An Attempt to a New Neutron Capture Therapy Using Rhodium—The Anti-tumor Method Based on Beta Ray
Neutron capture therapy (NCT) uses secondary particle to treat tumor. Boron has been applied to NCT in clinics, and gadolinium has also attracted the attention. Our group attempted a new candidate element, rhodium, because of its advantages, such as 100% natural abundance, long range (beta ray), neu...
Saved in:
Published in | RADIOISOTOPES Vol. 73; no. 1; pp. 9 - 21 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Japan Radioisotope Association
15.03.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0033-8303 1884-4111 |
DOI | 10.3769/radioisotopes.73.9 |
Cover
Loading…
Abstract | Neutron capture therapy (NCT) uses secondary particle to treat tumor. Boron has been applied to NCT in clinics, and gadolinium has also attracted the attention. Our group attempted a new candidate element, rhodium, because of its advantages, such as 100% natural abundance, long range (beta ray), neutron cross-section peak, and fitness to accelerator-based neutrons. To reduce toxicity and increase tumor accumulation, rhodium encapsulated liposomes (Rh-Lip) were synthesized. After 24 h exposure to rhodium solution, the cell viability increased to 90% when the rhodium concentration was diluted to 0.063 mg/mL; in contrast, it was up to 90% when rhodium concentration was diluted to 0.25 mg/mL in the Rh-Lip group. Moreover, in the Rh-Lip group, 387.3 ppm rhodium remained in the tumor 3 h after administration, but only 42.6 ppm remained in the rhodium solution group. After neutron irradiation, Rh-Lip showed a slower tumor growth rate and damage to tumor cells from pathological analysis, suggesting that rhodium is a potential element for NCT. |
---|---|
AbstractList | Neutron capture therapy (NCT) uses secondary particle to treat tumor. Boron has been applied to NCT in clinics, and gadolinium has also attracted the attention. Our group attempted a new candidate element, rhodium, because of its advantages, such as 100% natural abundance, long range (beta ray), neutron cross-section peak, and fitness to accelerator-based neutrons. To reduce toxicity and increase tumor accumulation, rhodium encapsulated liposomes (Rh-Lip) were synthesized. After 24 h exposure to rhodium solution, the cell viability increased to 90% when the rhodium concentration was diluted to 0.063 mg/mL; in contrast, it was up to 90% when rhodium concentration was diluted to 0.25 mg/mL in the Rh-Lip group. Moreover, in the Rh-Lip group, 387.3 ppm rhodium remained in the tumor 3 h after administration, but only 42.6 ppm remained in the rhodium solution group. After neutron irradiation, Rh-Lip showed a slower tumor growth rate and damage to tumor cells from pathological analysis, suggesting that rhodium is a potential element for NCT. |
ArticleNumber | 730101 |
Author | Hou, Xuan Yanagawa, Masashi Shimazoe, Kenji Cabral, Horacio Yanagie, Hironobu Takahashi, Hiroyuki Kubota, Ayano Matsukawa, Takehisa Yamaguchi, Haruo Yang, Daibing Ono, Minoru |
Author_xml | – sequence: 1 fullname: Shimazoe, Kenji organization: School of Engineering, The University of Tokyo – sequence: 1 fullname: Cabral, Horacio organization: School of Engineering, The University of Tokyo – sequence: 1 fullname: Kubota, Ayano organization: Department of Epidemiology and Environmental Health, Juntendo University – sequence: 1 fullname: Yanagawa, Masashi organization: Veterinary Medical Center, Obihiro University of Agriculture and Veterinary Medicine – sequence: 1 fullname: Hou, Xuan organization: School of Engineering, The University of Tokyo – sequence: 1 fullname: Ono, Minoru organization: Cooperative Unit of Medicine and Engineering, The University of Tokyo Hospital – sequence: 1 fullname: Takahashi, Hiroyuki organization: Cooperative Unit of Medicine and Engineering, The University of Tokyo Hospital – sequence: 1 fullname: Yamaguchi, Haruo organization: Cooperative Unit of Medicine and Engineering, The University of Tokyo Hospital – sequence: 1 fullname: Yang, Daibing organization: School of Engineering, The University of Tokyo – sequence: 1 fullname: Yanagie, Hironobu organization: Cooperative Unit of Medicine and Engineering, The University of Tokyo Hospital – sequence: 1 fullname: Matsukawa, Takehisa organization: Department of Epidemiology and Environmental Health, Juntendo University |
BookMark | eNplkE1qwzAQhUVJoUnaC3SlCziVLFuylk7oL2kLIVmbqTVOHGLLSAolux6iJ-xJ6pBSKF3MG3hvvlm8ERm0tkVCrjmbCCX1jQNT29rbYDv0EyUm-owMeZYlUcI5H5AhY0JEmWDigoy83zIWy5SpISnzluYhYNMFGiwF-oLv_eyDsy2dQRf2Dulygw66A135ul3Txcaaet98fXz2Ps3bUEdh31hHnzH0EZ2CR0N7fIoB6AIOl-S8gp3Hq589Jqu72-XsIZq_3j_O8nlUxizVkUlklYJMU0zeTCzRCM0Z8FRrkWQ8TrJES5YprUGBQkxj4FJrqWVlpBSmEmMSn_6WznrvsCo6VzfgDgVnxbGm4k9NhRKF7qGnE7T1Adb4i4ALdbnD_wg_ihKMM_57VG7AFdiKb88nfL4 |
Cites_doi | 10.1158/1078-0432.CCR-13-0231 10.1021/acs.jmedchem.6b00250 10.2967/jnumed.116.186338 10.1016/j.jconrel.2004.04.018 10.1002/ange.201807305 10.1016/j.biopha.2012.11.010 10.1021/acsnano.5b00532 10.1016/S0753-3322(01)00161-5 10.1002/cnma.201900730 10.1016/j.biopha.2005.05.011 10.1021/acscatal.2c03004 10.1073/pnas.26.3.181 10.1038/bjc.1991.124 10.3390/ijms18051079 10.1007/s00280-013-2087-z 10.1038/bjc.1997.118 10.1016/j.jconrel.2017.03.036 10.1259/bjr.20170004 10.1007/s00432-015-2085-0 10.1080/10717544.2022.2104406 10.21873/invivo.12607 |
ContentType | Journal Article |
Copyright | Japan Radioisotope Association 2024. This is an open access article distributed under the Creative Commons Attribution 4.0 International (CC BY 4.0) License (https://creativecommons.org/licenses/by/4.0/) |
Copyright_xml | – notice: Japan Radioisotope Association 2024. This is an open access article distributed under the Creative Commons Attribution 4.0 International (CC BY 4.0) License (https://creativecommons.org/licenses/by/4.0/) |
DBID | AAYXX CITATION |
DOI | 10.3769/radioisotopes.73.9 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1884-4111 |
EndPage | 21 |
ExternalDocumentID | 10_3769_radioisotopes_73_9 article_radioisotopes_73_1_73_730101_article_char_en |
GroupedDBID | .55 123 ABWPA ALMA_UNASSIGNED_HOLDINGS CS3 DU5 E3Z F5P HH5 JSF JSH OK1 RJT RZJ X7M AAYXX CITATION |
ID | FETCH-LOGICAL-c2059-d46f5a655e4bd26ed3910a1599348124849608799a7a7ee52a1699696fd663df3 |
ISSN | 0033-8303 |
IngestDate | Tue Jul 01 00:38:27 EDT 2025 Wed Sep 03 06:30:35 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2059-d46f5a655e4bd26ed3910a1599348124849608799a7a7ee52a1699696fd663df3 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/radioisotopes/73/1/73_730101/_article/-char/en |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_3769_radioisotopes_73_9 jstage_primary_article_radioisotopes_73_1_73_730101_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024/03/15 |
PublicationDateYYYYMMDD | 2024-03-15 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024/03/15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | RADIOISOTOPES |
PublicationYear | 2024 |
Publisher | Japan Radioisotope Association |
Publisher_xml | – name: Japan Radioisotope Association |
References | 7) Yanagie, H., Yanagawa, M., Morishita, Y., Shinohara, A., et al., Suppression of tumor growth in a rabbit hepatic cancer model by boron neutron capture therapy with liposomal boron delivery systems, In Vivo, 35, 3125–3135 (2021 18) Yanagie, H., Tomita, T., Kobayashi, H., Fujii, Y., et al., Application of boronated anti-CEA immunoliposome to tumour cell growth inhibition in in vitro boron neutron capture therapy model, Br. J. Cancer, 63, 522–526 (1991 4) Maruyama, K., Ishida, O., Kasaoka, S., Takizawa, T., et al., Intracellular targeting of sodium mercaptoundecahydrododecaborate (BSH) to solid tumors by transferrin-PEG liposomes, for boron neutron-capture therapy (BNCT), J. Control. Release, 98, 195–207 (2004 19) Yanagie, H., Tomita, T., Kobayashi, H., Fujii, Y., et al., Inhibition of human pancreatic cancer growth in nude mice by boron neutron capture therapy, Br. J. Cancer, 75, 660–665 (1997 8) Liu, H., Timoshenko, J., Bai, L., Li, Q., et al., Low-coordination rhodium catalysts for an efficient electrochemical nitrate reduction to ammonia, ACS Catal., 13, 1513–1521 (2023 2) Kruger, P. G., Some biological effects of nuclear disintegration products on neoplastic tissue, Proc. Natl. Acad. Sci. USA, 26, 181–192 (1940 3) Dewi, N., Mi, P., Yanagie, H., Sakurai, Y., et al., In vivo evaluation of neutron capture therapy effectivity using calcium phosphate-based nanoparticles as Gd-DTPA delivery agent, J. Cancer Res. Clin. Oncol., 142, 767–775 (2016 20) Yanagie, H., Kobayashi, H., Takeda, Y., Yoshizaki, I., et al., Inhibition of growth of human breast cancer cells in culture by neutron capture using liposomes containing 10B, Biomed. Pharmacother., 56, 93–99 (2002 24) Qin, C., Hou, X., Khan, T., Nitta, N., et al., Enhanced MRI-guided gadolinium(III) neutron capture therapy by polymeric nanocarriers promoting tumor accumulation and intracellular delivery, ChemNanoMater., 6, 412–419 (2020 11) Zhong, H., Wang, W., Kang, T., Yan, H., et al., A Rhodium(III) Complex as an inhibitor of neural precursor cell expressed, developmentally down-regulated 8-activating enzyme with in vivo activity against inflammatory bowel disease, J. Med. Chem., 60, 497–503 (2017 14) Japan Atomic Energy Agency, 2011. https://wwwndc.jaea.go.jp/NuC/index.html (accessed 2023-1 5) Dewi, N., Yanagie, H., Zhu, H., Demachi, K., et al., Tumor growth suppression by gadolinium-neutron capture therapy using gadolinium-entrapped liposome as gadolinium delivery agent, Biomed. Pharmacother., 67, 451–457 (2013 13) Poty, S., Francesconi, L., McDevitt, M., Morris, M., et al., α-Emitters for radiotherapy: From basic radiochemistry to clinical studies, Nucle. Medi., 59, 878–884 (2018 1) Locher, G. L., Biological Effects and therapeutic possibilities of neutrons, Am. J. Roentgenol. Radium. Ther., 36, 1–13 (1936 15) Yoshioka, M., Kobayashi, H., Matsumoto, H. and Kurihara, T., Development of an accelerator based BNCT facility. Following the Ibaraki BNCT project development process, J. Particle Accelerator Society of Japan., 9, 229–241 (2012 12) Nuclear-power.com, Rhodium-104 as Emitter–Rhodium-103 as Material. https://www.nuclear-power.com/nuclear-power-plant/nuclear-reactor/nuclear-instrumentation/incore-nuclear-instrumentation/rhodium-104-as-emitter-rhodium-103-as-material/ (accessed 2023-1 9) Todt, W. H., “Characteristics of self-powered neutron detectors used in power reactors,” in In-Core Instrumentation and Core Assessment, Proceedings of a Specialists’ Meeting, Mito-shi, Japan (1996 16) Tagawa, S. T., Milowsky, M. I., Morris, M., Vallabhajosula, S., et al., Phase II Study of lutetium-177-labeled anti-prostate- specific membrane antigen monoclonal antibody J591 for metastatic castration-resistant prostate cancer, Clin. Cancer Res., 19, 5182–5191 (2013 23) Mi, P., Dewi, N., Yanagie, H., Kokuryo, D., et al., Hybrid calcium phosphate-polymeric micelles incorporating gadolinium chelates for imaging-guided gadolinium neutron capture tumor therapy, ACS Nano., 9, 5913–5921 (2015 25) Zhang, H., Wei, S., Zhang, Y., Pan, A., et al., Improving cellular uptake and bioavailability of periplocymarin-linoleic acid prodrug by combining PEGylated liposome, Drug Deliv., 29, 2491–2497 (2022 26) Lamichhane, N., Dewkar, G. K., Sundaresan, G., Mahon, R. N., et al., [18F]-Fluorinated carboplatin and [111In]-liposome for image-guided drug delivery, Int. J. Mol. Sci., 18, 1079 (2017 17) Kang, H. J., Lee, S. S., Byun, B. H., Kim, K. M., et al., Repeated radioimmunotherapy with 131I-rituximab for patients with low-grade and aggressive relapsed or refractory B cell non-Hodgkin lymphoma, Cancer Chemother. Pharmacol., 71, 945–953 (2013 21) Yanagie, H., Maruyama, K., Takizawa, T., Ishida, O., et al., Application of boron-entrapped stealth liposomes to inhibition of growth of tumour cells in the in vivo boron neutron-capture therapy model, Biomed. Pharmacother., 60, 43–50 (2006 22) Yanagie, H., Dewi, N., Higashi, S., Ikushima, I., et al., Selective boron delivery by intra-arterial injection of BSH-WOW emulsion in hepatic cancer model for neutron capture therapy, Br. J. Radiol., 90, 20170004 (2017 10) Yang, G., Wang, W., Mok, S., Wu, C., et al., Selective inhibition of lysine-specific demethylase 5A (KDM5A) using a rhodium(III) complex for triple-negative breast cancer therapy, Angew. Chem., 130, 13275–13279 (2018 6) Mi, P., Yanagie, H., Dewi, N., Yen, H., et al., Block copolymer-boron cluster conjugate for effective boron neutron capture therapy of solid tumors, J. Control. Release, 254, 1–9 (2017 22 23 24 25 26 10 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – reference: 8) Liu, H., Timoshenko, J., Bai, L., Li, Q., et al., Low-coordination rhodium catalysts for an efficient electrochemical nitrate reduction to ammonia, ACS Catal., 13, 1513–1521 (2023) – reference: 12) Nuclear-power.com, Rhodium-104 as Emitter–Rhodium-103 as Material. https://www.nuclear-power.com/nuclear-power-plant/nuclear-reactor/nuclear-instrumentation/incore-nuclear-instrumentation/rhodium-104-as-emitter-rhodium-103-as-material/ (accessed 2023-1) – reference: 14) Japan Atomic Energy Agency, 2011. https://wwwndc.jaea.go.jp/NuC/index.html (accessed 2023-1) – reference: 7) Yanagie, H., Yanagawa, M., Morishita, Y., Shinohara, A., et al., Suppression of tumor growth in a rabbit hepatic cancer model by boron neutron capture therapy with liposomal boron delivery systems, In Vivo, 35, 3125–3135 (2021) – reference: 22) Yanagie, H., Dewi, N., Higashi, S., Ikushima, I., et al., Selective boron delivery by intra-arterial injection of BSH-WOW emulsion in hepatic cancer model for neutron capture therapy, Br. J. Radiol., 90, 20170004 (2017) – reference: 24) Qin, C., Hou, X., Khan, T., Nitta, N., et al., Enhanced MRI-guided gadolinium(III) neutron capture therapy by polymeric nanocarriers promoting tumor accumulation and intracellular delivery, ChemNanoMater., 6, 412–419 (2020) – reference: 15) Yoshioka, M., Kobayashi, H., Matsumoto, H. and Kurihara, T., Development of an accelerator based BNCT facility. Following the Ibaraki BNCT project development process, J. Particle Accelerator Society of Japan., 9, 229–241 (2012) – reference: 20) Yanagie, H., Kobayashi, H., Takeda, Y., Yoshizaki, I., et al., Inhibition of growth of human breast cancer cells in culture by neutron capture using liposomes containing 10B, Biomed. Pharmacother., 56, 93–99 (2002) – reference: 11) Zhong, H., Wang, W., Kang, T., Yan, H., et al., A Rhodium(III) Complex as an inhibitor of neural precursor cell expressed, developmentally down-regulated 8-activating enzyme with in vivo activity against inflammatory bowel disease, J. Med. Chem., 60, 497–503 (2017) – reference: 21) Yanagie, H., Maruyama, K., Takizawa, T., Ishida, O., et al., Application of boron-entrapped stealth liposomes to inhibition of growth of tumour cells in the in vivo boron neutron-capture therapy model, Biomed. Pharmacother., 60, 43–50 (2006) – reference: 1) Locher, G. L., Biological Effects and therapeutic possibilities of neutrons, Am. J. Roentgenol. Radium. Ther., 36, 1–13 (1936) – reference: 6) Mi, P., Yanagie, H., Dewi, N., Yen, H., et al., Block copolymer-boron cluster conjugate for effective boron neutron capture therapy of solid tumors, J. Control. Release, 254, 1–9 (2017) – reference: 16) Tagawa, S. T., Milowsky, M. I., Morris, M., Vallabhajosula, S., et al., Phase II Study of lutetium-177-labeled anti-prostate- specific membrane antigen monoclonal antibody J591 for metastatic castration-resistant prostate cancer, Clin. Cancer Res., 19, 5182–5191 (2013) – reference: 23) Mi, P., Dewi, N., Yanagie, H., Kokuryo, D., et al., Hybrid calcium phosphate-polymeric micelles incorporating gadolinium chelates for imaging-guided gadolinium neutron capture tumor therapy, ACS Nano., 9, 5913–5921 (2015) – reference: 9) Todt, W. H., “Characteristics of self-powered neutron detectors used in power reactors,” in In-Core Instrumentation and Core Assessment, Proceedings of a Specialists’ Meeting, Mito-shi, Japan (1996) – reference: 3) Dewi, N., Mi, P., Yanagie, H., Sakurai, Y., et al., In vivo evaluation of neutron capture therapy effectivity using calcium phosphate-based nanoparticles as Gd-DTPA delivery agent, J. Cancer Res. Clin. Oncol., 142, 767–775 (2016) – reference: 13) Poty, S., Francesconi, L., McDevitt, M., Morris, M., et al., α-Emitters for radiotherapy: From basic radiochemistry to clinical studies, Nucle. Medi., 59, 878–884 (2018) – reference: 25) Zhang, H., Wei, S., Zhang, Y., Pan, A., et al., Improving cellular uptake and bioavailability of periplocymarin-linoleic acid prodrug by combining PEGylated liposome, Drug Deliv., 29, 2491–2497 (2022) – reference: 4) Maruyama, K., Ishida, O., Kasaoka, S., Takizawa, T., et al., Intracellular targeting of sodium mercaptoundecahydrododecaborate (BSH) to solid tumors by transferrin-PEG liposomes, for boron neutron-capture therapy (BNCT), J. Control. Release, 98, 195–207 (2004) – reference: 18) Yanagie, H., Tomita, T., Kobayashi, H., Fujii, Y., et al., Application of boronated anti-CEA immunoliposome to tumour cell growth inhibition in in vitro boron neutron capture therapy model, Br. J. Cancer, 63, 522–526 (1991) – reference: 17) Kang, H. J., Lee, S. S., Byun, B. H., Kim, K. M., et al., Repeated radioimmunotherapy with 131I-rituximab for patients with low-grade and aggressive relapsed or refractory B cell non-Hodgkin lymphoma, Cancer Chemother. Pharmacol., 71, 945–953 (2013) – reference: 5) Dewi, N., Yanagie, H., Zhu, H., Demachi, K., et al., Tumor growth suppression by gadolinium-neutron capture therapy using gadolinium-entrapped liposome as gadolinium delivery agent, Biomed. Pharmacother., 67, 451–457 (2013) – reference: 19) Yanagie, H., Tomita, T., Kobayashi, H., Fujii, Y., et al., Inhibition of human pancreatic cancer growth in nude mice by boron neutron capture therapy, Br. J. Cancer, 75, 660–665 (1997) – reference: 26) Lamichhane, N., Dewkar, G. K., Sundaresan, G., Mahon, R. N., et al., [18F]-Fluorinated carboplatin and [111In]-liposome for image-guided drug delivery, Int. J. Mol. Sci., 18, 1079 (2017) – reference: 10) Yang, G., Wang, W., Mok, S., Wu, C., et al., Selective inhibition of lysine-specific demethylase 5A (KDM5A) using a rhodium(III) complex for triple-negative breast cancer therapy, Angew. Chem., 130, 13275–13279 (2018) – reference: 2) Kruger, P. G., Some biological effects of nuclear disintegration products on neoplastic tissue, Proc. Natl. Acad. Sci. USA, 26, 181–192 (1940) – ident: 16 doi: 10.1158/1078-0432.CCR-13-0231 – ident: 11 doi: 10.1021/acs.jmedchem.6b00250 – ident: 12 – ident: 13 doi: 10.2967/jnumed.116.186338 – ident: 4 doi: 10.1016/j.jconrel.2004.04.018 – ident: 14 – ident: 10 doi: 10.1002/ange.201807305 – ident: 5 doi: 10.1016/j.biopha.2012.11.010 – ident: 23 doi: 10.1021/acsnano.5b00532 – ident: 20 doi: 10.1016/S0753-3322(01)00161-5 – ident: 9 – ident: 24 doi: 10.1002/cnma.201900730 – ident: 21 doi: 10.1016/j.biopha.2005.05.011 – ident: 8 doi: 10.1021/acscatal.2c03004 – ident: 2 doi: 10.1073/pnas.26.3.181 – ident: 1 – ident: 18 doi: 10.1038/bjc.1991.124 – ident: 26 doi: 10.3390/ijms18051079 – ident: 15 – ident: 17 doi: 10.1007/s00280-013-2087-z – ident: 19 doi: 10.1038/bjc.1997.118 – ident: 6 doi: 10.1016/j.jconrel.2017.03.036 – ident: 22 doi: 10.1259/bjr.20170004 – ident: 3 doi: 10.1007/s00432-015-2085-0 – ident: 25 doi: 10.1080/10717544.2022.2104406 – ident: 7 doi: 10.21873/invivo.12607 |
SSID | ssj0026507 |
Score | 2.2502172 |
Snippet | Neutron capture therapy (NCT) uses secondary particle to treat tumor. Boron has been applied to NCT in clinics, and gadolinium has also attracted the... |
SourceID | crossref jstage |
SourceType | Index Database Publisher |
StartPage | 9 |
SubjectTerms | beta ray liposome Neutron Capture Therapy (NCT) rhodium |
Title | An Attempt to a New Neutron Capture Therapy Using Rhodium—The Anti-tumor Method Based on Beta Ray |
URI | https://www.jstage.jst.go.jp/article/radioisotopes/73/1/73_730101/_article/-char/en |
Volume | 73 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | RADIOISOTOPES, 2024/03/15, Vol.73(1), pp.9-21 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKghAXxFMsL_nALUrJw3kdsxWoAu0eqq5UTpGTONqy2rjaOkJw4jcgfiG_hBnbSdpdkFguVmW5zmO-zHxjz4wJeeOVAlyfxndT4ZUuY1HopmFcuVkjuGB-yssKd3SPT-L5KfuwilaTyY-dqKVOldPq2x_zSv5HqtAHcsUs2RtIdpgUOuA3yBdakDC0_yTjvHVyhcWlFFJIroMVT0SHq9vOjG_05sDSlA1wTGzA4kzW6-6iD3Fg-kzmVq1d1V1IrOiD50k7R2DaatxGOBKKOwu-t_W74PVarrdSyc0YfziXHQpr1Y1g-6RPQNLrpXPMpZNlNy5_q213zr9o4rrk5-JsvR3Mw8eulIbS5l95K3eXJQKGcVkmMbNXtSGK3TPaSxjtmqbMZb12terXnGSyBzOjS7Mdo2yyqK-qe1COWC31cve5p0k4zUbj1m_oX7F5QyQi-EA4S7E3R5GERXaL3A7A9Qi0sh_rNwKjNXVY7eOZRCyc4-31-9gjO3c-A9_vYwU1fVk-IPet30FzA6KHZCLaR-TusY2seEyqvKUWS1RJyilgiVosUYslarFENZaoxdKv7z-hn44oogZFVKOIwt8RRRRQ9IScvn-3nM1dewCHWwVAu92axU3E4ygSrKyDWNQhkEsOBDjD9O2ApQz83zTJMp7wRIgo4H6cYbmlpgYiWzfhU3LQylY8IzQBplyJQDCRxLhmkEbCr3xReUkQJqzxDonTv6liY-qsFH-XzSGZmZc5jLXf4PWxPjZoxjx_GIQJjaA_nt_omi_IvRHnL8mBuuzEKyCkqnytEfIbUcKTUQ |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Attempt+to+a+New+Neutron+Capture+Therapy+Using+Rhodium%E2%80%94The+Anti-tumor+Method+Based+on+Beta+Ray&rft.jtitle=Radioisotopes&rft.au=Hou%2C+Xuan&rft.au=Yanagie%2C+Hironobu&rft.au=Matsukawa%2C+Takehisa&rft.au=Kubota%2C+Ayano&rft.date=2024-03-15&rft.issn=0033-8303&rft.eissn=1884-4111&rft.volume=73&rft.issue=1&rft.spage=9&rft.epage=21&rft_id=info:doi/10.3769%2Fradioisotopes.73.9&rft.externalDBID=n%2Fa&rft.externalDocID=10_3769_radioisotopes_73_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-8303&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-8303&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-8303&client=summon |