Theory of the Non-linear Longitudinal Kerr Magneto-optic Effect in Ferromagnetic Metals

A theory of the non-linear longitudinal Kerr magneto-optic effect in ferromagnetic metals is developed. The material model is based on the classical equation of motion for a free electron with a finite relaxation frequency under the action of a Lorentz force. A second harmonic current density is fou...

Full description

Saved in:
Bibliographic Details
Published inOptica acta Vol. 18; no. 3; pp. 191 - 203
Main Authors Romagnoli, R.J., Ferguson, P.E.
Format Journal Article
LanguageEnglish
Published Taylor & Francis Group 01.03.1971
Online AccessGet full text
ISSN0030-3909
DOI10.1080/713818431

Cover

Abstract A theory of the non-linear longitudinal Kerr magneto-optic effect in ferromagnetic metals is developed. The material model is based on the classical equation of motion for a free electron with a finite relaxation frequency under the action of a Lorentz force. A second harmonic current density is found of the form: J 2 = αE 2 + β h (H 1 )E 1 + σ (E 1 ∇ · E 1 ), where α, β h (H 1 ) and σ are non-liner conductivity tensors, E 1 and H 1 are the fundamental electric and magnetic fields, and E 2 is the induced second harmonic electric field. Results of this theory reduce, in the limit of a vanishing ferromagnetic state, to results obtained by Jha [1] from the Boltzmann transport equation for conduction electrons subject to a potential barrier at the metal surface. As required, the theory reduces to the linear longitudinal Kerr magneto-optic effect in the absence of second harmonic generation. The second harmonic reflection coefficients are derived. To the degree of approximations made, all four coefficients vanish at grazing incidence. Unlike the non-linear polar Kerr effect, they do not vanish at normal incidence.
AbstractList A theory of the non-linear longitudinal Kerr magneto-optic effect in ferromagnetic metals is developed. The material model is based on the classical equation of motion for a free electron with a finite relaxation frequency under the action of a Lorentz force. A second harmonic current density is found of the form: J 2 = αE 2 + β h (H 1 )E 1 + σ (E 1 ∇ · E 1 ), where α, β h (H 1 ) and σ are non-liner conductivity tensors, E 1 and H 1 are the fundamental electric and magnetic fields, and E 2 is the induced second harmonic electric field. Results of this theory reduce, in the limit of a vanishing ferromagnetic state, to results obtained by Jha [1] from the Boltzmann transport equation for conduction electrons subject to a potential barrier at the metal surface. As required, the theory reduces to the linear longitudinal Kerr magneto-optic effect in the absence of second harmonic generation. The second harmonic reflection coefficients are derived. To the degree of approximations made, all four coefficients vanish at grazing incidence. Unlike the non-linear polar Kerr effect, they do not vanish at normal incidence.
Author Romagnoli, R.J.
Ferguson, P.E.
Author_xml – sequence: 1
  givenname: R.J.
  surname: Romagnoli
  fullname: Romagnoli, R.J.
  organization: San Fernando Valley State College, Northridge, California 91324
– sequence: 2
  givenname: P.E.
  surname: Ferguson
  fullname: Ferguson, P.E.
  organization: Hughes Aircraft Company, Electron Dynamics Division, Torrance, California 90505
BookMark eNptkD9PwzAQxT0UibYw8A28MoT6TxInI6paqEhhKWKMXOfcGqV2dTFC-fYEihiA6enuvd9J9yZk5IMHQq44u-GsYDPFZcGLVPIRGTMmWSJLVp6TSde9DqMq8mxMXjZ7CNjTYGncA30MPmmdB420Cn7n4lvjvG7pAyDStd55iCEJx-gMXVgLJlLn6XIww-HLHPZriLrtLsiZHQQuv3VKnpeLzfw-qZ7uVvPbKjGCpTERXBVK5FZZYVLFAYTIVQ4FmFxss0Zm2zIVOhueKDPb5AyUVkrZhsmSp6AbOSWz012DoesQbG1c1NEFH1G7tuas_uyi_uliIK5_EUd0B439v9n0lHXeBjzo94BtU0fdtwEtam9cV8u_2AeEjXL1
CitedBy_id crossref_primary_10_1080_713819368
Cites_doi 10.1088/0370-1328/86/3/320
10.1063/1.1656263
10.1103/PhysRev.139.A1504
10.1063/1.1657607
10.1103/PhysRev.140.A2020
10.1103/PhysRev.97.334
10.1103/PhysRev.145.500
10.1103/PhysRevLett.8.166
10.1139/p67-346
10.1080/713818356
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 1971
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 1971
DBID AAYXX
CITATION
DOI 10.1080/713818431
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EndPage 203
ExternalDocumentID 10_1080_713818431
10139208
GroupedDBID -~X
07S
0BK
123
1TA
29N
6TJ
AALDU
AAMIU
AAPUL
AAQRR
AATVF
ABDPE
ABFIM
ABLIJ
ABXUL
ABXYU
ABZIJ
ACGFS
ACKDS
ACTIO
ADCVX
ADGTB
AEISY
AFFNX
AFGMD
AHDZW
AKBVH
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
ASQZU
AVBZW
BLEHA
BVUPT
C09
C5L
CAG
CE4
COF
DGEBU
EBS
ECKKI
EXXQB
F5P
H13
JHRKR
KYCEM
RNANH
ROSJB
RTWRZ
S-T
SNACF
TAZ
TBQAZ
TCJPB
TDBHL
TEX
TFL
TFMCV
TFT
TFW
TTHFI
TUROJ
UC4
UT5
UU9
V3L
VOH
ZGOLN
53G
AAGDL
AAYXX
ABJNI
ADYSH
AFRVT
AIYEW
CITATION
ID FETCH-LOGICAL-c204t-2178726f7f2c471ee22676e8ec62b5d35b942a584395fd60e7a777fd03914ead3
ISSN 0030-3909
IngestDate Tue Jul 01 02:24:32 EDT 2025
Thu Apr 24 23:02:53 EDT 2025
Wed Dec 25 09:03:55 EST 2024
IsPeerReviewed false
IsScholarly false
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c204t-2178726f7f2c471ee22676e8ec62b5d35b942a584395fd60e7a777fd03914ead3
PageCount 13
ParticipantIDs crossref_citationtrail_10_1080_713818431
crossref_primary_10_1080_713818431
informaworld_taylorfrancis_310_1080_713818431
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 3/1/1971
PublicationDateYYYYMMDD 1971-03-01
PublicationDate_xml – month: 03
  year: 1971
  text: 3/1/1971
  day: 01
PublicationDecade 1970
PublicationTitle Optica acta
PublicationYear 1971
Publisher Taylor & Francis Group
Publisher_xml – name: Taylor & Francis Group
References CIT0010
VOIGT W. (CIT0002) 1908
CIT0001
CIT0011
CIT0003
ROMAGNOLI R. J. (CIT0012) 1971
CIT0005
CIT0004
CIT0007
CIT0006
CIT0009
CIT0008
References_xml – ident: CIT0005
  doi: 10.1088/0370-1328/86/3/320
– ident: CIT0006
  doi: 10.1063/1.1656263
– ident: CIT0004
  doi: 10.1103/PhysRev.139.A1504
– ident: CIT0007
  doi: 10.1063/1.1657607
– ident: CIT0001
  doi: 10.1103/PhysRev.140.A2020
– volume-title: Magneto and Electro-optic
  year: 1908
  ident: CIT0002
– ident: CIT0003
  doi: 10.1103/PhysRev.97.334
– ident: CIT0011
  doi: 10.1103/PhysRev.145.500
– year: 1971
  ident: CIT0012
  publication-title: J. appl. Phys.
– ident: CIT0009
  doi: 10.1103/PhysRevLett.8.166
– ident: CIT0010
  doi: 10.1139/p67-346
– ident: CIT0008
  doi: 10.1080/713818356
SSID ssj0037865
Score 1.1594071
Snippet A theory of the non-linear longitudinal Kerr magneto-optic effect in ferromagnetic metals is developed. The material model is based on the classical equation...
SourceID crossref
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 191
Title Theory of the Non-linear Longitudinal Kerr Magneto-optic Effect in Ferromagnetic Metals
URI https://www.tandfonline.com/doi/abs/10.1080/713818431
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZtQqGXkKQNeSNCDoVFji3ZlnUMebCk3bSEhIRcFluSl0Brh433kl-fkSU_truHtBdjpLEx_uzRJ2nmG4SOdeBnwJQj4sdpRkIVS5JF8D8KCfSA6UgJZRKcR9fx8C68eogemkLbLrukyjz5ujSv5H9QhTbA1WTJ_gOy7U2hAc4BXzgCwnB8L8Zui7wOVSwLYkhjOh38KE0ZopmqS15919PpYJROCl2VpHw2Cq1Os_ipGFxCZ_mn7oT2kQYu_tInrD-NfWokN1r_fVPblzav-sa78npr0pOZy-D65V143YpCIHgvpKrxkgx8s_DFci_ZTaJrlxfYaltu9KS1YsGiY7aRjDAjTkyBmaAbfZod978GpTZUMHAapu2lH9Eq5dxsya-eDs8f75txl_EktvUq3NM3OlKJf9JePMc-5rRpe6zidh2tuekAPrXYbqAPuthEn-qwXPnyBd1bhHGZY0AYdwjjPsLYIIznEMYWYfxU4DmEsUX4K7q7vLg9GxJXCoNI6ocVgYljwmmc85xKoBNaA2vmsU60jGkWKRZlIqQpkEkmolzFvuYp5zxXRv8_BGfBttBKURZ6G2FFFaNcBjIyu_Q0FyynnGqdpYzJJBU76FvzisbS6cSbciW_xwtQ7KCj1vTZiqMsMyL99zyu6pWo3JaNGbMF-9333HQPfe6-3H20Uk1n-gDYYZUdus_iDWcjYcM
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theory+of+the+Non-linear+Longitudinal+Kerr+Magneto-optic+Effect+in+Ferromagnetic+Metals&rft.jtitle=Optica+acta&rft.au=Romagnoli%2C+R.J.&rft.au=Ferguson%2C+P.E.&rft.date=1971-03-01&rft.issn=0030-3909&rft.volume=18&rft.issue=3&rft.spage=191&rft.epage=203&rft_id=info:doi/10.1080%2F713818431&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_713818431
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-3909&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-3909&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-3909&client=summon