Numerical Modeling of Kerf Generation in Abrasive Waterjet Machining of Military Grade Armor Steel
The widespread usage of abrasive waterjet machining is owing to its adaptability, yet the absence of dynamic analysis throughout the kerf forming process is difficult to ensure cutting precision. The present work has proposed a linked SPH-DEA-FEM approach for predicting the cutting characteristics o...
Saved in:
Published in | Human factors and mechanical engineering for defense and safety Vol. 7; no. 1 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
01.12.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2509-8004 2367-2544 |
DOI | 10.1007/s41314-023-00056-5 |
Cover
Abstract | The widespread usage of abrasive waterjet machining is owing to its adaptability, yet the absence of dynamic analysis throughout the kerf forming process is difficult to ensure cutting precision. The present work has proposed a linked SPH-DEA-FEM approach for predicting the cutting characteristics of abrasive water jet machining over a range of process parameters as well as for elucidating the underlying mechanism of kerf generation. Compared to the previous methods, the new simulation approach enhances the simulations of long term water jet cutting. The performance of computations is enhanced by the continuous creation of abrasive and waterjet particles, which help to keep the model short. The flow of abrasive particles that has a Gaussian distribution is described by the discrete element approach (DEA). The friction factors are concerned with the interactions of quasi particles. Smoothed Particle Hydrodynamics (SPH) approach is used to represent the water flow with large deformation. In between the particles and the target, the erosion contact is created. Finally, the simulation model validity is verified through experiments. Understanding the mechanism of abrasive waterjet cutting and optimizing the operating parameters would be beneficial. |
---|---|
AbstractList | The widespread usage of abrasive waterjet machining is owing to its adaptability, yet the absence of dynamic analysis throughout the kerf forming process is difficult to ensure cutting precision. The present work has proposed a linked SPH-DEA-FEM approach for predicting the cutting characteristics of abrasive water jet machining over a range of process parameters as well as for elucidating the underlying mechanism of kerf generation. Compared to the previous methods, the new simulation approach enhances the simulations of long term water jet cutting. The performance of computations is enhanced by the continuous creation of abrasive and waterjet particles, which help to keep the model short. The flow of abrasive particles that has a Gaussian distribution is described by the discrete element approach (DEA). The friction factors are concerned with the interactions of quasi particles. Smoothed Particle Hydrodynamics (SPH) approach is used to represent the water flow with large deformation. In between the particles and the target, the erosion contact is created. Finally, the simulation model validity is verified through experiments. Understanding the mechanism of abrasive waterjet cutting and optimizing the operating parameters would be beneficial. |
ArticleNumber | 1 |
Author | Thirumalai Kumaran, S. Uthayakumar, M. Velayutham, A. Rammohan, S. |
Author_xml | – sequence: 1 givenname: S. surname: Rammohan fullname: Rammohan, S. organization: Department of Automobile Engineering, Kalasalingam Academy of Research and Education – sequence: 2 givenname: S. surname: Thirumalai Kumaran fullname: Thirumalai Kumaran, S. email: thirumalaikumaran@yahoo.com organization: Department of Mechanical Engineering, PSG Institute of Technology and Applied Research – sequence: 3 givenname: M. surname: Uthayakumar fullname: Uthayakumar, M. organization: Faculty of Mechanical Engineering, Kalasalingam Academy of Research and Education – sequence: 4 givenname: A. surname: Velayutham fullname: Velayutham, A. organization: Combat Vehicles Research and Development Establishment, Ministry of Defense |
BookMark | eNp9kMtOwzAQRS1UJErpD7DyDxgcv5IsqwoKooUFIJaWnYyLq9RBdorE3-PSrlh0NbM5d-aeSzQKfQCErgt6U1Ba3iZR8EIQyjihlEpF5BkaM65KwqQQo7xLWpOKUnGBpil5S3nBFBeqHiP7vNtC9I3p8KpvofNhjXuHnyA6vIAA0Qy-D9gHPLPRJP8N-MMMEDcw4JVpPn04Eivf-cHEH7yIpgU8i9s-4tcBoLtC5850CabHOUHv93dv8weyfFk8zmdL0jCqJClLUYtWgDOcSWW5o4ID1JWxUoJRIExFmZW1UM5C3bq2KKixilXCGcMyNUHskNvEPqUITn9Fv80v6YLqvSh9EKWzKP0nSssMVf-gJtfYdx6i8d1plB_QlO-ENUS96Xcx5IqnqF8_4H_N |
CitedBy_id | crossref_primary_10_1007_s13369_024_09500_w crossref_primary_10_1007_s40032_024_01139_8 |
Cites_doi | 10.1007/s12666-022-02545-1 10.1007/s41314-021-00039-4 10.1007/s00170-011-3495-z 10.1007/s40870-020-00270-8 10.1007/s00170-019-03584-7 10.1007/s00170-020-05183-3 10.1007/s00170-018-3119-y 10.1016/j.apm.2016.06.030 10.1007/s00170-010-2521-x 10.1007/s00603-020-02335-5 10.14429/dsj.67.11468 10.1115/1.2899619 10.1016/j.ijmachtools.2015.05.001 10.1016/j.ijmachtools.2005.01.007 10.1007/s40571-019-00227-2 10.1016/j.powtec.2018.04.006 10.3390/ma15124368 10.1007/s00170-020-06340-4 10.1016/j.matpr.2022.04.990 10.1016/j.wear.2013.03.018 10.1007/s00170-010-2836-7 10.1007/s00170-016-9462-y 10.1088/0965-0393/12/6/010 10.1007/s00170-017-1504-6 10.1007/s00170-015-7027-0 10.1016/j.ijmachtools.2018.05.001 10.1007/s00170-022-09077-4 10.1080/10426914.2012.736661 10.1115/IMECE2018-88617 10.1016/j.jmatprotec.2012.09.006 10.1016/j.jmatprotec.2004.04.037 10.1007/s10999-016-9350-5 10.1007/978-1-4471-1572-4 10.1016/S0007-8506(07)60104-8 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s41314-023-00056-5 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2367-2544 |
ExternalDocumentID | 10_1007_s41314_023_00056_5 |
GrantInformation_xml | – fundername: Ministry of Defence grantid: CVRDE/19CR0002/WKS/18-19/LT dated 10/8/18; CVRDE/19CR0002/WKS/18-19/LT dated 10/8/18; CVRDE/19CR0002/WKS/18-19/LT dated 10/8/18; CVRDE/19CR0002/WKS/18-19/LT dated 10/8/18 funderid: http://dx.doi.org/10.13039/501100006083 |
GroupedDBID | -EM 0R~ 406 AACDK AAHNG AAIAL AAJBT AAJSJ AANZL AARHV AASML AATNV AATVU AAUYE ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACGFS ACHSB ACMLO ACOKC ACPIV ACULB ACZOJ ADHHG ADKNI ADKPE ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEMSY AEOHA AESKC AEVLU AEXYK AFBBN AFQWF AGDGC AGMZJ AGQEE AGRTI AHSBF AIAKS AIGIU AILAN AITGF AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR AXYYD BGNMA C6C CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD FERAY FIGPU FINBP FNLPD FSGXE GGCAI H13 IKXTQ IWAJR J-C JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J PT4 RLLFE ROL RSV SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UOJIU UTJUX UZXMN VFIZW ZMTXR AAYXX ABBRH ABEEZ ACSTC AFDZB AFGXO AFOHR AHPBZ ATHPR AYFIA CITATION |
ID | FETCH-LOGICAL-c2065-77494d4efa3256b3f043ee98ab55ea6e4a802b5946fbe9dfd110ab6284faa2fa3 |
IEDL.DBID | C6C |
ISSN | 2509-8004 |
IngestDate | Tue Jul 01 03:09:12 EDT 2025 Thu Apr 24 22:56:46 EDT 2025 Fri Feb 21 02:41:03 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Abrasive waterjet Armor steel Numerical modelling Kerf |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2065-77494d4efa3256b3f043ee98ab55ea6e4a802b5946fbe9dfd110ab6284faa2fa3 |
ParticipantIDs | crossref_primary_10_1007_s41314_023_00056_5 crossref_citationtrail_10_1007_s41314_023_00056_5 springer_journals_10_1007_s41314_023_00056_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20231200 2023-12-00 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 20231200 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | Human factors and mechanical engineering for defense and safety |
PublicationTitleAbbrev | Hum Factors Mech Eng Def Saf |
PublicationYear | 2023 |
Publisher | Springer Nature Singapore |
Publisher_xml | – name: Springer Nature Singapore |
References | Bobbili, Madhu, Gogia (CR2) 2013; 28 Qiang, Wu, Miao (CR16) 2018; 95 Rammohan, Kumaran, Uthayakumar, Velayudham (CR5) 2021; 5 Lozano Torrubia, Axinte, Billingham (CR24) 2015; 95 CR17 CR34 Lebar, Junkar (CR11) 2004; 12 CR33 CR32 Palaniyappan, Veiravan, Kaliyamoorthy, Kumar (CR7) 2022; 120 Wang, Chen, Wang, Liao, Zhu (CR27) 2016; 40 Du, Wang, Dong (CR30) 2020; 111 Anwar, Axinte, Becker (CR20) 2013; 213 Hashish (CR8) 1991; 113 Lv, Hou, Chen (CR13) 2019; 103 Vasudevan, Natarajan, Kumar, Chandra, Sikder (CR28) 2022; 62 Liang, Xie, Liao, Zhou (CR12) 2015; 80 Anwar, Axinte, Becker (CR21) 2013; 303 Feng, Liu, Li (CR14) 2019; 101 Singh, Sukumar, Senthil, Jena, Reddy (CR3) 2017; 64 Liu, Wu, Wei, Hao, Liu (CR31) 2021; 54 CR26 Ilhak, Güner (CR4) 2022; 75 Pozzetti, Peters (CR15) 2018 Nyaboro, El-Hofy, Ahmed, El-Hofy (CR22) 2018; 2 Yu, Sun, Yuan (CR10) 2020; 107 Jianming, Na, Wenjun (CR19) 2010; 50 Wenjun, Jianming, Na (CR23) 2011; 53 Schwartzentruber, Spelt, Papini (CR35) 2018; 132 Hlavacova, Geryk (CR9) 2016 ElTobgy, Ng, Elbestawi (CR18) 2005; 45 Dong, Li, Jiang, Liu (CR25) 2019; 6 Feng, Jianming, Feihong (CR29) 2012; 59 Rammohan, Kumaran, Uthayakumar, Korniejenko, Nykiel, Velayutham (CR6) 2022; 15 Singh, Sukumar, Paman, Balaji, Siva Kumar, Madhu, Arockia Kumar (CR1) 2021; 7 M Hashish (56_CR8) 1991; 113 Z Wang (56_CR27) 2016; 40 S Palaniyappan (56_CR7) 2022; 120 A Lebar (56_CR11) 2004; 12 56_CR34 S Anwar (56_CR20) 2013; 213 56_CR32 56_CR33 L Feng (56_CR14) 2019; 101 G Wenjun (56_CR23) 2011; 53 S Rammohan (56_CR5) 2021; 5 Y Yu (56_CR10) 2020; 107 X Dong (56_CR25) 2019; 6 MS ElTobgy (56_CR18) 2005; 45 S Rammohan (56_CR6) 2022; 15 G Pozzetti (56_CR15) 2018 Y Liu (56_CR31) 2021; 54 56_CR17 R Bobbili (56_CR2) 2013; 28 Z Liang (56_CR12) 2015; 80 B Vasudevan (56_CR28) 2022; 62 IM Hlavacova (56_CR9) 2016 B Ilhak (56_CR4) 2022; 75 BB Singh (56_CR1) 2021; 7 Y Feng (56_CR29) 2012; 59 M Du (56_CR30) 2020; 111 Z Lv (56_CR13) 2019; 103 Z Qiang (56_CR16) 2018; 95 W Jianming (56_CR19) 2010; 50 BB Singh (56_CR3) 2017; 64 J Schwartzentruber (56_CR35) 2018; 132 JN Nyaboro (56_CR22) 2018; 2 P Lozano Torrubia (56_CR24) 2015; 95 56_CR26 S Anwar (56_CR21) 2013; 303 |
References_xml | – volume: 75 start-page: 1831 year: 2022 end-page: 1841 ident: CR4 article-title: Failure analysis of boron carbide-reinforced rolled homogeneous armour against kinetic energy ammunition publication-title: Trans Indian Inst Met doi: 10.1007/s12666-022-02545-1 – volume: 5 start-page: 3 year: 2021 ident: CR5 article-title: Application of TOPSIS optimization in abrasive water jet machining of military grade armor steel publication-title: Hum Factors Mech Eng Def Saf doi: 10.1007/s41314-021-00039-4 – volume: 59 start-page: 193 year: 2012 end-page: 200 ident: CR29 article-title: Numerical simulation of single particle acceleration process by SPH coupled FEM for abrasive waterjet cutting publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-011-3495-z – volume: 7 start-page: 60 year: 2021 end-page: 80 ident: CR1 article-title: A comparative study on the ballistic performance and failure mechanisms of high-nitrogen steel and RHA steel against tungsten heavy alloy penetrators publication-title: J Dyn Behav Mater doi: 10.1007/s40870-020-00270-8 – volume: 103 start-page: 617 year: 2019 end-page: 630 ident: CR13 article-title: Numerical research on erosion involved in ultrasonic-assisted abrasive waterjet machining publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-019-03584-7 – volume: 107 start-page: 2757 year: 2020 end-page: 2765 ident: CR10 article-title: Experimental investigation into the effect of abrasive process parameters on the cutting performance for abrasive waterjet technology: a case study publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-020-05183-3 – ident: CR33 – volume: 101 start-page: 3167 year: 2019 end-page: 3182 ident: CR14 article-title: Study on the effects of abrasive particle shape on the cutting performance of Ti-6Al-4V materials based on the SPH method publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-018-3119-y – volume: 40 start-page: 9625 issue: 23–24 year: 2016 end-page: 9655 ident: CR27 article-title: An overview of smoothed particle hydrodynamics for simulating multiphase flow publication-title: Appl Math Model doi: 10.1016/j.apm.2016.06.030 – volume: 50 start-page: 227 year: 2010 end-page: 234 ident: CR19 article-title: Abrasive waterjet machining simulation by SPH method publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-010-2521-x – volume: 54 start-page: 1565 year: 2021 end-page: 1582 ident: CR31 article-title: Erosion wear characteristics of rock eroded using abrasive air jet at 90 ° impingement angle publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-020-02335-5 – volume: 64 start-page: 412 year: 2017 end-page: 419 ident: CR3 article-title: Future armour materials and technologies for combat platforms future armour materials and technologies for combat platforms publication-title: Def Sci J doi: 10.14429/dsj.67.11468 – volume: 113 start-page: 29 issue: 1 year: 1991 end-page: 37 ident: CR8 article-title: Optimization factors in abrasive-waterjet machining publication-title: ASME J Eng Ind doi: 10.1115/1.2899619 – volume: 95 start-page: 39 year: 2015 end-page: 51 ident: CR24 article-title: Stochastic modelling of abrasive waterjet footprints using finite element analysis publication-title: Int J Mach Tools Manuf doi: 10.1016/j.ijmachtools.2015.05.001 – volume: 45 start-page: 1337 issue: 11 year: 2005 end-page: 1346 ident: CR18 article-title: Finite element modeling of erosive wear publication-title: Int J Mach Tools Manuf doi: 10.1016/j.ijmachtools.2005.01.007 – volume: 6 start-page: 479 issue: 3 year: 2019 end-page: 501 ident: CR25 article-title: Smoothed particle hydrodynamics (SPH) simulation of impinging jet flows containing abrasive rigid bodies publication-title: Comput Part Mech doi: 10.1007/s40571-019-00227-2 – year: 2018 ident: CR15 article-title: A numerical approach for the evaluation of particle-induced erosion in an abrasive waterjet focusing tube publication-title: Powder Technol doi: 10.1016/j.powtec.2018.04.006 – volume: 15 start-page: 4368 year: 2022 ident: CR6 article-title: Prediction of abrasive waterjet machining parameters of military-grade armor steel by semi-empirical and regression models publication-title: Materials (Basel) doi: 10.3390/ma15124368 – volume: 111 start-page: 3519 year: 2020 end-page: 3533 ident: CR30 article-title: Numerical research on kerf characteristics of abrasive waterjet machining based on the SPH-DEM-FEM approach publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-020-06340-4 – volume: 62 start-page: 6022 year: 2022 end-page: 6028 ident: CR28 article-title: Materials today : proceedings simulation of AWJ drilling process using the FEA coupled SPH models : a preliminary study publication-title: Mater Today Proc doi: 10.1016/j.matpr.2022.04.990 – volume: 303 start-page: 426 year: 2013 end-page: 436 ident: CR21 article-title: Finite element modelling of overlapping abrasive waterjet milled footprints publication-title: Wear doi: 10.1016/j.wear.2013.03.018 – volume: 53 start-page: 247 year: 2011 end-page: 253 ident: CR23 article-title: Numerical simulation for abrasive water jet machining based on ALE algorithm publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-010-2836-7 – year: 2016 ident: CR9 article-title: Abrasives for water-jet cutting of high-strength and thick hard materials publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-016-9462-y – volume: 12 start-page: 1159 issue: 6 year: 2004 end-page: 1170 ident: CR11 article-title: Simulation of abrasive water jet cutting process: Part 1. Unit event approach publication-title: Model Simul Mat Sci Eng doi: 10.1088/0965-0393/12/6/010 – volume: 95 start-page: 4091 year: 2018 end-page: 4100 ident: CR16 article-title: CFD research on particle movement and nozzle wear in the abrasive water jet cutting head publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-017-1504-6 – ident: CR17 – volume: 80 start-page: 887 year: 2015 end-page: 905 ident: CR12 article-title: Concentration degree prediction of AWJ grinding effectiveness based on turbulence characteristics and the improved ANFIS publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-015-7027-0 – ident: CR32 – ident: CR34 – volume: 132 start-page: 81 year: 2018 end-page: 95 ident: CR35 article-title: Modelling of delamination due to hydraulic shock when piercing anisotropic carbon-fiber laminates using an abrasive waterjet publication-title: Int J Mach Tools Manuf doi: 10.1016/j.ijmachtools.2018.05.001 – volume: 120 start-page: 5243 year: 2022 end-page: 5257 ident: CR7 article-title: Sustainable solution to low cost alternative abrasive from electric ceramic insulator waste for use in abrasive water jet machining publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-022-09077-4 – volume: 28 start-page: 37 issue: 4 year: 2013 end-page: 41 ident: CR2 article-title: Effect of wire-EDM machining parameters on surface roughness and material removal rate of high strength armor steel publication-title: Mater Manuf Process doi: 10.1080/10426914.2012.736661 – volume: 2 start-page: 1 year: 2018 end-page: 10 ident: CR22 article-title: Numerical and experimental characterization of kerf formation in abrasive waterjet machining, ASME Int publication-title: Mech Eng Congr Expo Proc doi: 10.1115/IMECE2018-88617 – ident: CR26 – volume: 213 start-page: 180 issue: 2 year: 2013 end-page: 193 ident: CR20 article-title: Finite element modelling of abrasive waterjet milled footprints publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2012.09.006 – ident: 56_CR17 doi: 10.1016/j.jmatprotec.2004.04.037 – volume: 40 start-page: 9625 issue: 23–24 year: 2016 ident: 56_CR27 publication-title: Appl Math Model doi: 10.1016/j.apm.2016.06.030 – volume: 15 start-page: 4368 year: 2022 ident: 56_CR6 publication-title: Materials (Basel) doi: 10.3390/ma15124368 – volume: 103 start-page: 617 year: 2019 ident: 56_CR13 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-019-03584-7 – volume: 303 start-page: 426 year: 2013 ident: 56_CR21 publication-title: Wear doi: 10.1016/j.wear.2013.03.018 – volume: 62 start-page: 6022 year: 2022 ident: 56_CR28 publication-title: Mater Today Proc doi: 10.1016/j.matpr.2022.04.990 – volume: 59 start-page: 193 year: 2012 ident: 56_CR29 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-011-3495-z – ident: 56_CR34 doi: 10.1007/s10999-016-9350-5 – volume: 45 start-page: 1337 issue: 11 year: 2005 ident: 56_CR18 publication-title: Int J Mach Tools Manuf doi: 10.1016/j.ijmachtools.2005.01.007 – volume: 5 start-page: 3 year: 2021 ident: 56_CR5 publication-title: Hum Factors Mech Eng Def Saf doi: 10.1007/s41314-021-00039-4 – year: 2018 ident: 56_CR15 publication-title: Powder Technol doi: 10.1016/j.powtec.2018.04.006 – volume: 101 start-page: 3167 year: 2019 ident: 56_CR14 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-018-3119-y – volume: 28 start-page: 37 issue: 4 year: 2013 ident: 56_CR2 publication-title: Mater Manuf Process doi: 10.1080/10426914.2012.736661 – volume: 54 start-page: 1565 year: 2021 ident: 56_CR31 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-020-02335-5 – volume: 80 start-page: 887 year: 2015 ident: 56_CR12 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-015-7027-0 – volume: 107 start-page: 2757 year: 2020 ident: 56_CR10 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-020-05183-3 – volume: 213 start-page: 180 issue: 2 year: 2013 ident: 56_CR20 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2012.09.006 – volume: 6 start-page: 479 issue: 3 year: 2019 ident: 56_CR25 publication-title: Comput Part Mech doi: 10.1007/s40571-019-00227-2 – volume: 111 start-page: 3519 year: 2020 ident: 56_CR30 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-020-06340-4 – volume: 50 start-page: 227 year: 2010 ident: 56_CR19 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-010-2521-x – volume: 132 start-page: 81 year: 2018 ident: 56_CR35 publication-title: Int J Mach Tools Manuf doi: 10.1016/j.ijmachtools.2018.05.001 – volume: 75 start-page: 1831 year: 2022 ident: 56_CR4 publication-title: Trans Indian Inst Met doi: 10.1007/s12666-022-02545-1 – volume: 12 start-page: 1159 issue: 6 year: 2004 ident: 56_CR11 publication-title: Model Simul Mat Sci Eng doi: 10.1088/0965-0393/12/6/010 – ident: 56_CR26 – ident: 56_CR32 doi: 10.1007/978-1-4471-1572-4 – volume: 120 start-page: 5243 year: 2022 ident: 56_CR7 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-022-09077-4 – volume: 7 start-page: 60 year: 2021 ident: 56_CR1 publication-title: J Dyn Behav Mater doi: 10.1007/s40870-020-00270-8 – volume: 113 start-page: 29 issue: 1 year: 1991 ident: 56_CR8 publication-title: ASME J Eng Ind doi: 10.1115/1.2899619 – volume: 53 start-page: 247 year: 2011 ident: 56_CR23 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-010-2836-7 – volume: 95 start-page: 4091 year: 2018 ident: 56_CR16 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-017-1504-6 – volume: 2 start-page: 1 year: 2018 ident: 56_CR22 publication-title: Mech Eng Congr Expo Proc doi: 10.1115/IMECE2018-88617 – volume: 95 start-page: 39 year: 2015 ident: 56_CR24 publication-title: Int J Mach Tools Manuf doi: 10.1016/j.ijmachtools.2015.05.001 – volume: 64 start-page: 412 year: 2017 ident: 56_CR3 publication-title: Def Sci J doi: 10.14429/dsj.67.11468 – year: 2016 ident: 56_CR9 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-016-9462-y – ident: 56_CR33 doi: 10.1016/S0007-8506(07)60104-8 |
SSID | ssib031263469 ssj0002993562 |
Score | 2.2795844 |
Snippet | The widespread usage of abrasive waterjet machining is owing to its adaptability, yet the absence of dynamic analysis throughout the kerf forming process is... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
SubjectTerms | Engineering Mechanical Engineering Security Science and Technology Structural Materials Textile Engineering |
Title | Numerical Modeling of Kerf Generation in Abrasive Waterjet Machining of Military Grade Armor Steel |
URI | https://link.springer.com/article/10.1007/s41314-023-00056-5 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4oXPRgfEZ8kD1408a2-5AegYhEAxclcmumdDbRYDGlHPz3zm4LEWNIvO-0zezszLedmW8YuzJJFCJq--tNGU9ONJAflMYzZE4a_TCC1FX5DnV_JB_HalzR5NhemF_5-9s5OdlAehRZbP-z0p7aZnUVCO0Ss7q7tB0RhFrIcli288LkZoVy80QpyEf0Ab6semb-fux6XFpPirpY09tnexVI5O1yVw_YFmaHbPcHdeARS4aLMtcy5XacmW0q5zPDnzA3vKSSthrnbxlv033Y1qjzV4KV-TsWfOAKKCuJgaPpzr_4Qw4p0js_Zjl_LhCnx2zUu3_p9r1qXoI3CQlJEFCWkUwlGhAEZBJhfCkQoxYkSiFolNDyw0RFUpsEo9SkFPoh0RSgDEBIUiesls0yPGUcpNaA2tBlaSLpUIMCHwhJgBI6wPSuwYKltuJJRSZuZ1pM4xUNstNwTBqOnYZj1WDXK5nPkkpj4-qb5SbE1bGab1h-9r_l52zHzo0v61IuWK3IF3hJ6KJImqze7nU6w6Yzr29U3cMA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gOwAHxFOMZw7coFIfSViPFWKMvS7bxG5V0joSaHSo6w78e9w0nZiEkLjbbeU49pfG9kfIrVahDyDKX29cOywREuMg045GdxLg-qFMTZXvSHSnrDfjM9sUtqyr3esrSROp181uGG495mCOKTuhuXD4Nmm2EY2wBmlGUW_cq_0o8HwRsIo420RkDLkBN9yimPBD_BiX2f6Z3x-8maM2L0hN3ukckH0LGGlUrfAh2YLsiOz9GCN4TNRoVd27zGlJbVY2mNOFpn3INa3GSpfWp28ZjfBsXNar01eEmPk7FHRoiimtxtCM7M6_6HMuU8B3fixyOi4A5idk2nmaPHYdy53gJD6iCgTNLGQpAy0DBDUq0C4LAMK2VJyDFMBk2_UVD5nQCsJUpwgDpBKYrLSUPmqdkka2yOCMUMmEkCA0HpwShhtcculKRBWSB8KD9KFFvNpacWIHi5f8FvN4PRLZWDhGC8fGwjFvkbu1zmc1VuNP6ft6EWK7xZZ_iJ__T_yG7HQnw0E8eBn1L8huySdf1atckkaRr-AKUUehrq2TfQMdLMni |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gSAgOiKcYzxy4QbU-krAep8EYjE1IMLFblbSOBBrdVLoD_x4nbadNQpO4O21lJ_aX2v5MyJVWoQ8gzK83rh0WC4l-kGlH43YS4PqhTGyV70B0h-xpxEcLXfy22r1KSRY9DYalKc0b00Q35o1v6Ho95mC8MV3RXDh8nWwwE_pMula0qx0VeL4IWDFC2_pmdL4Bt1NGMfSH-FkuKztp_n7scrRaTpXaCNTZJTsldKStwtZ7ZA3SfbK9QCh4QNRgVmRgxtQMOTOt5nSiaQ8yTQuCaWMH-pHSFt6STeU6fUewmX1CTvu2rLJc0bfk3dkPfchkAvjOr0lGX3OA8SEZdu7f2l2nnKLgxD7iC4TPLGQJAy0DhDcq0C4LAMKmVJyDFMBk0_UVD5nQCsJEJwgIpBIYtrSUPq46IrV0ksIxoZIJIUFovELFDI-65NKViC8kD4QHyW2deJW2orikGDeTLsbRnBzZajhCDUdWwxGvk-v5mmlBsLFS-qYyQlQetu8V4if_E78kmy93nej5cdA7JVtmsHxRuHJGank2g3OEH7m6sDvsF6NLzLg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+Modeling+of+Kerf+Generation+in+Abrasive+Waterjet+Machining+of+Military+Grade+Armor+Steel&rft.jtitle=Human+factors+and+mechanical+engineering+for+defense+and+safety&rft.au=Rammohan%2C+S.&rft.au=Thirumalai+Kumaran%2C+S.&rft.au=Uthayakumar%2C+M.&rft.au=Velayutham%2C+A.&rft.date=2023-12-01&rft.pub=Springer+Nature+Singapore&rft.issn=2509-8004&rft.eissn=2367-2544&rft.volume=7&rft.issue=1&rft_id=info:doi/10.1007%2Fs41314-023-00056-5&rft.externalDocID=10_1007_s41314_023_00056_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2509-8004&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2509-8004&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2509-8004&client=summon |