A comparative EEG analysis of classifying short sleep phases and waking states using support vector machine and random forest

Multiple studies suggest that the various stages of sleep affect the effectiveness of taking a nap. For this reason, the purpose of this study is to develop a model that may be used to classify the first and second stages of short sleep or the awake state. We employ sleep recordings obtained from th...

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. Conference series Vol. 2949; no. 1; pp. 12009 - 12021
Main Authors Xuan, Nhi Yen Phan, Pham, Bao Minh, Quoc, Khai Le
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.02.2025
Subjects
Online AccessGet full text
ISSN1742-6588
1742-6596
DOI10.1088/1742-6596/2949/1/012009

Cover

Loading…
Abstract Multiple studies suggest that the various stages of sleep affect the effectiveness of taking a nap. For this reason, the purpose of this study is to develop a model that may be used to classify the first and second stages of short sleep or the awake state. We employ sleep recordings obtained from the open-access dataset. To enhance the quality of recorded EEG signals, we implement a Notch Filter to reduce power line noise and a 0.5–70 Hz bandpass (Butterworth) filter to isolate the pertinent EEG signals. Two classifiers, Support Vector Machine (SVM) and Random Forest (RF), are used to assess and compare the performance of classification. In addition, the mRmR (minimal Redundancy Maximum Relevance) feature selection approach is employed to improve the model efficiency. The outcomes of our study reveal that both classifiers for each subject have an accuracy rate approaching 80%, differentiating between wakefulness and phases 1 and 2 of short sleep. This study emphasizes the efficacy of these strategies in offering essential instruments for comprehending and enhancing nap efficiency.
AbstractList Multiple studies suggest that the various stages of sleep affect the effectiveness of taking a nap. For this reason, the purpose of this study is to develop a model that may be used to classify the first and second stages of short sleep or the awake state. We employ sleep recordings obtained from the open-access dataset. To enhance the quality of recorded EEG signals, we implement a Notch Filter to reduce power line noise and a 0.5–70 Hz bandpass (Butterworth) filter to isolate the pertinent EEG signals. Two classifiers, Support Vector Machine (SVM) and Random Forest (RF), are used to assess and compare the performance of classification. In addition, the mRmR (minimal Redundancy Maximum Relevance) feature selection approach is employed to improve the model efficiency. The outcomes of our study reveal that both classifiers for each subject have an accuracy rate approaching 80%, differentiating between wakefulness and phases 1 and 2 of short sleep. This study emphasizes the efficacy of these strategies in offering essential instruments for comprehending and enhancing nap efficiency.
Author Xuan, Nhi Yen Phan
Pham, Bao Minh
Quoc, Khai Le
Author_xml – sequence: 1
  givenname: Nhi Yen Phan
  surname: Xuan
  fullname: Xuan, Nhi Yen Phan
  organization: Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
– sequence: 2
  givenname: Bao Minh
  surname: Pham
  fullname: Pham, Bao Minh
  organization: Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
– sequence: 3
  givenname: Khai Le
  surname: Quoc
  fullname: Quoc, Khai Le
  organization: Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
BookMark eNqFkF1LwzAUhoNMcE5_gwHvhLl8dGl6OcacykBBvQ6naeI6tyYm3WQX_nfbTSaCYC7ydZ73hDynqFO5yiB0Qck1JVIOaJqwvhhmYsCyJBvQAaGMkOwIdQ-VzmEv5Qk6jXFBCG9G2kWfI6zdykOAutwYPJlMMVSw3MYyYmexXkKMpd2W1SuOcxdqHJfGeOznEE1s0AJ_wNuuWkPd3Kzj7rD2voU3Rtcu4BXoeVmZHR6aya2wdcHE-gwdW1hGc_699tDLzeR5fNufPUzvxqNZXzOSZP0kkdoyLgQwyuSQQ8og1wRyk0oYSiF5obm2SaIJ10QIy3NLMiA6J4JBAbyHLvd9fXDv6-ZhtXDr0PwzKk6FTIdMcNlQ6Z7SwcUYjFU-lCsIW0WJal2r1qJqjarWtaJq77pJ8n2ydP6n9f-pqz9S94_jp9-g8oXlX-_LkhI
Cites_doi 10.1016/j.ijpsycho.2007.05.015
10.1093/sleep/zsaa226
10.1111/j.1365-2869.2006.00522.x
10.1016/S1388-2457(00)00456-9
10.1016/j.neuroimage.2006.03.017
10.1523/JNEUROSCI.5660-10.2011
10.1046/j.1365-2869.2000.00188.x
10.1038/ncomms15930
10.1023/A:1018054314350.1996
10.1038/s41598-020-79217-x
10.1002/0471142301.ns1002s49
10.1016/j.jneumeth.2015.03.013
10.1016/S0306-4522(00)00409-7
10.1016/S0896-6273(02)00746-8
10.1109/TPAMI.2005.159
10.1023/A:1010933404324
10.1109/TAU.1967.1161901
10.3390/computers8020042
10.1002/hbm.460030103
10.1007/s13246-016-0472-8
10.1016/j.dib.2023.109059
10.1002/hbm.20891
10.1016/j.neuroimage.2011.10.042
10.3389/fninf.2021.715421
10.1053/smrv.2002.0252
10.1046/j.1365-2869.1997.00046.x
10.1016/0167-2789(88)90081-4
10.1109/78.738267
10.1016/j.smrv.2017.01.003
10.1111/j.1365-2869.2008.00719.x
10.1006/nimg.1998.0361
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
Published under licence by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
– notice: Published under licence by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1088/1742-6596/2949/1/012009
DatabaseName Institute of Physics Open Access Journals (Activated by CARLI)
IOPscience (Open Access)
CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
Aerospace Database
SciTech Premium Collection
Advanced Technologies Database with Aerospace
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journals (Activated by CARLI)
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1742-6596
ExternalDocumentID 10_1088_1742_6596_2949_1_012009
JPCS_2949_1_012009
GroupedDBID 1JI
29L
2WC
4.4
5B3
5GY
5PX
5VS
7.Q
AAJIO
AAJKP
ABHWH
ACAFW
ACHIP
AEFHF
AEJGL
AFKRA
AFYNE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
F5P
FRP
GROUPED_DOAJ
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
J9A
KNG
KQ8
LAP
N5L
N9A
O3W
OK1
P2P
PIMPY
PJBAE
RIN
RNS
RO9
ROL
SY9
T37
TR2
TSCCA
UCJ
W28
XSB
~02
AAYXX
CITATION
OVT
PHGZM
PHGZT
8FD
8FE
8FG
ABUWG
AEINN
AZQEC
DWQXO
H8D
L7M
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c2049-448cf2366a212853a72abc0abe78a58683dc3cf44c03c066f3bf09a0cb062ada3
IEDL.DBID IOP
ISSN 1742-6588
IngestDate Wed Aug 13 11:19:49 EDT 2025
Tue Jul 01 05:41:09 EDT 2025
Wed Feb 26 07:56:27 EST 2025
Wed Feb 26 08:00:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2049-448cf2366a212853a72abc0abe78a58683dc3cf44c03c066f3bf09a0cb062ada3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1742-6596/2949/1/012009
PQID 3168752638
PQPubID 4998668
PageCount 13
ParticipantIDs crossref_primary_10_1088_1742_6596_2949_1_012009
iop_journals_10_1088_1742_6596_2949_1_012009
proquest_journals_3168752638
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250201
2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 20250201
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Journal of physics. Conference series
PublicationTitleAlternate J. Phys.: Conf. Ser
PublicationYear 2025
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Nakamura (JPCS_2949_1_012009bib39) 2018
Wang (JPCS_2949_1_012009bib40)
Allan Rechtschaffen (JPCS_2949_1_012009bib1) 1968
Liu (JPCS_2949_1_012009bib12) 2012; 59
Allen (JPCS_2949_1_012009bib14) 1998; 8
Finelli (JPCS_2949_1_012009bib36) 2000; 101
Higuchi (JPCS_2949_1_012009bib25) 1988; 31
Sundararajan (JPCS_2949_1_012009bib41) 2021; 11
Ridha (JPCS_2949_1_012009bib23) 1999; 47
Marcuse (JPCS_2949_1_012009bib15) 2016
De Gennaro (JPCS_2949_1_012009bib19) 2003; 7
Hou (JPCS_2949_1_012009bib32) 2021; 44
Breiman (JPCS_2949_1_012009bib30) 1996; 24
Hayashi (JPCS_2949_1_012009bib2) 2005; 28
Yan (JPCS_2949_1_012009bib11) 2010; 31
Jo (JPCS_2949_1_012009bib27) 2019; 8
Andrade (JPCS_2949_1_012009bib37) 2011; 31
Debener (JPCS_2949_1_012009bib9) 2008; 67
Sriraam (JPCS_2949_1_012009bib33) 2016; 39
Huang-Hellinger (JPCS_2949_1_012009bib10) 1995; 3
Cote (JPCS_2949_1_012009bib21) 2000; 9
Permana (JPCS_2949_1_012009bib44) 2023
Yu (JPCS_2949_1_012009bib6) 2012
Zeitlhofer (JPCS_2949_1_012009bib22) 1997; 6
Goldman (JPCS_2949_1_012009bib8) 2000; 111
Purcell (JPCS_2949_1_012009bib38) 2017; 8
Peng (JPCS_2949_1_012009bib26) 2005; 27
Campbell (JPCS_2949_1_012009bib35) 2009; 49
Varotto (JPCS_2949_1_012009bib42) 2021; 15
Welch (JPCS_2949_1_012009bib16) 1967; 15
Zhang (JPCS_2949_1_012009bib18) 2008
Breiman (JPCS_2949_1_012009bib29) 2001; 45
(JPCS_2949_1_012009bib13) 2012; 4
Lan (JPCS_2949_1_012009bib24) 2015; 246
Siddiqui (JPCS_2949_1_012009bib43) 2024
Fogel (JPCS_2949_1_012009bib4) 2006; 15
Gu (JPCS_2949_1_012009bib7) 2023; 48
Walker (JPCS_2949_1_012009bib3) 2002; 35
Kapur (JPCS_2949_1_012009bib17) 1992
Tinguely (JPCS_2949_1_012009bib34) 2006; 32
Doran (JPCS_2949_1_012009bib20) 2003; 5
O’Donnell (JPCS_2949_1_012009bib5) 2009; 18
Pisner (JPCS_2949_1_012009bib28) 2020
Ma (JPCS_2949_1_012009bib31) 2018; 37
References_xml – volume: 28
  start-page: 829
  year: 2005
  ident: JPCS_2949_1_012009bib2
  article-title: Recuperative power of a short daytime nap with or without stage 2 sleep
  publication-title: Sleep
– volume: 67
  start-page: 189
  year: 2008
  ident: JPCS_2949_1_012009bib9
  article-title: Properties of the ballistocardiogram artefact as revealed by EEG recordings at 1.5, 3 and 7 T static magnetic field strength
  publication-title: Int J Psychophysiol
  doi: 10.1016/j.ijpsycho.2007.05.015
– volume: 44
  start-page: zsaa226
  year: 2021
  ident: JPCS_2949_1_012009bib32
  article-title: Changes in EEG permutation entropy in the evening and in the transition from wake to sleep
  publication-title: Sleep
  doi: 10.1093/sleep/zsaa226
– start-page: 59
  year: 2024
  ident: JPCS_2949_1_012009bib43
– volume: 15
  start-page: 250
  year: 2006
  ident: JPCS_2949_1_012009bib4
  article-title: Learning-dependent changes in sleep spindles and Stage 2 sleep
  publication-title: J Sleep Res
  doi: 10.1111/j.1365-2869.2006.00522.x
– volume: 111
  start-page: 1974
  year: 2000
  ident: JPCS_2949_1_012009bib8
  article-title: Acquiring simultaneous EEG and functional MRI
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(00)00456-9
– volume: 32
  start-page: 283
  year: 2006
  ident: JPCS_2949_1_012009bib34
  article-title: Functional EEG topography in sleep and waking: State-dependent and state-independent features
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.03.017
– volume: 31
  start-page: 10331
  year: 2011
  ident: JPCS_2949_1_012009bib37
  article-title: Sleep Spindles and Hippocampal Functional Connectivity in Human NREM Sleep
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.5660-10.2011
– volume: 9
  start-page: 19
  year: 2000
  ident: JPCS_2949_1_012009bib21
  article-title: The role of the spindle in human information processing of high-intensity stimuli during sleep
  publication-title: J Sleep Res
  doi: 10.1046/j.1365-2869.2000.00188.x
– volume: 8
  start-page: 15930
  year: 2017
  ident: JPCS_2949_1_012009bib38
  article-title: Characterizing sleep spindles in 11,630 individuals from the National Sleep Research Resource
  publication-title: Nat Commun
  doi: 10.1038/ncomms15930
– volume: 24
  start-page: 123
  year: 1996
  ident: JPCS_2949_1_012009bib30
  publication-title: Bagging predictors Machine Learning
  doi: 10.1023/A:1018054314350.1996
– volume: 11
  start-page: 24
  year: 2021
  ident: JPCS_2949_1_012009bib41
  article-title: Sleep classification from wrist-worn accelerometer data using random forests
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-79217-x
– start-page: 4974
  year: 2012
  ident: JPCS_2949_1_012009bib6
– volume: 49
  start-page: 10.2.1
  year: 2009
  ident: JPCS_2949_1_012009bib35
  article-title: EEG Recording and Analysis for Sleep Research
  publication-title: Current Protocols in Neuroscience
  doi: 10.1002/0471142301.ns1002s49
– volume: 4
  start-page: 306
  year: 2012
  ident: JPCS_2949_1_012009bib13
  article-title: School of Mechatronics Engg Universiti Malaysia Perlis, Malaysia, Karthikeyan P, Murugappan M, School of Mechatronics Engg Universiti Malaysia Perlis, Malaysia, Yaacob S, School of Mechatronics Engg Universiti Malaysia Perlis, Malaysia
  publication-title: ECG Signal Denoising Using Wavelet Thresholding Techniques in Human Stress Assessment. ijeei.
– start-page: 1
  year: 2018
  ident: JPCS_2949_1_012009bib39
  article-title: Automatic detection of drowsiness using in-ear EEG
– start-page: 1
  year: 2023
  ident: JPCS_2949_1_012009bib44
  article-title: Effect of SMOTE for Sleep Stages Classification Using Decision Tree, K-Nearest Neighbor and Random Forest
– volume: 246
  start-page: 142
  year: 2015
  ident: JPCS_2949_1_012009bib24
  article-title: Using off-the-shelf lossy compression for wireless home sleep staging
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2015.03.013
– volume: 101
  start-page: 523
  year: 2000
  ident: JPCS_2949_1_012009bib36
  article-title: Dual electroencephalogram markers of human sleep homeostasis: correlation between theta activity in waking and slow-wave activity in sleep
  publication-title: Neuroscience
  doi: 10.1016/S0306-4522(00)00409-7
– volume: 35
  start-page: 205
  year: 2002
  ident: JPCS_2949_1_012009bib3
  article-title: Practice with sleep makes perfect: sleep-dependent motor skill learning
  publication-title: Neuron
  doi: 10.1016/S0896-6273(02)00746-8
– volume: 27
  start-page: 1226
  year: 2005
  ident: JPCS_2949_1_012009bib26
  article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2005.159
– volume: 45
  start-page: 5
  year: 2001
  ident: JPCS_2949_1_012009bib29
  article-title: Random Forests
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– volume: 15
  start-page: 70
  year: 1967
  ident: JPCS_2949_1_012009bib16
  article-title: The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms
  publication-title: IEEE Transactions on Audio and Electroacoustics
  doi: 10.1109/TAU.1967.1161901
– start-page: 435
  year: 2008
  ident: JPCS_2949_1_012009bib18
– volume: 8
  start-page: 42
  year: 2019
  ident: JPCS_2949_1_012009bib27
  article-title: Improved Measures of Redundancy and Relevance for mRMR Feature Selection
  publication-title: Computers
  doi: 10.3390/computers8020042
– volume: 3
  start-page: 13
  year: 1995
  ident: JPCS_2949_1_012009bib10
  article-title: Simultaneous functional magnetic resonance imaging and electrophysiological recording
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.460030103
– volume: 39
  start-page: 797
  year: 2016
  ident: JPCS_2949_1_012009bib33
  article-title: Recognition of wake-sleep stage 1 multichannel eeg patterns using spectral entropy features for drowsiness detection
  publication-title: Australas Phys Eng Sci Med
  doi: 10.1007/s13246-016-0472-8
– year: 2016
  ident: JPCS_2949_1_012009bib15
– start-page: 101
  year: 2020
  ident: JPCS_2949_1_012009bib28
– volume: 48
  year: 2023
  ident: JPCS_2949_1_012009bib7
  article-title: Simultaneous EEG and functional MRI data during rest and sleep from humans
  publication-title: Data in Brief
  doi: 10.1016/j.dib.2023.109059
– volume: 31
  start-page: 604
  year: 2010
  ident: JPCS_2949_1_012009bib11
  article-title: Physical modeling of pulse artefact sources in simultaneous EEG/fMRI
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.20891
– volume: 59
  start-page: 2073
  year: 2012
  ident: JPCS_2949_1_012009bib12
  article-title: Statistical feature extraction for artifact removal from concurrent fMRI-EEG recordings
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.10.042
– volume: 5
  start-page: 133
  year: 2003
  ident: JPCS_2949_1_012009bib20
  article-title: The dynamic topography of individual sleep spindles
  publication-title: Sleep Research Online
– volume: 15
  year: 2021
  ident: JPCS_2949_1_012009bib42
  article-title: Comparison of Resampling Techniques for Imbalanced Datasets in Machine Learning: Application to Epileptogenic Zone Localization From Interictal Intracranial EEG Recordings in Patients With Focal Epilepsy
  publication-title: Front Neuroinform
  doi: 10.3389/fninf.2021.715421
– volume: 7
  start-page: 423
  year: 2003
  ident: JPCS_2949_1_012009bib19
  article-title: Sleep spindles: an overview
  publication-title: Sleep Med Rev
  doi: 10.1053/smrv.2002.0252
– start-page: 3
  year: 1992
  ident: JPCS_2949_1_012009bib17
– volume: 6
  start-page: 149
  year: 1997
  ident: JPCS_2949_1_012009bib22
  article-title: Topographic distribution of sleep spindles in young healthy subjects
  publication-title: J Sleep Res
  doi: 10.1046/j.1365-2869.1997.00046.x
– ident: JPCS_2949_1_012009bib40
– volume: 31
  start-page: 277
  year: 1988
  ident: JPCS_2949_1_012009bib25
  article-title: Approach to an irregular time series on the basis of the fractal theory
  publication-title: Physica D: Nonlinear Phenomena
  doi: 10.1016/0167-2789(88)90081-4
– volume: 47
  start-page: 260
  year: 1999
  ident: JPCS_2949_1_012009bib23
  article-title: Teager Energy and the Ambiguity Function
  publication-title: Signal Processing, IEEE Transactions on
  doi: 10.1109/78.738267
– volume: 37
  start-page: 85
  year: 2018
  ident: JPCS_2949_1_012009bib31
  article-title: Nonlinear dynamical analysis of sleep electroencephalography using fractal and entropy approaches
  publication-title: Sleep Medicine Reviews
  doi: 10.1016/j.smrv.2017.01.003
– volume: 18
  start-page: 254
  year: 2009
  ident: JPCS_2949_1_012009bib5
  article-title: Comparison of subjective and objective assessments of sleep in healthy older subjects without sleep complaints
  publication-title: J Sleep Res
  doi: 10.1111/j.1365-2869.2008.00719.x
– volume: 8
  start-page: 229
  year: 1998
  ident: JPCS_2949_1_012009bib14
  article-title: Identification of EEG Events in the MR Scanner: The Problem of Pulse Artifact and a Method for Its Subtraction
  publication-title: NeuroImage
  doi: 10.1006/nimg.1998.0361
– year: 1968
  ident: JPCS_2949_1_012009bib1
SSID ssj0033337
Score 2.3852596
Snippet Multiple studies suggest that the various stages of sleep affect the effectiveness of taking a nap. For this reason, the purpose of this study is to develop a...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12009
SubjectTerms Bandpass filters
Classification
Effectiveness
Electroencephalography
Notch filters
Power lines
Redundancy
Signal quality
Sleep
Support vector machines
Wakefulness
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8QwEA66IngRn7i-COjRsG3SbdOTqKwuC4r4AG8hnaQo6LZaHyf_u5NsyiqC9tZ2DuWbdOZL8k2GkH0ZR0YkqWGY7QqWGFsyqaVmGYAtbSZ17Atpzy_S4W0yuuvfhQW3Jsgq25joA7WpwK2R91yDpazPcbgc1s_MdY1yu6uhhcYsmcMQLPsdMnc8uLi8amOxwCublERyhrlWtgovnPaFZ3na43mS9-KeKyN1usRv-Wn2oap_BWmfeU6XyGKgjPRo4uNlMmPHK2TeSzehWSWfRxSmR3jTweCM6nDSCK1KCo4eP_hqJtrcI9mmzaO1Na3vMX81aGroh-9IRX1tUUOdEh5v3mrHzOm7X9WnT15zab05ZjdTPVFku_ixa-T2dHBzMmShqQIDjrMBhtMxKLlIU-0REzrjuoBIF84xfZlKYUBAmSQQCUA-UoqijHIdQRGlXBst1klnXI3thiv31lojwoAcI9EYOYFLWYDNssLGkPMuiVooVT05O0P5PW8plUNfOfSVQ1_FaoJ-lxwg5Cr8R83_5ns_zEeXJ9c_LVRtyi7Zbj04NZ2Op82_X2-RBe56_nql9jbpvL682R0kIq_FbhhtX5Rq1_M
  priority: 102
  providerName: ProQuest
Title A comparative EEG analysis of classifying short sleep phases and waking states using support vector machine and random forest
URI https://iopscience.iop.org/article/10.1088/1742-6596/2949/1/012009
https://www.proquest.com/docview/3168752638
Volume 2949
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swELf40CRegLEhykdlaTySNrFTx3kE1MKQBhUMjTfLvjgqAtqItJuExP_O2UnEyjRNE3mIEumcOGfn7mf5fneE7MsozHgssgC9nQnizOaB1FIHCYDNbSJ15Im0387F6XV8dtO7-Z0LMylq09_ByypRcKXCOiBOdhFDs0D0UtFlaZx2o67jfzoO3zKXQrjyDV8vho015ngkFSnSNZKyifH6-4PmPNQi9uIPM-19z2CNQNPrKuTkrjObmg48vUno-L7PWierNTSlh1WLj2TBjjfIBx8iCuUn8nxI4TVVOO33T6iuM5rQSU7BwfBbz5qi5QhBPS3vrS1oMUI_WaJoRn_5ylfUc5hK6iLu8WZWuBUA_el3D-iDj-20Xhy9aDZ5oIiqUSWfyfWg__34NKiLNwTAcNUR4LIPcsaF0OgcERPohGkDoTZuAvSkkDwDDnkcQ8gBcU_OTR6mOgQTCqYzzTfJ0ngytluOVq61xnEExDKxRgsNTEoDNkmMjSBlLRI2A6aKKkeH8nvrUiqnVeW0qpxWVaQqrbbIAY6Dqv_X8t_iX-bEz4bHV_MSqsjyFtlt5smrqCsMlvQYmrnt_3vnDllhrtawjxDfJUvTx5ndQwA0NW2yKAcnbbJ81D8fXrb9fMfzBf_xAs22-lo
linkProvider IOP Publishing
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xUNVeEH2py6NYanurtYmTTZxDhSgsXV4r1ILEzXXGjkAqm0B4qAf-Er-RsZNoiyq1J3JLMoqs8Xi-b-IZD8BHGQYmihPDCe1yHhtbcKml5imiLWwqdegLaQ_Gyeg43j0ZnMzAfVcL49IqO5_oHbUp0f0j77sGS-lAkLmsVxfcdY1yu6tdC43GLPbs71sK2eovO1s0v5-E2B4ebY5421WAoyA6zCkewUJESaLJaxNY6VToHAOdu5ENZCIjgxEWcYxBhATIRZQXQaYDzINEaKMj-u4szBPNyGgVzX8djg-_d74_oittSjAFJ2yXXUYZhZntsyzpiyzO-mHfla26PMg_8HD2rKz-AgWPdNuLsNBSVLbR2NRLmLGTV_DMp4pi_RruNhhOjwxnw-E3ptuTTVhZMHR0_MxXT7H6lMg9q39ZW7HqlPCyJlHDbn0HLOZrmWrmMu_p5rpykQC78bsI7NzneFovTmhqynNG7JoG-waOn0Tdb2FuUk7sO1derrUmDSNxmliTp0YhZY42TXMbYiZ6EHSqVFVzVofye-xSKqd95bSvnPZVqBrt9-AzqVy167b-v_iHR-K7h5s_HkuoyhQ9WOlmcCo6td-lf79eg-ejo4N9tb8z3luGF8L1G_ZZ4iswd3V5bVeJBF3l71vLY_DzqY39Ad0FFLM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46UXwRrzidGtBHa9ukl_RRdFOnzoGKvoX0NEVBt2K9PPnfPUk7xxAR-9TCaRu-puf70p4LIXvC9zIeRJmDbJc6QaZzRyihnBhA5zoWyreJtJe96PQ26N6H91Ok850LMyxq13-Au1Wh4ArCOiBOuKihmROFSeSyJEhc3zX5n17iFlk-TWZCjpyK8_qK3408MsctrhIjzYlCjOK8fr_YBEtN40h-uGrLP51FslALR3pYDXOJTOnBMpm1AZxQrpDPQwrjQt603T6hqq43Qoc5BSOSH21OEy0fUHLT8knrghYPyGIlmmb0w_alojbDqKQmHh4P3gqjz-m7_bZPn23kpbbmyHHZ8Jmi5sXBrpLbTvvm6NSpWys4wHBN4OCiDHLGo0ghdSFjq5ipFDyVmscTikjwDDjkQQAeB1QlOU9zL1EepF7EVKb4GmkMhgO9bpK-lVKIMKDSCBT6T2BCpKDjONU-JKxJvBGUsqgqaEj751sIadCXBn1p0Je-rNBvkn2EXNZvU_m3-e6Eebd_dD1pIXFuNElr9ATHpqZtVxwydEIb_7vnDpnrH3fkxVnvfJPMM9MU2IZyt0jj9eVNb6FSeU237TT8Aviz2sw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparative+EEG+analysis+of+classifying+short+sleep+phases+and+waking+states+using+support+vector+machine+and+random+forest&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Xuan%2C+Nhi+Yen+Phan&rft.au=Pham%2C+Bao+Minh&rft.au=Quoc%2C+Khai+Le&rft.date=2025-02-01&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=2949&rft.issue=1&rft.spage=12009&rft_id=info:doi/10.1088%2F1742-6596%2F2949%2F1%2F012009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1742_6596_2949_1_012009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon