10.1016/j.apenergy.2016.07.126
SSID ssj0001535916
Score 2.40559
Snippet Battery state-of-health (SoH) monitoring is of great importance to ensure the safety and reliability of battery systems. This study proposed an innovative SoH...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 965
SubjectTerms Artificial neural networks
Batteries
Battery charge measurement
Datasets
Degradation
Dynamic loads
Estimation
Health indicator (HI)
hierarchical extreme learning machine (HELM)
Lithium-ion batteries
lithium-ion battery
Machine learning
Neural networks
Product safety
Rechargeable batteries
Resistance
state of health (SoH)
Temperature measurement
Training
Title Online Estimating State of Health of Lithium-Ion Batteries Using Hierarchical Extreme Learning Machine
URI https://ieeexplore.ieee.org/document/9521904
https://www.proquest.com/docview/2642002076/abstract/
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKJxj4KohCQR5YkEjrJLWTjAilKogytVK3qLYvpQISBImE-PWcnYTvgSkeYsnx88Xv7Lt3hJwiB5XMA-HISDPHFNt2Ij-VCIiU_jBk0rVlOie3YjwbXs_5vEXOP3JhAMAGn0HfNO1dvs5VaY7KBhHuNZER_1wLmVflan2ep3CfI9VpbiJZNJhOY_T_PBfdUoYcMvi289hSKr_-v3ZTGW2RSTOcKpbkvl8Wsq_efig1_ne822SzZpf0oloOO6QF2S7Z-KI52CFpJS5KY7Rtw1azJbWEk-YprXKSTOtmVdytykfnKs9oJcGJHjW18QV0vDJJy7aGygONXwtzwkhrndYlndjoTNgjs1E8vRw7dbEFR3lMFI7HtXKDQDOtUgAm8CFT4Qfob6TCVUqwVCvQgJ-kVcTRTQFXeiLkXHEdILD7pJ3lGRwQGkq5QLNeaIXcEiCNIFQLT7u-lKEfAu-SswaI5KnS1EisL8KiBEFLDGhJDVqXdMy8frxXT2mX9BrkktroXhLkdibkhAXi8O9eR2TdM9kLNoSsR9rFcwnHyCkKeWIX0ztoLsuk
link.rule.ids 315,786,790,802,27957,27958,55109
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4hGICBN6I8PbAgkeIk2IlHhIpaaJmKxBbV9gUqIEWQSohfz9lJy3NgiodYcvzZue_su-8ADomDah6hDLSyPHDFtgMV55oA0To-TbkOfZnO3rVs35xe3orbGTie5sIgog8-w6Zr-rt8OzJjd1R2osjWKCf-OUd2nqsqW-vzREXEgsjO5C6Sq5N-v0UeYBSSY8qJRSbfbI8vpvLrD-zNysUy9CYDqqJJHprjUjfN-w-txv-OeAWWan7JzqoFsQozWKzB4hfVwXXIK3lR1qLd7fhqccc85WSjnFVZSa7VHZb3w_FT0BkVrBLhJJ-a-QgD1h66tGVfReWRtd5Kd8bIaqXWO9bz8Zm4ATcXrf55O6jLLQQm4rIMImFNmCSWW5MjckkPncs4IY8jl6ExkufWoEX6JGuUIEcFQx3JVAgjbELQbsJsMSpwC1iq9YA29sAaYpeIucLUDCIbxlqncYqiAUcTILLnSlUj894IVxmBljnQshq0Bqy7eZ2-V09pA3YnyGX1tnvNiN25oBOeyO2_ex3AfLvf62bdzvXVDixELpfBB5Ttwmz5MsY9Yhil3vcL6wNOPM76
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+Estimating+State+of+Health+of+Lithium-Ion+Batteries+Using+Hierarchical+Extreme+Learning+Machine&rft.jtitle=IEEE+transactions+on+transportation+electrification&rft.au=Chen%2C+Lin&rft.au=Ding%2C+Yunhui&rft.au=Wang%2C+Huimin&rft.au=Wang%2C+Yijue&rft.date=2022-03-01&rft.issn=2332-7782&rft.eissn=2332-7782&rft.volume=8&rft.issue=1&rft.spage=965&rft.epage=975&rft_id=info:doi/10.1109%2FTTE.2021.3107727&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TTE_2021_3107727
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2332-7782&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2332-7782&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2332-7782&client=summon