An Attempt to a New Neutron Capture Therapy Using Rhodium—The Anti-tumor Method Based on Beta Ray

Neutron capture therapy (NCT) uses secondary particle to treat tumor. Boron has been applied to NCT in clinics, and gadolinium has also attracted the attention. Our group attempted a new candidate element, rhodium, because of its advantages, such as 100% natural abundance, long range (beta ray), neu...

Full description

Saved in:
Bibliographic Details
Published inRADIOISOTOPES Vol. 73; no. 1; pp. 9 - 21
Main Authors Shimazoe, Kenji, Cabral, Horacio, Kubota, Ayano, Yanagawa, Masashi, Hou, Xuan, Ono, Minoru, Takahashi, Hiroyuki, Yamaguchi, Haruo, Yang, Daibing, Yanagie, Hironobu, Matsukawa, Takehisa
Format Journal Article
LanguageEnglish
Published Japan Radioisotope Association 15.03.2024
Subjects
Online AccessGet full text
ISSN0033-8303
1884-4111
DOI10.3769/radioisotopes.73.9

Cover

Loading…
Abstract Neutron capture therapy (NCT) uses secondary particle to treat tumor. Boron has been applied to NCT in clinics, and gadolinium has also attracted the attention. Our group attempted a new candidate element, rhodium, because of its advantages, such as 100% natural abundance, long range (beta ray), neutron cross-section peak, and fitness to accelerator-based neutrons. To reduce toxicity and increase tumor accumulation, rhodium encapsulated liposomes (Rh-Lip) were synthesized. After 24 h exposure to rhodium solution, the cell viability increased to 90% when the rhodium concentration was diluted to 0.063 mg/mL; in contrast, it was up to 90% when rhodium concentration was diluted to 0.25 mg/mL in the Rh-Lip group. Moreover, in the Rh-Lip group, 387.3 ppm rhodium remained in the tumor 3 h after administration, but only 42.6 ppm remained in the rhodium solution group. After neutron irradiation, Rh-Lip showed a slower tumor growth rate and damage to tumor cells from pathological analysis, suggesting that rhodium is a potential element for NCT.
AbstractList Neutron capture therapy (NCT) uses secondary particle to treat tumor. Boron has been applied to NCT in clinics, and gadolinium has also attracted the attention. Our group attempted a new candidate element, rhodium, because of its advantages, such as 100% natural abundance, long range (beta ray), neutron cross-section peak, and fitness to accelerator-based neutrons. To reduce toxicity and increase tumor accumulation, rhodium encapsulated liposomes (Rh-Lip) were synthesized. After 24 h exposure to rhodium solution, the cell viability increased to 90% when the rhodium concentration was diluted to 0.063 mg/mL; in contrast, it was up to 90% when rhodium concentration was diluted to 0.25 mg/mL in the Rh-Lip group. Moreover, in the Rh-Lip group, 387.3 ppm rhodium remained in the tumor 3 h after administration, but only 42.6 ppm remained in the rhodium solution group. After neutron irradiation, Rh-Lip showed a slower tumor growth rate and damage to tumor cells from pathological analysis, suggesting that rhodium is a potential element for NCT.
ArticleNumber 730101
Author Hou, Xuan
Yanagawa, Masashi
Shimazoe, Kenji
Cabral, Horacio
Yanagie, Hironobu
Takahashi, Hiroyuki
Kubota, Ayano
Matsukawa, Takehisa
Yamaguchi, Haruo
Yang, Daibing
Ono, Minoru
Author_xml – sequence: 1
  fullname: Shimazoe, Kenji
  organization: School of Engineering, The University of Tokyo
– sequence: 1
  fullname: Cabral, Horacio
  organization: School of Engineering, The University of Tokyo
– sequence: 1
  fullname: Kubota, Ayano
  organization: Department of Epidemiology and Environmental Health, Juntendo University
– sequence: 1
  fullname: Yanagawa, Masashi
  organization: Veterinary Medical Center, Obihiro University of Agriculture and Veterinary Medicine
– sequence: 1
  fullname: Hou, Xuan
  organization: School of Engineering, The University of Tokyo
– sequence: 1
  fullname: Ono, Minoru
  organization: Cooperative Unit of Medicine and Engineering, The University of Tokyo Hospital
– sequence: 1
  fullname: Takahashi, Hiroyuki
  organization: Cooperative Unit of Medicine and Engineering, The University of Tokyo Hospital
– sequence: 1
  fullname: Yamaguchi, Haruo
  organization: Cooperative Unit of Medicine and Engineering, The University of Tokyo Hospital
– sequence: 1
  fullname: Yang, Daibing
  organization: School of Engineering, The University of Tokyo
– sequence: 1
  fullname: Yanagie, Hironobu
  organization: Cooperative Unit of Medicine and Engineering, The University of Tokyo Hospital
– sequence: 1
  fullname: Matsukawa, Takehisa
  organization: Department of Epidemiology and Environmental Health, Juntendo University
BookMark eNplkE1qwzAQhUVJoUnaC3SlCziVLFuylk7oL2kLIVmbqTVOHGLLSAolux6iJ-xJ6pBSKF3MG3hvvlm8ERm0tkVCrjmbCCX1jQNT29rbYDv0EyUm-owMeZYlUcI5H5AhY0JEmWDigoy83zIWy5SpISnzluYhYNMFGiwF-oLv_eyDsy2dQRf2Dulygw66A135ul3Txcaaet98fXz2Ps3bUEdh31hHnzH0EZ2CR0N7fIoB6AIOl-S8gp3Hq589Jqu72-XsIZq_3j_O8nlUxizVkUlklYJMU0zeTCzRCM0Z8FRrkWQ8TrJES5YprUGBQkxj4FJrqWVlpBSmEmMSn_6WznrvsCo6VzfgDgVnxbGm4k9NhRKF7qGnE7T1Adb4i4ALdbnD_wg_ihKMM_57VG7AFdiKb88nfL4
Cites_doi 10.1158/1078-0432.CCR-13-0231
10.1021/acs.jmedchem.6b00250
10.2967/jnumed.116.186338
10.1016/j.jconrel.2004.04.018
10.1002/ange.201807305
10.1016/j.biopha.2012.11.010
10.1021/acsnano.5b00532
10.1016/S0753-3322(01)00161-5
10.1002/cnma.201900730
10.1016/j.biopha.2005.05.011
10.1021/acscatal.2c03004
10.1073/pnas.26.3.181
10.1038/bjc.1991.124
10.3390/ijms18051079
10.1007/s00280-013-2087-z
10.1038/bjc.1997.118
10.1016/j.jconrel.2017.03.036
10.1259/bjr.20170004
10.1007/s00432-015-2085-0
10.1080/10717544.2022.2104406
10.21873/invivo.12607
ContentType Journal Article
Copyright Japan Radioisotope Association 2024. This is an open access article distributed under the Creative Commons Attribution 4.0 International (CC BY 4.0) License (https://creativecommons.org/licenses/by/4.0/)
Copyright_xml – notice: Japan Radioisotope Association 2024. This is an open access article distributed under the Creative Commons Attribution 4.0 International (CC BY 4.0) License (https://creativecommons.org/licenses/by/4.0/)
DBID AAYXX
CITATION
DOI 10.3769/radioisotopes.73.9
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1884-4111
EndPage 21
ExternalDocumentID 10_3769_radioisotopes_73_9
article_radioisotopes_73_1_73_730101_article_char_en
GroupedDBID .55
123
ABWPA
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
E3Z
F5P
HH5
JSF
JSH
OK1
RJT
RZJ
X7M
AAYXX
CITATION
ID FETCH-LOGICAL-c2059-d46f5a655e4bd26ed3910a1599348124849608799a7a7ee52a1699696fd663df3
ISSN 0033-8303
IngestDate Tue Jul 01 00:38:27 EDT 2025
Wed Sep 03 06:30:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2059-d46f5a655e4bd26ed3910a1599348124849608799a7a7ee52a1699696fd663df3
OpenAccessLink https://www.jstage.jst.go.jp/article/radioisotopes/73/1/73_730101/_article/-char/en
PageCount 13
ParticipantIDs crossref_primary_10_3769_radioisotopes_73_9
jstage_primary_article_radioisotopes_73_1_73_730101_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024/03/15
PublicationDateYYYYMMDD 2024-03-15
PublicationDate_xml – month: 03
  year: 2024
  text: 2024/03/15
  day: 15
PublicationDecade 2020
PublicationTitle RADIOISOTOPES
PublicationYear 2024
Publisher Japan Radioisotope Association
Publisher_xml – name: Japan Radioisotope Association
References 7) Yanagie, H., Yanagawa, M., Morishita, Y., Shinohara, A., et al., Suppression of tumor growth in a rabbit hepatic cancer model by boron neutron capture therapy with liposomal boron delivery systems, In Vivo, 35, 3125–3135 (2021
18) Yanagie, H., Tomita, T., Kobayashi, H., Fujii, Y., et al., Application of boronated anti-CEA immunoliposome to tumour cell growth inhibition in in vitro boron neutron capture therapy model, Br. J. Cancer, 63, 522–526 (1991
4) Maruyama, K., Ishida, O., Kasaoka, S., Takizawa, T., et al., Intracellular targeting of sodium mercaptoundecahydrododecaborate (BSH) to solid tumors by transferrin-PEG liposomes, for boron neutron-capture therapy (BNCT), J. Control. Release, 98, 195–207 (2004
19) Yanagie, H., Tomita, T., Kobayashi, H., Fujii, Y., et al., Inhibition of human pancreatic cancer growth in nude mice by boron neutron capture therapy, Br. J. Cancer, 75, 660–665 (1997
8) Liu, H., Timoshenko, J., Bai, L., Li, Q., et al., Low-coordination rhodium catalysts for an efficient electrochemical nitrate reduction to ammonia, ACS Catal., 13, 1513–1521 (2023
2) Kruger, P. G., Some biological effects of nuclear disintegration products on neoplastic tissue, Proc. Natl. Acad. Sci. USA, 26, 181–192 (1940
3) Dewi, N., Mi, P., Yanagie, H., Sakurai, Y., et al., In vivo evaluation of neutron capture therapy effectivity using calcium phosphate-based nanoparticles as Gd-DTPA delivery agent, J. Cancer Res. Clin. Oncol., 142, 767–775 (2016
20) Yanagie, H., Kobayashi, H., Takeda, Y., Yoshizaki, I., et al., Inhibition of growth of human breast cancer cells in culture by neutron capture using liposomes containing 10B, Biomed. Pharmacother., 56, 93–99 (2002
24) Qin, C., Hou, X., Khan, T., Nitta, N., et al., Enhanced MRI-guided gadolinium(III) neutron capture therapy by polymeric nanocarriers promoting tumor accumulation and intracellular delivery, ChemNanoMater., 6, 412–419 (2020
11) Zhong, H., Wang, W., Kang, T., Yan, H., et al., A Rhodium(III) Complex as an inhibitor of neural precursor cell expressed, developmentally down-regulated 8-activating enzyme with in vivo activity against inflammatory bowel disease, J. Med. Chem., 60, 497–503 (2017
14) Japan Atomic Energy Agency, 2011. https://wwwndc.jaea.go.jp/NuC/index.html (accessed 2023-1
5) Dewi, N., Yanagie, H., Zhu, H., Demachi, K., et al., Tumor growth suppression by gadolinium-neutron capture therapy using gadolinium-entrapped liposome as gadolinium delivery agent, Biomed. Pharmacother., 67, 451–457 (2013
13) Poty, S., Francesconi, L., McDevitt, M., Morris, M., et al., α-Emitters for radiotherapy: From basic radiochemistry to clinical studies, Nucle. Medi., 59, 878–884 (2018
1) Locher, G. L., Biological Effects and therapeutic possibilities of neutrons, Am. J. Roentgenol. Radium. Ther., 36, 1–13 (1936
15) Yoshioka, M., Kobayashi, H., Matsumoto, H. and Kurihara, T., Development of an accelerator based BNCT facility. Following the Ibaraki BNCT project development process, J. Particle Accelerator Society of Japan., 9, 229–241 (2012
12) Nuclear-power.com, Rhodium-104 as Emitter–Rhodium-103 as Material. https://www.nuclear-power.com/nuclear-power-plant/nuclear-reactor/nuclear-instrumentation/incore-nuclear-instrumentation/rhodium-104-as-emitter-rhodium-103-as-material/ (accessed 2023-1
9) Todt, W. H., “Characteristics of self-powered neutron detectors used in power reactors,” in In-Core Instrumentation and Core Assessment, Proceedings of a Specialists’ Meeting, Mito-shi, Japan (1996
16) Tagawa, S. T., Milowsky, M. I., Morris, M., Vallabhajosula, S., et al., Phase II Study of lutetium-177-labeled anti-prostate- specific membrane antigen monoclonal antibody J591 for metastatic castration-resistant prostate cancer, Clin. Cancer Res., 19, 5182–5191 (2013
23) Mi, P., Dewi, N., Yanagie, H., Kokuryo, D., et al., Hybrid calcium phosphate-polymeric micelles incorporating gadolinium chelates for imaging-guided gadolinium neutron capture tumor therapy, ACS Nano., 9, 5913–5921 (2015
25) Zhang, H., Wei, S., Zhang, Y., Pan, A., et al., Improving cellular uptake and bioavailability of periplocymarin-linoleic acid prodrug by combining PEGylated liposome, Drug Deliv., 29, 2491–2497 (2022
26) Lamichhane, N., Dewkar, G. K., Sundaresan, G., Mahon, R. N., et al., [18F]-Fluorinated carboplatin and [111In]-liposome for image-guided drug delivery, Int. J. Mol. Sci., 18, 1079 (2017
17) Kang, H. J., Lee, S. S., Byun, B. H., Kim, K. M., et al., Repeated radioimmunotherapy with 131I-rituximab for patients with low-grade and aggressive relapsed or refractory B cell non-Hodgkin lymphoma, Cancer Chemother. Pharmacol., 71, 945–953 (2013
21) Yanagie, H., Maruyama, K., Takizawa, T., Ishida, O., et al., Application of boron-entrapped stealth liposomes to inhibition of growth of tumour cells in the in vivo boron neutron-capture therapy model, Biomed. Pharmacother., 60, 43–50 (2006
22) Yanagie, H., Dewi, N., Higashi, S., Ikushima, I., et al., Selective boron delivery by intra-arterial injection of BSH-WOW emulsion in hepatic cancer model for neutron capture therapy, Br. J. Radiol., 90, 20170004 (2017
10) Yang, G., Wang, W., Mok, S., Wu, C., et al., Selective inhibition of lysine-specific demethylase 5A (KDM5A) using a rhodium(III) complex for triple-negative breast cancer therapy, Angew. Chem., 130, 13275–13279 (2018
6) Mi, P., Yanagie, H., Dewi, N., Yen, H., et al., Block copolymer-boron cluster conjugate for effective boron neutron capture therapy of solid tumors, J. Control. Release, 254, 1–9 (2017
22
23
24
25
26
10
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: 8) Liu, H., Timoshenko, J., Bai, L., Li, Q., et al., Low-coordination rhodium catalysts for an efficient electrochemical nitrate reduction to ammonia, ACS Catal., 13, 1513–1521 (2023)
– reference: 12) Nuclear-power.com, Rhodium-104 as Emitter–Rhodium-103 as Material. https://www.nuclear-power.com/nuclear-power-plant/nuclear-reactor/nuclear-instrumentation/incore-nuclear-instrumentation/rhodium-104-as-emitter-rhodium-103-as-material/ (accessed 2023-1)
– reference: 14) Japan Atomic Energy Agency, 2011. https://wwwndc.jaea.go.jp/NuC/index.html (accessed 2023-1)
– reference: 7) Yanagie, H., Yanagawa, M., Morishita, Y., Shinohara, A., et al., Suppression of tumor growth in a rabbit hepatic cancer model by boron neutron capture therapy with liposomal boron delivery systems, In Vivo, 35, 3125–3135 (2021)
– reference: 22) Yanagie, H., Dewi, N., Higashi, S., Ikushima, I., et al., Selective boron delivery by intra-arterial injection of BSH-WOW emulsion in hepatic cancer model for neutron capture therapy, Br. J. Radiol., 90, 20170004 (2017)
– reference: 24) Qin, C., Hou, X., Khan, T., Nitta, N., et al., Enhanced MRI-guided gadolinium(III) neutron capture therapy by polymeric nanocarriers promoting tumor accumulation and intracellular delivery, ChemNanoMater., 6, 412–419 (2020)
– reference: 15) Yoshioka, M., Kobayashi, H., Matsumoto, H. and Kurihara, T., Development of an accelerator based BNCT facility. Following the Ibaraki BNCT project development process, J. Particle Accelerator Society of Japan., 9, 229–241 (2012)
– reference: 20) Yanagie, H., Kobayashi, H., Takeda, Y., Yoshizaki, I., et al., Inhibition of growth of human breast cancer cells in culture by neutron capture using liposomes containing 10B, Biomed. Pharmacother., 56, 93–99 (2002)
– reference: 11) Zhong, H., Wang, W., Kang, T., Yan, H., et al., A Rhodium(III) Complex as an inhibitor of neural precursor cell expressed, developmentally down-regulated 8-activating enzyme with in vivo activity against inflammatory bowel disease, J. Med. Chem., 60, 497–503 (2017)
– reference: 21) Yanagie, H., Maruyama, K., Takizawa, T., Ishida, O., et al., Application of boron-entrapped stealth liposomes to inhibition of growth of tumour cells in the in vivo boron neutron-capture therapy model, Biomed. Pharmacother., 60, 43–50 (2006)
– reference: 1) Locher, G. L., Biological Effects and therapeutic possibilities of neutrons, Am. J. Roentgenol. Radium. Ther., 36, 1–13 (1936)
– reference: 6) Mi, P., Yanagie, H., Dewi, N., Yen, H., et al., Block copolymer-boron cluster conjugate for effective boron neutron capture therapy of solid tumors, J. Control. Release, 254, 1–9 (2017)
– reference: 16) Tagawa, S. T., Milowsky, M. I., Morris, M., Vallabhajosula, S., et al., Phase II Study of lutetium-177-labeled anti-prostate- specific membrane antigen monoclonal antibody J591 for metastatic castration-resistant prostate cancer, Clin. Cancer Res., 19, 5182–5191 (2013)
– reference: 23) Mi, P., Dewi, N., Yanagie, H., Kokuryo, D., et al., Hybrid calcium phosphate-polymeric micelles incorporating gadolinium chelates for imaging-guided gadolinium neutron capture tumor therapy, ACS Nano., 9, 5913–5921 (2015)
– reference: 9) Todt, W. H., “Characteristics of self-powered neutron detectors used in power reactors,” in In-Core Instrumentation and Core Assessment, Proceedings of a Specialists’ Meeting, Mito-shi, Japan (1996)
– reference: 3) Dewi, N., Mi, P., Yanagie, H., Sakurai, Y., et al., In vivo evaluation of neutron capture therapy effectivity using calcium phosphate-based nanoparticles as Gd-DTPA delivery agent, J. Cancer Res. Clin. Oncol., 142, 767–775 (2016)
– reference: 13) Poty, S., Francesconi, L., McDevitt, M., Morris, M., et al., α-Emitters for radiotherapy: From basic radiochemistry to clinical studies, Nucle. Medi., 59, 878–884 (2018)
– reference: 25) Zhang, H., Wei, S., Zhang, Y., Pan, A., et al., Improving cellular uptake and bioavailability of periplocymarin-linoleic acid prodrug by combining PEGylated liposome, Drug Deliv., 29, 2491–2497 (2022)
– reference: 4) Maruyama, K., Ishida, O., Kasaoka, S., Takizawa, T., et al., Intracellular targeting of sodium mercaptoundecahydrododecaborate (BSH) to solid tumors by transferrin-PEG liposomes, for boron neutron-capture therapy (BNCT), J. Control. Release, 98, 195–207 (2004)
– reference: 18) Yanagie, H., Tomita, T., Kobayashi, H., Fujii, Y., et al., Application of boronated anti-CEA immunoliposome to tumour cell growth inhibition in in vitro boron neutron capture therapy model, Br. J. Cancer, 63, 522–526 (1991)
– reference: 17) Kang, H. J., Lee, S. S., Byun, B. H., Kim, K. M., et al., Repeated radioimmunotherapy with 131I-rituximab for patients with low-grade and aggressive relapsed or refractory B cell non-Hodgkin lymphoma, Cancer Chemother. Pharmacol., 71, 945–953 (2013)
– reference: 5) Dewi, N., Yanagie, H., Zhu, H., Demachi, K., et al., Tumor growth suppression by gadolinium-neutron capture therapy using gadolinium-entrapped liposome as gadolinium delivery agent, Biomed. Pharmacother., 67, 451–457 (2013)
– reference: 19) Yanagie, H., Tomita, T., Kobayashi, H., Fujii, Y., et al., Inhibition of human pancreatic cancer growth in nude mice by boron neutron capture therapy, Br. J. Cancer, 75, 660–665 (1997)
– reference: 26) Lamichhane, N., Dewkar, G. K., Sundaresan, G., Mahon, R. N., et al., [18F]-Fluorinated carboplatin and [111In]-liposome for image-guided drug delivery, Int. J. Mol. Sci., 18, 1079 (2017)
– reference: 10) Yang, G., Wang, W., Mok, S., Wu, C., et al., Selective inhibition of lysine-specific demethylase 5A (KDM5A) using a rhodium(III) complex for triple-negative breast cancer therapy, Angew. Chem., 130, 13275–13279 (2018)
– reference: 2) Kruger, P. G., Some biological effects of nuclear disintegration products on neoplastic tissue, Proc. Natl. Acad. Sci. USA, 26, 181–192 (1940)
– ident: 16
  doi: 10.1158/1078-0432.CCR-13-0231
– ident: 11
  doi: 10.1021/acs.jmedchem.6b00250
– ident: 12
– ident: 13
  doi: 10.2967/jnumed.116.186338
– ident: 4
  doi: 10.1016/j.jconrel.2004.04.018
– ident: 14
– ident: 10
  doi: 10.1002/ange.201807305
– ident: 5
  doi: 10.1016/j.biopha.2012.11.010
– ident: 23
  doi: 10.1021/acsnano.5b00532
– ident: 20
  doi: 10.1016/S0753-3322(01)00161-5
– ident: 9
– ident: 24
  doi: 10.1002/cnma.201900730
– ident: 21
  doi: 10.1016/j.biopha.2005.05.011
– ident: 8
  doi: 10.1021/acscatal.2c03004
– ident: 2
  doi: 10.1073/pnas.26.3.181
– ident: 1
– ident: 18
  doi: 10.1038/bjc.1991.124
– ident: 26
  doi: 10.3390/ijms18051079
– ident: 15
– ident: 17
  doi: 10.1007/s00280-013-2087-z
– ident: 19
  doi: 10.1038/bjc.1997.118
– ident: 6
  doi: 10.1016/j.jconrel.2017.03.036
– ident: 22
  doi: 10.1259/bjr.20170004
– ident: 3
  doi: 10.1007/s00432-015-2085-0
– ident: 25
  doi: 10.1080/10717544.2022.2104406
– ident: 7
  doi: 10.21873/invivo.12607
SSID ssj0026507
Score 2.2502172
Snippet Neutron capture therapy (NCT) uses secondary particle to treat tumor. Boron has been applied to NCT in clinics, and gadolinium has also attracted the...
SourceID crossref
jstage
SourceType Index Database
Publisher
StartPage 9
SubjectTerms beta ray
liposome
Neutron Capture Therapy (NCT)
rhodium
Title An Attempt to a New Neutron Capture Therapy Using Rhodium—The Anti-tumor Method Based on Beta Ray
URI https://www.jstage.jst.go.jp/article/radioisotopes/73/1/73_730101/_article/-char/en
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX RADIOISOTOPES, 2024/03/15, Vol.73(1), pp.9-21
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKghAXxFMsL_nALUrJw3kdsxWoAu0eqq5UTpGTONqy2rjaOkJw4jcgfiG_hBnbSdpdkFguVmW5zmO-zHxjz4wJeeOVAlyfxndT4ZUuY1HopmFcuVkjuGB-yssKd3SPT-L5KfuwilaTyY-dqKVOldPq2x_zSv5HqtAHcsUs2RtIdpgUOuA3yBdakDC0_yTjvHVyhcWlFFJIroMVT0SHq9vOjG_05sDSlA1wTGzA4kzW6-6iD3Fg-kzmVq1d1V1IrOiD50k7R2DaatxGOBKKOwu-t_W74PVarrdSyc0YfziXHQpr1Y1g-6RPQNLrpXPMpZNlNy5_q213zr9o4rrk5-JsvR3Mw8eulIbS5l95K3eXJQKGcVkmMbNXtSGK3TPaSxjtmqbMZb12terXnGSyBzOjS7Mdo2yyqK-qe1COWC31cve5p0k4zUbj1m_oX7F5QyQi-EA4S7E3R5GERXaL3A7A9Qi0sh_rNwKjNXVY7eOZRCyc4-31-9gjO3c-A9_vYwU1fVk-IPet30FzA6KHZCLaR-TusY2seEyqvKUWS1RJyilgiVosUYslarFENZaoxdKv7z-hn44oogZFVKOIwt8RRRRQ9IScvn-3nM1dewCHWwVAu92axU3E4ygSrKyDWNQhkEsOBDjD9O2ApQz83zTJMp7wRIgo4H6cYbmlpgYiWzfhU3LQylY8IzQBplyJQDCRxLhmkEbCr3xReUkQJqzxDonTv6liY-qsFH-XzSGZmZc5jLXf4PWxPjZoxjx_GIQJjaA_nt_omi_IvRHnL8mBuuzEKyCkqnytEfIbUcKTUQ
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Attempt+to+a+New+Neutron+Capture+Therapy+Using+Rhodium%E2%80%94The+Anti-tumor+Method+Based+on+Beta+Ray&rft.jtitle=Radioisotopes&rft.au=Hou%2C+Xuan&rft.au=Yanagie%2C+Hironobu&rft.au=Matsukawa%2C+Takehisa&rft.au=Kubota%2C+Ayano&rft.date=2024-03-15&rft.issn=0033-8303&rft.eissn=1884-4111&rft.volume=73&rft.issue=1&rft.spage=9&rft.epage=21&rft_id=info:doi/10.3769%2Fradioisotopes.73.9&rft.externalDBID=n%2Fa&rft.externalDocID=10_3769_radioisotopes_73_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-8303&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-8303&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-8303&client=summon