Bounded absorbing sets for compressible non-Newtonian fluids 76A05 , 35Q35
In this article, we investigate non-Newtonian compressible fluid in three-dimensional bounded domain with a compact Lipschitz boundary driven by bounded forces. We investigate the existence result with bounded absorbing sets for weak solutions of considered fluid, while the adiabatic constant γ is s...
Saved in:
Published in | Journal of engineering mathematics Vol. 149; no. 1 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this article, we investigate non-Newtonian compressible fluid in three-dimensional bounded domain with a compact Lipschitz boundary driven by bounded forces. We investigate the existence result with bounded absorbing sets for weak solutions of considered fluid, while the adiabatic constant
γ
is subject to some specific restrictions. |
---|---|
AbstractList | In this article, we investigate non-Newtonian compressible fluid in three-dimensional bounded domain with a compact Lipschitz boundary driven by bounded forces. We investigate the existence result with bounded absorbing sets for weak solutions of considered fluid, while the adiabatic constant
γ
is subject to some specific restrictions. |
ArticleNumber | 3 |
Author | Muhammad, Jan |
Author_xml | – sequence: 1 givenname: Jan surname: Muhammad fullname: Muhammad, Jan email: j.j.muhammad29@gmail.com organization: Department of Mathematics, Shanghai University |
BookMark | eNp9kM9OwzAMhyM0JMbgBTj1BQJO0rSNxAUm_kkTXHaPkiadMnXJFHdCvD2BceKwkw_2Z__8XZJZTNETcsPglgG0d8igaSQFXlMGNdRUnZE5k62gvAUxI3MAzil0QlyQS8QtAKiu5nNy_5gO0XlXGYsp2xA3FfoJqyHlqk-7ffaIwY6-Kgfpu_-cUgwmVsN4CA6vyPlgRvTXf3VB1s9P6-UrXX28vC0fVrTn0CgqveRCdeCVUMpBSdV0zPbC2V45w3gJY03ruJMeONSDsEo2bDCNlXXpiQXpjmv7nBCzH3QfJjOFFKdswqgZ6B8J-ihBFwn6V4JWBeX_0H0OO5O_TkPiCGEZjhuf9TYdciwfnqK-AZmCcGY |
CitedBy_id | crossref_primary_10_2298_TAM240828009M |
Cites_doi | 10.1007/BF02674554 10.4310/CMS.2003.v1.n4.a2 10.1051/proc:2005004 10.1002/mma.3432 10.1007/s00030-003-1028-z 10.4310/CMS.2022.v20.n6.a11 10.1002/mma.4837 10.1016/j.jmaa.2011.08.055 10.1006/jdeq.2000.3935 10.1093/oso/9780198530848.001.0001 10.1002/mma.6263 10.1134/S000143460709026X 10.1007/PL00000976 10.1016/S0021-7824(03)00015-1 10.1016/S0252-9602(15)30011-4 10.1063/1.1724379 10.1081/PDE-100106129 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s10665-024-10404-9 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Mathematics |
EISSN | 1573-2703 |
ExternalDocumentID | 10_1007_s10665_024_10404_9 |
GroupedDBID | -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29K 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDZB AFEXP AFGCZ AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF- PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 ZMTXR ZWQNP ZY4 ~02 ~EX AAYXX ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP CITATION |
ID | FETCH-LOGICAL-c2069-5e523980e9399d0573681bc3dbc9da12000ba7d2d5e0204f3b9561fa6b540003 |
IEDL.DBID | U2A |
ISSN | 0022-0833 |
IngestDate | Tue Jul 01 03:43:58 EDT 2025 Thu Apr 24 23:07:52 EDT 2025 Thu May 22 04:31:30 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Compressible non-Newtonian fluid Bounded absorbing sets Weak solutions 35Q35 76A05 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2069-5e523980e9399d0573681bc3dbc9da12000ba7d2d5e0204f3b9561fa6b540003 |
ParticipantIDs | crossref_citationtrail_10_1007_s10665_024_10404_9 crossref_primary_10_1007_s10665_024_10404_9 springer_journals_10_1007_s10665_024_10404_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20241200 2024-12-00 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 20241200 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationTitle | Journal of engineering mathematics |
PublicationTitleAbbrev | J Eng Math |
PublicationYear | 2024 |
Publisher | Springer Netherlands |
Publisher_xml | – name: Springer Netherlands |
References | Williams (CR3) 1958; 1 Jiang, Zhang (CR14) 2003; 82 Fang, Kong, Liu (CR18) 2018; 41 Feireisl, Liao, Málek (CR23) 2015; 38 Feireisl (CR7) 2003; 10 Ladyzhenskaya (CR9) 1967; 102 Ladyzhenskaya (CR10) 1969 Fang, Zi, Zhang (CR25) 2012; 386 Muhammad, Samad (CR24) 2021; 7 Novotny, Straskraba (CR12) 2004 Bogovskii (CR26) 1980; 80 Zhikov, Pastukhova (CR17) 2009; 427 Mamontov (CR16) 2007; 82 Feireisl (CR20) 2004 Baranger, Boudin, Jabin, Mancini (CR1) 2005; 14 Fang, Guo (CR22) 2022; 20 Mamontov (CR15) 2000; 68 Feireisl (CR6) 2001; 42 Feireisl, Petzeltová (CR5) 2001; 173 Lions (CR11) 1998 Muhammad, Fang, Guo (CR21) 2020; 43 Feireisl, Petzeltová (CR4) 2001; 26 Boudin, Desvilletter, Motte (CR2) 2003; 1 Feireisl, Novotný, Petzeltová (CR13) 2001; 4 Wang (CR8) 2015; 35 Lions (CR19) 1996 E Feireisl (10404_CR13) 2001; 4 L Boudin (10404_CR2) 2003; 1 E Feireisl (10404_CR5) 2001; 173 E Feireisl (10404_CR4) 2001; 26 E Feireisl (10404_CR7) 2003; 10 E Feireisl (10404_CR20) 2004 FA Williams (10404_CR3) 1958; 1 S Jiang (10404_CR14) 2003; 82 OA Ladyzhenskaya (10404_CR10) 1969 AE Mamontov (10404_CR16) 2007; 82 D Fang (10404_CR25) 2012; 386 L Fang (10404_CR22) 2022; 20 J Muhammad (10404_CR21) 2020; 43 AE Mamontov (10404_CR15) 2000; 68 L Fang (10404_CR18) 2018; 41 J Muhammad (10404_CR24) 2021; 7 W Wang (10404_CR8) 2015; 35 E Feireisl (10404_CR23) 2015; 38 A Novotny (10404_CR12) 2004 C Baranger (10404_CR1) 2005; 14 PL Lions (10404_CR19) 1996 ME Bogovskii (10404_CR26) 1980; 80 OA Ladyzhenskaya (10404_CR9) 1967; 102 E Feireisl (10404_CR6) 2001; 42 PL Lions (10404_CR11) 1998 VV Zhikov (10404_CR17) 2009; 427 |
References_xml | – volume: 42 start-page: 83 year: 2001 end-page: 98 ident: CR6 article-title: On compactness of solutions to the compressible isentropic Navier–Stokes equations when the density is not square integrable publication-title: Comment Math Univ Carol – volume: 68 start-page: 312 year: 2000 end-page: 325 ident: CR15 article-title: Global regularity estimates for multi-dimensional equations of compressible non-Newtonian fluid publication-title: Math Notes doi: 10.1007/BF02674554 – volume: 1 start-page: 657 issue: 4 year: 2003 end-page: 669 ident: CR2 article-title: A modeling of compressible droplets in a fluid publication-title: Commun Math Sci doi: 10.4310/CMS.2003.v1.n4.a2 – volume: 7 start-page: 1527 year: 2021 end-page: 1536 ident: CR24 article-title: On integrability up to the boundary of the weak solutions to a class of non-Newtonian compressible fluids with vacuum publication-title: J Appl Comput Mech – volume: 14 start-page: 41 year: 2005 end-page: 47 ident: CR1 article-title: A modeling of biospray for the upper airways publication-title: ESAIM Proc doi: 10.1051/proc:2005004 – volume: 38 start-page: 3482 year: 2015 end-page: 3494 ident: CR23 article-title: Global weak solutions to a class of non-Newtonian compressible fluids publication-title: Math Methods Appl Sci doi: 10.1002/mma.3432 – volume: 10 start-page: 83 year: 2003 end-page: 98 ident: CR7 article-title: Propagation of oscillations, complete trajectories and attractors for compressible flows publication-title: Nonlinear Differ Equ Appl doi: 10.1007/s00030-003-1028-z – volume: 20 start-page: 1703 year: 2022 end-page: 1733 ident: CR22 article-title: Global weak solutions to a three-dimensional compressible non-Newtonian fluid publication-title: Commun Math Sci doi: 10.4310/CMS.2022.v20.n6.a11 – volume: 41 start-page: 3441 year: 2018 end-page: 3462 ident: CR18 article-title: Weak solution to a one-dimensional full compressible non-Newtonian fluids publication-title: Math Models Methods Appl Sci doi: 10.1002/mma.4837 – volume: 386 start-page: 939 year: 2012 end-page: 947 ident: CR25 article-title: Decay estimates for isentropic compressible Navier–Stokes equations in bounded domain publication-title: J Math Anal Appl doi: 10.1016/j.jmaa.2011.08.055 – volume: 173 start-page: 390 year: 2001 end-page: 409 ident: CR5 article-title: Asymptotic compactness of global trajectories generated by the Navier–Stokes equations of a compressible fluid publication-title: J Differ Equ doi: 10.1006/jdeq.2000.3935 – year: 2004 ident: CR12 publication-title: Introduction to the mathematical theory of compressible flow doi: 10.1093/oso/9780198530848.001.0001 – volume: 43 start-page: 5234 year: 2020 end-page: 5249 ident: CR21 article-title: Global weak solutions to a class of compressible non-Newtonian fluids with vacuum publication-title: Math Methods Appl Sci doi: 10.1002/mma.6263 – volume: 82 start-page: 501 year: 2007 end-page: 517 ident: CR16 article-title: Existence of global solutions to multi-dimensional equations for Bingham fluids (Russian) publication-title: Math Notes doi: 10.1134/S000143460709026X – volume: 427 start-page: 303 year: 2009 end-page: 307 ident: CR17 article-title: On the solvability of the Navier–Stokes system for a compressible non-Newtonian fluid publication-title: Dokl Akad Nauk – year: 2004 ident: CR20 publication-title: Dynamics of viscous compressible fluids: Oxford lecture series in mathematics and its applications – volume: 4 start-page: 358 year: 2001 end-page: 392 ident: CR13 article-title: On the existence of globally defined weak solutions to the Navier–Stokes equations publication-title: J Math Fluid Mech doi: 10.1007/PL00000976 – volume: 82 start-page: 949 year: 2003 end-page: 973 ident: CR14 article-title: Axisymmetric solutions of the 3D Navier–Stokes equations for compressible isentropic fluids publication-title: J Math Pures Appl doi: 10.1016/S0021-7824(03)00015-1 – volume: 35 start-page: 650 year: 2015 end-page: 672 ident: CR8 article-title: On global behavior of weak solutions of compressible flows of nematic liquid crystals publication-title: Acta Math Sci doi: 10.1016/S0252-9602(15)30011-4 – volume: 1 start-page: 541 year: 1958 end-page: 545 ident: CR3 article-title: Spray combustion and atomization publication-title: Phys Fluids doi: 10.1063/1.1724379 – volume: 102 start-page: 85 year: 1967 end-page: 104 ident: CR9 article-title: New equations for the description of the motions of viscous incompressible fluids, and global solvability for their boundary value problems publication-title: Trudy Math Inst Steklov – year: 1996 ident: CR19 publication-title: Mathematical topics in fluid mechanics: incompressible models: Oxford lecture series in mathematics and its applications, 3 – volume: 26 start-page: 1133 year: 2001 end-page: 1144 ident: CR4 article-title: Bounded absorbing sets for the Navier–Stokes equations of compressible fluid publication-title: Commun Partial Differ Equ doi: 10.1081/PDE-100106129 – volume: 80 start-page: 5 year: 1980 end-page: 40 ident: CR26 article-title: Solution of some vector analysis problems connected with operators div and grad publication-title: Trudy Sem SL Sobolev – year: 1969 ident: CR10 publication-title: The mathematical theory of viscous incompressible flow – year: 1998 ident: CR11 publication-title: Mathematical topics in fluid mechanics, compressible models: Oxford lecture series in mathematics and its applications, 10 – volume: 20 start-page: 1703 year: 2022 ident: 10404_CR22 publication-title: Commun Math Sci doi: 10.4310/CMS.2022.v20.n6.a11 – volume: 10 start-page: 83 year: 2003 ident: 10404_CR7 publication-title: Nonlinear Differ Equ Appl doi: 10.1007/s00030-003-1028-z – volume: 386 start-page: 939 year: 2012 ident: 10404_CR25 publication-title: J Math Anal Appl doi: 10.1016/j.jmaa.2011.08.055 – volume: 35 start-page: 650 year: 2015 ident: 10404_CR8 publication-title: Acta Math Sci doi: 10.1016/S0252-9602(15)30011-4 – volume-title: Mathematical topics in fluid mechanics, compressible models: Oxford lecture series in mathematics and its applications, 10 year: 1998 ident: 10404_CR11 – volume: 43 start-page: 5234 year: 2020 ident: 10404_CR21 publication-title: Math Methods Appl Sci doi: 10.1002/mma.6263 – volume: 173 start-page: 390 year: 2001 ident: 10404_CR5 publication-title: J Differ Equ doi: 10.1006/jdeq.2000.3935 – volume-title: The mathematical theory of viscous incompressible flow year: 1969 ident: 10404_CR10 – volume: 82 start-page: 501 year: 2007 ident: 10404_CR16 publication-title: Math Notes doi: 10.1134/S000143460709026X – volume-title: Mathematical topics in fluid mechanics: incompressible models: Oxford lecture series in mathematics and its applications, 3 year: 1996 ident: 10404_CR19 – volume: 427 start-page: 303 year: 2009 ident: 10404_CR17 publication-title: Dokl Akad Nauk – volume: 14 start-page: 41 year: 2005 ident: 10404_CR1 publication-title: ESAIM Proc doi: 10.1051/proc:2005004 – volume-title: Dynamics of viscous compressible fluids: Oxford lecture series in mathematics and its applications year: 2004 ident: 10404_CR20 – volume: 68 start-page: 312 year: 2000 ident: 10404_CR15 publication-title: Math Notes doi: 10.1007/BF02674554 – volume: 26 start-page: 1133 year: 2001 ident: 10404_CR4 publication-title: Commun Partial Differ Equ doi: 10.1081/PDE-100106129 – volume: 102 start-page: 85 year: 1967 ident: 10404_CR9 publication-title: Trudy Math Inst Steklov – volume: 38 start-page: 3482 year: 2015 ident: 10404_CR23 publication-title: Math Methods Appl Sci doi: 10.1002/mma.3432 – volume: 4 start-page: 358 year: 2001 ident: 10404_CR13 publication-title: J Math Fluid Mech doi: 10.1007/PL00000976 – volume: 42 start-page: 83 year: 2001 ident: 10404_CR6 publication-title: Comment Math Univ Carol – volume-title: Introduction to the mathematical theory of compressible flow year: 2004 ident: 10404_CR12 doi: 10.1093/oso/9780198530848.001.0001 – volume: 1 start-page: 541 year: 1958 ident: 10404_CR3 publication-title: Phys Fluids doi: 10.1063/1.1724379 – volume: 82 start-page: 949 year: 2003 ident: 10404_CR14 publication-title: J Math Pures Appl doi: 10.1016/S0021-7824(03)00015-1 – volume: 1 start-page: 657 issue: 4 year: 2003 ident: 10404_CR2 publication-title: Commun Math Sci doi: 10.4310/CMS.2003.v1.n4.a2 – volume: 41 start-page: 3441 year: 2018 ident: 10404_CR18 publication-title: Math Models Methods Appl Sci doi: 10.1002/mma.4837 – volume: 7 start-page: 1527 year: 2021 ident: 10404_CR24 publication-title: J Appl Comput Mech – volume: 80 start-page: 5 year: 1980 ident: 10404_CR26 publication-title: Trudy Sem SL Sobolev |
SSID | ssj0009842 |
Score | 2.3600247 |
Snippet | In this article, we investigate non-Newtonian compressible fluid in three-dimensional bounded domain with a compact Lipschitz boundary driven by bounded... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
SubjectTerms | Applications of Mathematics Computational Mathematics and Numerical Analysis Mathematical and Computational Engineering Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Theoretical and Applied Mechanics |
Subtitle | 76A05 , 35Q35 |
Title | Bounded absorbing sets for compressible non-Newtonian fluids |
URI | https://link.springer.com/article/10.1007/s10665-024-10404-9 |
Volume | 149 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60vejBR1V8lhy8aWC3zaYb8NJKa1HaUwv1tGxeIhSVpv3_TrbZPkAKnpaFSRYmmeSbzXxfAO61wRQnTzQVkWWUcZ7SnCtDcSuIYivSVCn_Q38w5P0xe50kk0AKc2W1e3kkWazUG2Q3zj2bmOHSwSJGxT5UE8zdfSHXuNFeS-2mbKURjgCjGagyf_exvR1tn4UWW0zvBI4CNiTt5WCewp75qsFxwIkkRKGrweGGiCC-DVbKq-4Mnjr-niQ0z6X7nmHa-0GcmTuC2JT48vGi7FVODcG0n-IKh9APJwix08Wnducw6nVHz30abkigqhFxQROTeP2-yAjEGdprG3KEoaqppRI6jz0NR-Yt3dCJ8SRY25Sex2pzLhGoYTxfQAW_Zi6BsBZmiilGu-aKWWGljlOZRirnlvOWElcQl37KVFAP95dYTLO17rH3bYa-zQrfZtjmYdXmZ6mdsdP6sXR_FuLI7TC__p_5DRw0imH3hSi3UJnPFuYO4cRc1qHa7nU6Q_98eX_r1ovZ9Atyl8Cj |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB5qPagHH1Xx7R70pAtJutlmQQ_1UVr7OLXQW8g-IkJppWkRf49_1Nk0fYEUPPQYmE3CZHbmm-zMNwA32mCKE_maCidmlHEe0IgrQzEUOG4sgkAp-0O_2eLVDnvr-t0c_Ex7YdJq9-mRZOqpF5rdOLfdxAxdB3MYFVkpZd18f2GiljzWXvCr3npe5bX9XKXZLAGqPIcL6hvfMt05RmBE1pYFkCNgU0UtldCRaxtWZFTSnvaNbReNi9J2fMYRlwhp0PLxthuwidgjsFun45XnzL4Bm1GSI54pZp05f7_ycvRbPnpNI1plH3YzKErKE9s5gJzpF2Avg6Uk2_RJAXYWOAvxqjkjek0O4eHJjmVC8UgmgyFm2e8kMaOEIBQmtlo9rbKVPUP6gz5Fh4pIE-2RxL3xh06OoL0OJR5DHp9mToCwEiamAToXzRWLRSy1G8jAURGPOS8pcQruVE-hysjK7cyMXjinWba6DVG3YarbENfczdZ8Tqg6VkrfT9UfZts2WSF-9j_xa9iqtpuNsFFr1c9h20tNwNbAXEB-NBybS0QyI3mVWhKBcM2W-wsEfvfE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB5qBdGDj6r4dg960qVputkmoIdqLa21xYNCbyH7EqG0pWkRf5V_0dk0fYEUPPQYmE3CZHbm2-x83wJcKY1LnMhTNHAMo4xzn0ZcaoqlwCmYwPeltD_0my1ee2fPba-dgZ8JFybpdp9sSY45DValqTvM95XJzxHfOLfMYoZphDmMBmlbZUN_f-GiLb6vV_ALX7tu9entsUbTcwWodB0eUE97VvXO0QFWZ2UVATmCN1lUQgYqKljyiohKylWettRRUxSW_WkiLhDe4CzA267BOrPkY5xA7255pvLrs6k8OWKbYsrS-fuVFyvh4jZsUt2qu7CdwlJSHsfRHmR0Nwc7KUQlaQKIc7A1p1-IV82p6Gu8D3cP9ogmNI9E3BvgivuDxHoYE4TFxHauJx23oqNJt9elmFwRdWJsEtMZfar4AN5W4cRDyOLT9BEQVsJFqo-JRnHJTGCEKvjCd2TEDeclGRxDYeKnUKbC5fb8jE44k1y2vg3Rt2Hi2xDH3EzH9MeyHUutbyfuD9MpHC8xP_mf-SVsvFaq4Uu91TiFTTeJANsOcwbZ4WCkzxHUDMVFEkgEwhUH7i8Q7Pv3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bounded+absorbing+sets+for+compressible+non-Newtonian+fluids&rft.jtitle=Journal+of+engineering+mathematics&rft.au=Muhammad%2C+Jan&rft.date=2024-12-01&rft.pub=Springer+Netherlands&rft.issn=0022-0833&rft.eissn=1573-2703&rft.volume=149&rft.issue=1&rft_id=info:doi/10.1007%2Fs10665-024-10404-9&rft.externalDocID=10_1007_s10665_024_10404_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0833&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0833&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0833&client=summon |