A comparative EEG analysis of classifying short sleep phases and waking states using support vector machine and random forest
Multiple studies suggest that the various stages of sleep affect the effectiveness of taking a nap. For this reason, the purpose of this study is to develop a model that may be used to classify the first and second stages of short sleep or the awake state. We employ sleep recordings obtained from th...
Saved in:
Published in | Journal of physics. Conference series Vol. 2949; no. 1; pp. 12009 - 12021 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
01.02.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1742-6588 1742-6596 |
DOI | 10.1088/1742-6596/2949/1/012009 |
Cover
Loading…
Abstract | Multiple studies suggest that the various stages of sleep affect the effectiveness of taking a nap. For this reason, the purpose of this study is to develop a model that may be used to classify the first and second stages of short sleep or the awake state. We employ sleep recordings obtained from the open-access dataset. To enhance the quality of recorded EEG signals, we implement a Notch Filter to reduce power line noise and a 0.5–70 Hz bandpass (Butterworth) filter to isolate the pertinent EEG signals. Two classifiers, Support Vector Machine (SVM) and Random Forest (RF), are used to assess and compare the performance of classification. In addition, the mRmR (minimal Redundancy Maximum Relevance) feature selection approach is employed to improve the model efficiency. The outcomes of our study reveal that both classifiers for each subject have an accuracy rate approaching 80%, differentiating between wakefulness and phases 1 and 2 of short sleep. This study emphasizes the efficacy of these strategies in offering essential instruments for comprehending and enhancing nap efficiency. |
---|---|
AbstractList | Multiple studies suggest that the various stages of sleep affect the effectiveness of taking a nap. For this reason, the purpose of this study is to develop a model that may be used to classify the first and second stages of short sleep or the awake state. We employ sleep recordings obtained from the open-access dataset. To enhance the quality of recorded EEG signals, we implement a Notch Filter to reduce power line noise and a 0.5–70 Hz bandpass (Butterworth) filter to isolate the pertinent EEG signals. Two classifiers, Support Vector Machine (SVM) and Random Forest (RF), are used to assess and compare the performance of classification. In addition, the mRmR (minimal Redundancy Maximum Relevance) feature selection approach is employed to improve the model efficiency. The outcomes of our study reveal that both classifiers for each subject have an accuracy rate approaching 80%, differentiating between wakefulness and phases 1 and 2 of short sleep. This study emphasizes the efficacy of these strategies in offering essential instruments for comprehending and enhancing nap efficiency. |
Author | Xuan, Nhi Yen Phan Pham, Bao Minh Quoc, Khai Le |
Author_xml | – sequence: 1 givenname: Nhi Yen Phan surname: Xuan fullname: Xuan, Nhi Yen Phan organization: Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam – sequence: 2 givenname: Bao Minh surname: Pham fullname: Pham, Bao Minh organization: Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam – sequence: 3 givenname: Khai Le surname: Quoc fullname: Quoc, Khai Le organization: Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam |
BookMark | eNqFkF1LwzAUhoNMcE5_gwHvhLl8dGl6OcacykBBvQ6naeI6tyYm3WQX_nfbTSaCYC7ydZ73hDynqFO5yiB0Qck1JVIOaJqwvhhmYsCyJBvQAaGMkOwIdQ-VzmEv5Qk6jXFBCG9G2kWfI6zdykOAutwYPJlMMVSw3MYyYmexXkKMpd2W1SuOcxdqHJfGeOznEE1s0AJ_wNuuWkPd3Kzj7rD2voU3Rtcu4BXoeVmZHR6aya2wdcHE-gwdW1hGc_699tDLzeR5fNufPUzvxqNZXzOSZP0kkdoyLgQwyuSQQ8og1wRyk0oYSiF5obm2SaIJ10QIy3NLMiA6J4JBAbyHLvd9fXDv6-ZhtXDr0PwzKk6FTIdMcNlQ6Z7SwcUYjFU-lCsIW0WJal2r1qJqjarWtaJq77pJ8n2ydP6n9f-pqz9S94_jp9-g8oXlX-_LkhI |
Cites_doi | 10.1016/j.ijpsycho.2007.05.015 10.1093/sleep/zsaa226 10.1111/j.1365-2869.2006.00522.x 10.1016/S1388-2457(00)00456-9 10.1016/j.neuroimage.2006.03.017 10.1523/JNEUROSCI.5660-10.2011 10.1046/j.1365-2869.2000.00188.x 10.1038/ncomms15930 10.1023/A:1018054314350.1996 10.1038/s41598-020-79217-x 10.1002/0471142301.ns1002s49 10.1016/j.jneumeth.2015.03.013 10.1016/S0306-4522(00)00409-7 10.1016/S0896-6273(02)00746-8 10.1109/TPAMI.2005.159 10.1023/A:1010933404324 10.1109/TAU.1967.1161901 10.3390/computers8020042 10.1002/hbm.460030103 10.1007/s13246-016-0472-8 10.1016/j.dib.2023.109059 10.1002/hbm.20891 10.1016/j.neuroimage.2011.10.042 10.3389/fninf.2021.715421 10.1053/smrv.2002.0252 10.1046/j.1365-2869.1997.00046.x 10.1016/0167-2789(88)90081-4 10.1109/78.738267 10.1016/j.smrv.2017.01.003 10.1111/j.1365-2869.2008.00719.x 10.1006/nimg.1998.0361 |
ContentType | Journal Article |
Copyright | Published under licence by IOP Publishing Ltd Published under licence by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Published under licence by IOP Publishing Ltd – notice: Published under licence by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | O3W TSCCA AAYXX CITATION 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.1088/1742-6596/2949/1/012009 |
DatabaseName | Institute of Physics Open Access Journals (Activated by CARLI) IOPscience (Open Access) CrossRef Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Aerospace Database SciTech Premium Collection Advanced Technologies Database with Aerospace ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journals (Activated by CARLI) url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1742-6596 |
ExternalDocumentID | 10_1088_1742_6596_2949_1_012009 JPCS_2949_1_012009 |
GroupedDBID | 1JI 29L 2WC 4.4 5B3 5GY 5PX 5VS 7.Q AAJIO AAJKP ABHWH ACAFW ACHIP AEFHF AEJGL AFKRA AFYNE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS ARAPS ASPBG ATQHT AVWKF AZFZN BENPR BGLVJ CCPQU CEBXE CJUJL CRLBU CS3 DU5 E3Z EBS EDWGO EQZZN F5P FRP GROUPED_DOAJ GX1 HCIFZ HH5 IJHAN IOP IZVLO J9A KNG KQ8 LAP N5L N9A O3W OK1 P2P PIMPY PJBAE RIN RNS RO9 ROL SY9 T37 TR2 TSCCA UCJ W28 XSB ~02 AAYXX CITATION OVT PHGZM PHGZT 8FD 8FE 8FG ABUWG AEINN AZQEC DWQXO H8D L7M P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c2049-448cf2366a212853a72abc0abe78a58683dc3cf44c03c066f3bf09a0cb062ada3 |
IEDL.DBID | IOP |
ISSN | 1742-6588 |
IngestDate | Wed Aug 13 11:19:49 EDT 2025 Tue Jul 01 05:41:09 EDT 2025 Wed Feb 26 07:56:27 EST 2025 Wed Feb 26 08:00:32 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2049-448cf2366a212853a72abc0abe78a58683dc3cf44c03c066f3bf09a0cb062ada3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1742-6596/2949/1/012009 |
PQID | 3168752638 |
PQPubID | 4998668 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1088_1742_6596_2949_1_012009 iop_journals_10_1088_1742_6596_2949_1_012009 proquest_journals_3168752638 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250201 2025-02-01 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: 20250201 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol |
PublicationTitle | Journal of physics. Conference series |
PublicationTitleAlternate | J. Phys.: Conf. Ser |
PublicationYear | 2025 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Nakamura (JPCS_2949_1_012009bib39) 2018 Wang (JPCS_2949_1_012009bib40) Allan Rechtschaffen (JPCS_2949_1_012009bib1) 1968 Liu (JPCS_2949_1_012009bib12) 2012; 59 Allen (JPCS_2949_1_012009bib14) 1998; 8 Finelli (JPCS_2949_1_012009bib36) 2000; 101 Higuchi (JPCS_2949_1_012009bib25) 1988; 31 Sundararajan (JPCS_2949_1_012009bib41) 2021; 11 Ridha (JPCS_2949_1_012009bib23) 1999; 47 Marcuse (JPCS_2949_1_012009bib15) 2016 De Gennaro (JPCS_2949_1_012009bib19) 2003; 7 Hou (JPCS_2949_1_012009bib32) 2021; 44 Breiman (JPCS_2949_1_012009bib30) 1996; 24 Hayashi (JPCS_2949_1_012009bib2) 2005; 28 Yan (JPCS_2949_1_012009bib11) 2010; 31 Jo (JPCS_2949_1_012009bib27) 2019; 8 Andrade (JPCS_2949_1_012009bib37) 2011; 31 Debener (JPCS_2949_1_012009bib9) 2008; 67 Sriraam (JPCS_2949_1_012009bib33) 2016; 39 Huang-Hellinger (JPCS_2949_1_012009bib10) 1995; 3 Cote (JPCS_2949_1_012009bib21) 2000; 9 Permana (JPCS_2949_1_012009bib44) 2023 Yu (JPCS_2949_1_012009bib6) 2012 Zeitlhofer (JPCS_2949_1_012009bib22) 1997; 6 Goldman (JPCS_2949_1_012009bib8) 2000; 111 Purcell (JPCS_2949_1_012009bib38) 2017; 8 Peng (JPCS_2949_1_012009bib26) 2005; 27 Campbell (JPCS_2949_1_012009bib35) 2009; 49 Varotto (JPCS_2949_1_012009bib42) 2021; 15 Welch (JPCS_2949_1_012009bib16) 1967; 15 Zhang (JPCS_2949_1_012009bib18) 2008 Breiman (JPCS_2949_1_012009bib29) 2001; 45 (JPCS_2949_1_012009bib13) 2012; 4 Lan (JPCS_2949_1_012009bib24) 2015; 246 Siddiqui (JPCS_2949_1_012009bib43) 2024 Fogel (JPCS_2949_1_012009bib4) 2006; 15 Gu (JPCS_2949_1_012009bib7) 2023; 48 Walker (JPCS_2949_1_012009bib3) 2002; 35 Kapur (JPCS_2949_1_012009bib17) 1992 Tinguely (JPCS_2949_1_012009bib34) 2006; 32 Doran (JPCS_2949_1_012009bib20) 2003; 5 O’Donnell (JPCS_2949_1_012009bib5) 2009; 18 Pisner (JPCS_2949_1_012009bib28) 2020 Ma (JPCS_2949_1_012009bib31) 2018; 37 |
References_xml | – volume: 28 start-page: 829 year: 2005 ident: JPCS_2949_1_012009bib2 article-title: Recuperative power of a short daytime nap with or without stage 2 sleep publication-title: Sleep – volume: 67 start-page: 189 year: 2008 ident: JPCS_2949_1_012009bib9 article-title: Properties of the ballistocardiogram artefact as revealed by EEG recordings at 1.5, 3 and 7 T static magnetic field strength publication-title: Int J Psychophysiol doi: 10.1016/j.ijpsycho.2007.05.015 – volume: 44 start-page: zsaa226 year: 2021 ident: JPCS_2949_1_012009bib32 article-title: Changes in EEG permutation entropy in the evening and in the transition from wake to sleep publication-title: Sleep doi: 10.1093/sleep/zsaa226 – start-page: 59 year: 2024 ident: JPCS_2949_1_012009bib43 – volume: 15 start-page: 250 year: 2006 ident: JPCS_2949_1_012009bib4 article-title: Learning-dependent changes in sleep spindles and Stage 2 sleep publication-title: J Sleep Res doi: 10.1111/j.1365-2869.2006.00522.x – volume: 111 start-page: 1974 year: 2000 ident: JPCS_2949_1_012009bib8 article-title: Acquiring simultaneous EEG and functional MRI publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(00)00456-9 – volume: 32 start-page: 283 year: 2006 ident: JPCS_2949_1_012009bib34 article-title: Functional EEG topography in sleep and waking: State-dependent and state-independent features publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.03.017 – volume: 31 start-page: 10331 year: 2011 ident: JPCS_2949_1_012009bib37 article-title: Sleep Spindles and Hippocampal Functional Connectivity in Human NREM Sleep publication-title: J Neurosci doi: 10.1523/JNEUROSCI.5660-10.2011 – volume: 9 start-page: 19 year: 2000 ident: JPCS_2949_1_012009bib21 article-title: The role of the spindle in human information processing of high-intensity stimuli during sleep publication-title: J Sleep Res doi: 10.1046/j.1365-2869.2000.00188.x – volume: 8 start-page: 15930 year: 2017 ident: JPCS_2949_1_012009bib38 article-title: Characterizing sleep spindles in 11,630 individuals from the National Sleep Research Resource publication-title: Nat Commun doi: 10.1038/ncomms15930 – volume: 24 start-page: 123 year: 1996 ident: JPCS_2949_1_012009bib30 publication-title: Bagging predictors Machine Learning doi: 10.1023/A:1018054314350.1996 – volume: 11 start-page: 24 year: 2021 ident: JPCS_2949_1_012009bib41 article-title: Sleep classification from wrist-worn accelerometer data using random forests publication-title: Sci Rep doi: 10.1038/s41598-020-79217-x – start-page: 4974 year: 2012 ident: JPCS_2949_1_012009bib6 – volume: 49 start-page: 10.2.1 year: 2009 ident: JPCS_2949_1_012009bib35 article-title: EEG Recording and Analysis for Sleep Research publication-title: Current Protocols in Neuroscience doi: 10.1002/0471142301.ns1002s49 – volume: 4 start-page: 306 year: 2012 ident: JPCS_2949_1_012009bib13 article-title: School of Mechatronics Engg Universiti Malaysia Perlis, Malaysia, Karthikeyan P, Murugappan M, School of Mechatronics Engg Universiti Malaysia Perlis, Malaysia, Yaacob S, School of Mechatronics Engg Universiti Malaysia Perlis, Malaysia publication-title: ECG Signal Denoising Using Wavelet Thresholding Techniques in Human Stress Assessment. ijeei. – start-page: 1 year: 2018 ident: JPCS_2949_1_012009bib39 article-title: Automatic detection of drowsiness using in-ear EEG – start-page: 1 year: 2023 ident: JPCS_2949_1_012009bib44 article-title: Effect of SMOTE for Sleep Stages Classification Using Decision Tree, K-Nearest Neighbor and Random Forest – volume: 246 start-page: 142 year: 2015 ident: JPCS_2949_1_012009bib24 article-title: Using off-the-shelf lossy compression for wireless home sleep staging publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2015.03.013 – volume: 101 start-page: 523 year: 2000 ident: JPCS_2949_1_012009bib36 article-title: Dual electroencephalogram markers of human sleep homeostasis: correlation between theta activity in waking and slow-wave activity in sleep publication-title: Neuroscience doi: 10.1016/S0306-4522(00)00409-7 – volume: 35 start-page: 205 year: 2002 ident: JPCS_2949_1_012009bib3 article-title: Practice with sleep makes perfect: sleep-dependent motor skill learning publication-title: Neuron doi: 10.1016/S0896-6273(02)00746-8 – volume: 27 start-page: 1226 year: 2005 ident: JPCS_2949_1_012009bib26 article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2005.159 – volume: 45 start-page: 5 year: 2001 ident: JPCS_2949_1_012009bib29 article-title: Random Forests publication-title: Machine Learning doi: 10.1023/A:1010933404324 – volume: 15 start-page: 70 year: 1967 ident: JPCS_2949_1_012009bib16 article-title: The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms publication-title: IEEE Transactions on Audio and Electroacoustics doi: 10.1109/TAU.1967.1161901 – start-page: 435 year: 2008 ident: JPCS_2949_1_012009bib18 – volume: 8 start-page: 42 year: 2019 ident: JPCS_2949_1_012009bib27 article-title: Improved Measures of Redundancy and Relevance for mRMR Feature Selection publication-title: Computers doi: 10.3390/computers8020042 – volume: 3 start-page: 13 year: 1995 ident: JPCS_2949_1_012009bib10 article-title: Simultaneous functional magnetic resonance imaging and electrophysiological recording publication-title: Human Brain Mapping doi: 10.1002/hbm.460030103 – volume: 39 start-page: 797 year: 2016 ident: JPCS_2949_1_012009bib33 article-title: Recognition of wake-sleep stage 1 multichannel eeg patterns using spectral entropy features for drowsiness detection publication-title: Australas Phys Eng Sci Med doi: 10.1007/s13246-016-0472-8 – year: 2016 ident: JPCS_2949_1_012009bib15 – start-page: 101 year: 2020 ident: JPCS_2949_1_012009bib28 – volume: 48 year: 2023 ident: JPCS_2949_1_012009bib7 article-title: Simultaneous EEG and functional MRI data during rest and sleep from humans publication-title: Data in Brief doi: 10.1016/j.dib.2023.109059 – volume: 31 start-page: 604 year: 2010 ident: JPCS_2949_1_012009bib11 article-title: Physical modeling of pulse artefact sources in simultaneous EEG/fMRI publication-title: Hum Brain Mapp doi: 10.1002/hbm.20891 – volume: 59 start-page: 2073 year: 2012 ident: JPCS_2949_1_012009bib12 article-title: Statistical feature extraction for artifact removal from concurrent fMRI-EEG recordings publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.10.042 – volume: 5 start-page: 133 year: 2003 ident: JPCS_2949_1_012009bib20 article-title: The dynamic topography of individual sleep spindles publication-title: Sleep Research Online – volume: 15 year: 2021 ident: JPCS_2949_1_012009bib42 article-title: Comparison of Resampling Techniques for Imbalanced Datasets in Machine Learning: Application to Epileptogenic Zone Localization From Interictal Intracranial EEG Recordings in Patients With Focal Epilepsy publication-title: Front Neuroinform doi: 10.3389/fninf.2021.715421 – volume: 7 start-page: 423 year: 2003 ident: JPCS_2949_1_012009bib19 article-title: Sleep spindles: an overview publication-title: Sleep Med Rev doi: 10.1053/smrv.2002.0252 – start-page: 3 year: 1992 ident: JPCS_2949_1_012009bib17 – volume: 6 start-page: 149 year: 1997 ident: JPCS_2949_1_012009bib22 article-title: Topographic distribution of sleep spindles in young healthy subjects publication-title: J Sleep Res doi: 10.1046/j.1365-2869.1997.00046.x – ident: JPCS_2949_1_012009bib40 – volume: 31 start-page: 277 year: 1988 ident: JPCS_2949_1_012009bib25 article-title: Approach to an irregular time series on the basis of the fractal theory publication-title: Physica D: Nonlinear Phenomena doi: 10.1016/0167-2789(88)90081-4 – volume: 47 start-page: 260 year: 1999 ident: JPCS_2949_1_012009bib23 article-title: Teager Energy and the Ambiguity Function publication-title: Signal Processing, IEEE Transactions on doi: 10.1109/78.738267 – volume: 37 start-page: 85 year: 2018 ident: JPCS_2949_1_012009bib31 article-title: Nonlinear dynamical analysis of sleep electroencephalography using fractal and entropy approaches publication-title: Sleep Medicine Reviews doi: 10.1016/j.smrv.2017.01.003 – volume: 18 start-page: 254 year: 2009 ident: JPCS_2949_1_012009bib5 article-title: Comparison of subjective and objective assessments of sleep in healthy older subjects without sleep complaints publication-title: J Sleep Res doi: 10.1111/j.1365-2869.2008.00719.x – volume: 8 start-page: 229 year: 1998 ident: JPCS_2949_1_012009bib14 article-title: Identification of EEG Events in the MR Scanner: The Problem of Pulse Artifact and a Method for Its Subtraction publication-title: NeuroImage doi: 10.1006/nimg.1998.0361 – year: 1968 ident: JPCS_2949_1_012009bib1 |
SSID | ssj0033337 |
Score | 2.3852596 |
Snippet | Multiple studies suggest that the various stages of sleep affect the effectiveness of taking a nap. For this reason, the purpose of this study is to develop a... |
SourceID | proquest crossref iop |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 12009 |
SubjectTerms | Bandpass filters Classification Effectiveness Electroencephalography Notch filters Power lines Redundancy Signal quality Sleep Support vector machines Wakefulness |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8QwEA66IngRn7i-COjRsG3SbdOTqKwuC4r4AG8hnaQo6LZaHyf_u5NsyiqC9tZ2DuWbdOZL8k2GkH0ZR0YkqWGY7QqWGFsyqaVmGYAtbSZ17Atpzy_S4W0yuuvfhQW3Jsgq25joA7WpwK2R91yDpazPcbgc1s_MdY1yu6uhhcYsmcMQLPsdMnc8uLi8amOxwCublERyhrlWtgovnPaFZ3na43mS9-KeKyN1usRv-Wn2oap_BWmfeU6XyGKgjPRo4uNlMmPHK2TeSzehWSWfRxSmR3jTweCM6nDSCK1KCo4eP_hqJtrcI9mmzaO1Na3vMX81aGroh-9IRX1tUUOdEh5v3mrHzOm7X9WnT15zab05ZjdTPVFku_ixa-T2dHBzMmShqQIDjrMBhtMxKLlIU-0REzrjuoBIF84xfZlKYUBAmSQQCUA-UoqijHIdQRGlXBst1klnXI3thiv31lojwoAcI9EYOYFLWYDNssLGkPMuiVooVT05O0P5PW8plUNfOfSVQ1_FaoJ-lxwg5Cr8R83_5ns_zEeXJ9c_LVRtyi7Zbj04NZ2Op82_X2-RBe56_nql9jbpvL682R0kIq_FbhhtX5Rq1_M priority: 102 providerName: ProQuest |
Title | A comparative EEG analysis of classifying short sleep phases and waking states using support vector machine and random forest |
URI | https://iopscience.iop.org/article/10.1088/1742-6596/2949/1/012009 https://www.proquest.com/docview/3168752638 |
Volume | 2949 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swELf40CRegLEhykdlaTySNrFTx3kE1MKQBhUMjTfLvjgqAtqItJuExP_O2UnEyjRNE3mIEumcOGfn7mf5fneE7MsozHgssgC9nQnizOaB1FIHCYDNbSJ15Im0387F6XV8dtO7-Z0LMylq09_ByypRcKXCOiBOdhFDs0D0UtFlaZx2o67jfzoO3zKXQrjyDV8vho015ngkFSnSNZKyifH6-4PmPNQi9uIPM-19z2CNQNPrKuTkrjObmg48vUno-L7PWierNTSlh1WLj2TBjjfIBx8iCuUn8nxI4TVVOO33T6iuM5rQSU7BwfBbz5qi5QhBPS3vrS1oMUI_WaJoRn_5ylfUc5hK6iLu8WZWuBUA_el3D-iDj-20Xhy9aDZ5oIiqUSWfyfWg__34NKiLNwTAcNUR4LIPcsaF0OgcERPohGkDoTZuAvSkkDwDDnkcQ8gBcU_OTR6mOgQTCqYzzTfJ0ngytluOVq61xnEExDKxRgsNTEoDNkmMjSBlLRI2A6aKKkeH8nvrUiqnVeW0qpxWVaQqrbbIAY6Dqv_X8t_iX-bEz4bHV_MSqsjyFtlt5smrqCsMlvQYmrnt_3vnDllhrtawjxDfJUvTx5ndQwA0NW2yKAcnbbJ81D8fXrb9fMfzBf_xAs22-lo |
linkProvider | IOP Publishing |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xUNVeEH2py6NYanurtYmTTZxDhSgsXV4r1ILEzXXGjkAqm0B4qAf-Er-RsZNoiyq1J3JLMoqs8Xi-b-IZD8BHGQYmihPDCe1yHhtbcKml5imiLWwqdegLaQ_Gyeg43j0ZnMzAfVcL49IqO5_oHbUp0f0j77sGS-lAkLmsVxfcdY1yu6tdC43GLPbs71sK2eovO1s0v5-E2B4ebY5421WAoyA6zCkewUJESaLJaxNY6VToHAOdu5ENZCIjgxEWcYxBhATIRZQXQaYDzINEaKMj-u4szBPNyGgVzX8djg-_d74_oittSjAFJ2yXXUYZhZntsyzpiyzO-mHfla26PMg_8HD2rKz-AgWPdNuLsNBSVLbR2NRLmLGTV_DMp4pi_RruNhhOjwxnw-E3ptuTTVhZMHR0_MxXT7H6lMg9q39ZW7HqlPCyJlHDbn0HLOZrmWrmMu_p5rpykQC78bsI7NzneFovTmhqynNG7JoG-waOn0Tdb2FuUk7sO1derrUmDSNxmliTp0YhZY42TXMbYiZ6EHSqVFVzVofye-xSKqd95bSvnPZVqBrt9-AzqVy167b-v_iHR-K7h5s_HkuoyhQ9WOlmcCo6td-lf79eg-ejo4N9tb8z3luGF8L1G_ZZ4iswd3V5bVeJBF3l71vLY_DzqY39Ad0FFLM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46UXwRrzidGtBHa9ukl_RRdFOnzoGKvoX0NEVBt2K9PPnfPUk7xxAR-9TCaRu-puf70p4LIXvC9zIeRJmDbJc6QaZzRyihnBhA5zoWyreJtJe96PQ26N6H91Ok850LMyxq13-Au1Wh4ArCOiBOuKihmROFSeSyJEhc3zX5n17iFlk-TWZCjpyK8_qK3408MsctrhIjzYlCjOK8fr_YBEtN40h-uGrLP51FslALR3pYDXOJTOnBMpm1AZxQrpDPQwrjQt603T6hqq43Qoc5BSOSH21OEy0fUHLT8knrghYPyGIlmmb0w_alojbDqKQmHh4P3gqjz-m7_bZPn23kpbbmyHHZ8Jmi5sXBrpLbTvvm6NSpWys4wHBN4OCiDHLGo0ghdSFjq5ipFDyVmscTikjwDDjkQQAeB1QlOU9zL1EepF7EVKb4GmkMhgO9bpK-lVKIMKDSCBT6T2BCpKDjONU-JKxJvBGUsqgqaEj751sIadCXBn1p0Je-rNBvkn2EXNZvU_m3-e6Eebd_dD1pIXFuNElr9ATHpqZtVxwydEIb_7vnDpnrH3fkxVnvfJPMM9MU2IZyt0jj9eVNb6FSeU237TT8Aviz2sw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparative+EEG+analysis+of+classifying+short+sleep+phases+and+waking+states+using+support+vector+machine+and+random+forest&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Xuan%2C+Nhi+Yen+Phan&rft.au=Pham%2C+Bao+Minh&rft.au=Quoc%2C+Khai+Le&rft.date=2025-02-01&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=2949&rft.issue=1&rft.spage=12009&rft_id=info:doi/10.1088%2F1742-6596%2F2949%2F1%2F012009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1742_6596_2949_1_012009 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon |