Excellent Electromagnetic Wave Absorption of Iron‐Containing SiBCN Ceramics at 1158 K High‐Temperature
The enhancement of electromagnetic wave absorption at high‐temperature as well as oxidation is cutting‐edge issue in current electromagnetic functional materials due to the strong demand of stealth aircrafts or aero‐engines working in harsh environments. In this contribution, the excellent electroma...
Saved in:
Published in | Advanced engineering materials Vol. 20; no. 6 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
01.06.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1438-1656 1527-2648 |
DOI | 10.1002/adem.201701168 |
Cover
Loading…
Abstract | The enhancement of electromagnetic wave absorption at high‐temperature as well as oxidation is cutting‐edge issue in current electromagnetic functional materials due to the strong demand of stealth aircrafts or aero‐engines working in harsh environments. In this contribution, the excellent electromagnetic wave absorption at 1158 K (885 °C) with a minimum reflection coefficient (RCmin) of −12.62 dB and a wide effective absorption bandwidth (RCmin < –10 dB) of 3.2 GHz was achieved on iron‐containing siliconboron carbonitride (SiBCN) monolithic ceramics by using polymer‐derived ceramics (PDC) route, setting a new record for EM wave absorption materials at high‐temperature. In addition, these materials exhibited desirable mechanical properties and excellent high‐temperature resistance until 1400 °C in argon atmosphere and 885 °C in air atmosphere, respectively. This ingenious strategy is generally benefiting the promotion of EM wave absorption materials with great potential in antenna housings, radomes, areo‐engines, and stealth aircrafts in harsh environments.
The high‐temperature electromagnetic wave absorption is achieved using precursor‐derived iron‐containing SiBCN monolithic ceramics. They show a wide effective absorption bandwidth (RCmin < −10 dB) of 3.2–4.2 GHz at 1158 K, setting a new record for EM wave absorption materials at high‐temperature. |
---|---|
AbstractList | The enhancement of electromagnetic wave absorption at high‐temperature as well as oxidation is cutting‐edge issue in current electromagnetic functional materials due to the strong demand of stealth aircrafts or aero‐engines working in harsh environments. In this contribution, the excellent electromagnetic wave absorption at 1158 K (885 °C) with a minimum reflection coefficient (RCmin) of −12.62 dB and a wide effective absorption bandwidth (RCmin < –10 dB) of 3.2 GHz was achieved on iron‐containing siliconboron carbonitride (SiBCN) monolithic ceramics by using polymer‐derived ceramics (PDC) route, setting a new record for EM wave absorption materials at high‐temperature. In addition, these materials exhibited desirable mechanical properties and excellent high‐temperature resistance until 1400 °C in argon atmosphere and 885 °C in air atmosphere, respectively. This ingenious strategy is generally benefiting the promotion of EM wave absorption materials with great potential in antenna housings, radomes, areo‐engines, and stealth aircrafts in harsh environments.
The high‐temperature electromagnetic wave absorption is achieved using precursor‐derived iron‐containing SiBCN monolithic ceramics. They show a wide effective absorption bandwidth (RCmin < −10 dB) of 3.2–4.2 GHz at 1158 K, setting a new record for EM wave absorption materials at high‐temperature. |
Author | Jiao, Tian Luo, Chunjia Tang, Yusheng Kong, Jie |
Author_xml | – sequence: 1 givenname: Chunjia surname: Luo fullname: Luo, Chunjia organization: MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Condition, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University – sequence: 2 givenname: Tian surname: Jiao fullname: Jiao, Tian organization: MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Condition, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University – sequence: 3 givenname: Yusheng surname: Tang fullname: Tang, Yusheng organization: MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Condition, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University – sequence: 4 givenname: Jie surname: Kong fullname: Kong, Jie email: kongjie@nwpu.edu.cn organization: MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Condition, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University |
BookMark | eNqFkL9OwzAQhy0EEm1hZfYLpNix47hjCYFWFBgoYowc51KMEqdyzJ9uXdl4xj4JqYpAQkJMd9L9vjvd10f7trGA0AklQ0pIeKoKqIchoTGhVMg91KNRGAeh4HK_6zmTARWROET9tn0iXYZQ1kNV-qahqsB6nFagvWtqtbDgjcYP6gXwOG8bt_Smsbgp8dQ1drP-SBrrlbHGLvCdOUtucAJO1Ua3WHlMaSQ36_crPDGLxy48h3rZjf2zgyN0UKqqheOvOkD3F-k8mQSz28tpMp4FOiRcBsCiqBC0UKoEDqVioxxyiAjleVmGKma0IFJFwJXQQspS5yGjHCImhYhzPmIDNNzt1a5pWwdltnSmVm6VUZJtXWVbV9m3qw7gvwBtvNp-7Z0y1d_YaIe9mgpW_xzJxufp9Q_7CbRIhI8 |
CitedBy_id | crossref_primary_10_1007_s40820_022_00865_x crossref_primary_10_1016_j_ceramint_2024_11_211 crossref_primary_10_1016_j_jeurceramsoc_2024_05_040 crossref_primary_10_1002_aoc_5979 crossref_primary_10_1016_j_cej_2024_157656 crossref_primary_10_1016_j_ceramint_2019_12_001 crossref_primary_10_1016_j_jallcom_2020_156029 crossref_primary_10_1016_j_cej_2018_11_108 crossref_primary_10_1007_s40843_022_2352_4 crossref_primary_10_1016_j_mtcomm_2025_111754 crossref_primary_10_1016_j_colsurfa_2023_132605 crossref_primary_10_1002_marc_201900100 crossref_primary_10_1007_s10854_024_12638_w crossref_primary_10_1016_j_materresbull_2024_112804 crossref_primary_10_1016_j_electacta_2018_11_088 crossref_primary_10_1002_adem_201800360 crossref_primary_10_1111_ijac_13338 crossref_primary_10_1016_j_jmrt_2024_03_043 crossref_primary_10_1021_acsami_8b07879 crossref_primary_10_1016_j_jallcom_2019_152957 crossref_primary_10_1007_s42114_024_01048_5 crossref_primary_10_1016_j_jeurceramsoc_2022_11_020 crossref_primary_10_1016_j_jeurceramsoc_2023_02_065 crossref_primary_10_1021_acsami_9b03944 crossref_primary_10_1016_j_ceramint_2019_03_052 crossref_primary_10_1016_j_colsurfa_2024_134234 crossref_primary_10_1016_j_compositesb_2019_03_018 crossref_primary_10_1007_s42114_018_0041_6 crossref_primary_10_1111_jace_16848 crossref_primary_10_1016_j_cej_2024_148878 crossref_primary_10_1021_acsami_1c07912 crossref_primary_10_1007_s10854_024_11953_6 crossref_primary_10_1038_s41598_023_27541_3 crossref_primary_10_1016_j_coco_2024_101954 crossref_primary_10_1016_j_matchemphys_2020_122832 crossref_primary_10_1016_j_jcis_2022_05_109 crossref_primary_10_1002_aoc_5352 crossref_primary_10_1016_j_jallcom_2025_178759 crossref_primary_10_1016_j_ceramint_2021_05_153 crossref_primary_10_1016_j_ceramint_2023_05_199 crossref_primary_10_1007_s42114_021_00286_1 crossref_primary_10_1021_acsomega_8b01252 crossref_primary_10_1016_j_cja_2020_06_028 crossref_primary_10_1016_j_carbon_2023_03_037 crossref_primary_10_15541_jim20240391 crossref_primary_10_1016_j_carbon_2021_11_051 crossref_primary_10_1016_j_compositesb_2019_01_081 crossref_primary_10_1039_C9RA02764E crossref_primary_10_1016_j_ceramint_2021_10_079 crossref_primary_10_1021_acssuschemeng_0c02789 crossref_primary_10_1016_j_compositesa_2020_106099 crossref_primary_10_1002_app_48412 crossref_primary_10_1016_j_jallcom_2019_151806 crossref_primary_10_3390_ma14030614 crossref_primary_10_1021_acsami_2c20397 crossref_primary_10_1016_j_compositesb_2024_111431 crossref_primary_10_1021_acsami_8b13658 crossref_primary_10_1016_j_cej_2023_147251 crossref_primary_10_1111_jace_20306 crossref_primary_10_1021_acsami_1c16909 crossref_primary_10_1021_acsaelm_1c00177 crossref_primary_10_1016_j_jallcom_2019_152007 crossref_primary_10_1021_acsami_8b22448 crossref_primary_10_1016_j_mseb_2023_116450 crossref_primary_10_1016_j_ceramint_2023_02_054 crossref_primary_10_1111_jace_16549 crossref_primary_10_1111_jace_17879 crossref_primary_10_1016_j_jallcom_2022_168283 crossref_primary_10_1016_j_ceramint_2024_10_055 crossref_primary_10_1007_s11664_022_09623_6 crossref_primary_10_1016_j_matlet_2018_12_023 crossref_primary_10_1016_j_ceramint_2024_05_413 crossref_primary_10_1016_j_compositesb_2024_111486 crossref_primary_10_1021_acssuschemeng_9b00017 crossref_primary_10_1111_jace_17596 crossref_primary_10_1080_09506608_2022_2077028 crossref_primary_10_1016_j_compositesa_2019_105627 crossref_primary_10_1016_j_jeurceramsoc_2025_117205 crossref_primary_10_1016_j_ceramint_2021_08_085 crossref_primary_10_1016_j_carbon_2021_03_057 crossref_primary_10_1016_j_carbon_2023_118189 crossref_primary_10_1007_s10853_019_04061_y crossref_primary_10_1002_adfm_202407148 crossref_primary_10_1021_acs_cgd_9b00064 crossref_primary_10_1016_j_apsusc_2018_10_079 crossref_primary_10_1016_j_cej_2022_139110 crossref_primary_10_1016_j_ceramint_2024_10_286 crossref_primary_10_1021_acsapm_9b00538 crossref_primary_10_1002_admt_202201222 crossref_primary_10_1007_s10965_020_02303_1 crossref_primary_10_1002_admi_201901820 crossref_primary_10_1002_asia_201800812 crossref_primary_10_1016_j_coco_2020_04_003 crossref_primary_10_1016_j_materresbull_2024_112718 crossref_primary_10_3390_ma15144845 crossref_primary_10_1016_j_compositesa_2018_10_036 crossref_primary_10_1007_s13399_024_05535_z crossref_primary_10_1007_s40820_019_0255_3 crossref_primary_10_1021_acs_inorgchem_1c03749 crossref_primary_10_1080_09506608_2021_1941716 crossref_primary_10_1021_acsami_0c20885 crossref_primary_10_1021_acsami_1c23087 crossref_primary_10_1039_C8TC01769G crossref_primary_10_1080_17452759_2024_2378937 crossref_primary_10_1016_j_jallcom_2019_06_243 crossref_primary_10_3390_ma11091502 crossref_primary_10_1016_j_compscitech_2019_02_018 crossref_primary_10_1016_j_compositesb_2019_107629 crossref_primary_10_1007_s10854_021_07422_z crossref_primary_10_1016_j_matdes_2022_111547 crossref_primary_10_1016_j_ceramint_2024_08_002 crossref_primary_10_1021_acsami_8b15365 crossref_primary_10_1039_D2TC04671G crossref_primary_10_1016_j_ceramint_2023_02_256 crossref_primary_10_1002_asia_201800432 crossref_primary_10_1007_s42114_018_0044_3 crossref_primary_10_1016_j_jcis_2023_11_145 crossref_primary_10_1016_j_jpcs_2021_110349 crossref_primary_10_1016_j_ceramint_2020_09_289 |
Cites_doi | 10.1002/adma.200306460 10.2109/jcersj.107.1025 10.1111/j.1151-2916.2001.tb00984.x 10.1016/j.matdes.2015.12.090 10.1039/C3TC31888E 10.1063/1.2202111 10.1002/adma.201405788 10.1021/acs.jpcc.6b03995 10.1179/1743280412Y.0000000011 10.1016/j.ssc.2013.03.004 10.1002/adma.201305293 10.1103/PhysRevB.75.205407 10.1021/acsami.5b05595 10.1038/srep07910 10.1021/acsami.6b00388 10.1126/science.aag2421 10.1016/j.ceramint.2013.07.080 10.1039/C5TC02185E 10.1016/j.carbon.2015.09.087 10.1021/acsami.6b00264 10.1063/1.3688435 10.1016/j.matchemphys.2010.11.011 10.1002/adom.201300439 10.1111/j.1151-2916.2001.tb00990.x 10.1063/1.3042210 10.1021/am403464e 10.1021/acsami.5b03177 10.1039/C5TC00426H 10.1016/j.jeurceramsoc.2013.08.042 10.1002/adma.201400108 10.1111/jace.12321 10.1038/382796a0 10.1039/C6TC01912A 10.1021/acsami.5b01122 10.1016/j.ceramint.2012.10.194 10.1038/srep24837 10.1016/j.carbon.2009.10.028 10.1111/j.1151-2916.1996.tb08932.x 10.1016/j.apsusc.2008.01.076 10.1002/adma.201403735 10.1021/acsami.6b03159 10.1016/j.powtec.2012.12.020 10.1103/PhysRevLett.97.187401 10.1021/ic900934u 10.1179/1743280414Y.0000000037 10.1103/PhysRevB.61.14095 10.1016/j.jallcom.2013.02.176 10.1039/C2TC00159D 10.1021/acsami.7b04602 10.1039/c4ta01715c 10.1016/j.carbon.2013.07.110 10.1021/acsami.5b12203 10.1021/jp309984p 10.1021/am509129a 10.1016/j.ssc.2012.10.028 10.1063/1.3152764 10.1002/adma.200304485 10.1021/ma1029086 10.1002/adma.201303088 |
ContentType | Journal Article |
Copyright | 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION |
DOI | 10.1002/adem.201701168 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1527-2648 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adem_201701168 ADEM201701168 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21174112 – fundername: Fundamental Research Funds for the Central Universities funderid: 3102017GX06011 – fundername: Shaanxi Natural Science Funds for Distinguished Young Scholars – fundername: Shaanxi Province Key Research and Development Plan for Industry Innovation Chain |
GroupedDBID | -~X 05W 0R~ 1L6 1OC 23M 31~ 33P 3SF 3WU 4.4 50Y 52U 5GY 5VS 66C 6P2 8-0 8-1 8UM AAESR AAEVG AAHQN AAIHA AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ACAHQ ACBWZ ACCZN ACGFS ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F5P FEDTE G-S GNP GODZA HGLYW HVGLF HZ~ IX1 JPC KQQ LATKE LAW LEEKS LH4 LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O9- OIG P2P P2W QRW R.K ROL RX1 RYL SUPJJ TUS W99 WBKPD WIH WIK WOHZO WXSBR XPP XV2 ZZTAW AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION |
ID | FETCH-LOGICAL-c2048-e355d61daafe4efa39bebe5014bff2a731d08a5e4a6c688fcb2314e538667b493 |
IEDL.DBID | DR2 |
ISSN | 1438-1656 |
IngestDate | Thu Apr 24 22:58:11 EDT 2025 Tue Jul 01 02:51:01 EDT 2025 Wed Aug 20 07:25:05 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2048-e355d61daafe4efa39bebe5014bff2a731d08a5e4a6c688fcb2314e538667b493 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1002_adem_201701168 crossref_citationtrail_10_1002_adem_201701168 wiley_primary_10_1002_adem_201701168_ADEM201701168 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2018 2018-06-00 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: June 2018 |
PublicationDecade | 2010 |
PublicationTitle | Advanced engineering materials |
PublicationYear | 2018 |
References | 2013; 25 2015; 5 2006; 97 2013; 1 2015; 3 2013; 65 2006; 99 1996; 382 2014; 26 2003; 15 2016; 96 2013; 565 2013; 163 2016; 92 2007; 75 2014; 40 1996; 79 1999; 107 2013; 5 2015; 7 2008; 93 2017; 9 2016; 120 2001; 84 2009; 48 2016; 4 2011; 126 2016; 6 2013; 58 2012; 111 2015; 27 2010; 48 2013; 39 2014; 2 2004; 16 2009; 94 2013; 237 2013; 117 2013; 96 2000; 61 2014; 59 2016; 353 2011; 44 2013; 154 2008; 254 2016; 8 2014; 34 e_1_2_5_27_1 e_1_2_5_25_1 e_1_2_5_48_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_29_1 e_1_2_5_42_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_59_1 e_1_2_5_9_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_57_1 e_1_2_5_7_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_55_1 e_1_2_5_5_1 e_1_2_5_3_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_30_1 e_1_2_5_53_1 e_1_2_5_51_1 e_1_2_5_28_1 e_1_2_5_49_1 e_1_2_5_26_1 e_1_2_5_47_1 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_22_1 e_1_2_5_43_1 e_1_2_5_60_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_58_1 e_1_2_5_8_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_56_1 e_1_2_5_6_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_54_1 e_1_2_5_4_1 e_1_2_5_2_1 e_1_2_5_18_1 e_1_2_5_31_1 e_1_2_5_52_1 e_1_2_5_50_1 |
References_xml | – volume: 254 start-page: 4708 year: 2008 publication-title: Appl. Surf. Sci – volume: 94 start-page: 233110 year: 2009 publication-title: Appl. Phys. Lett – volume: 120 start-page: 18721 year: 2016 publication-title: J. Phys. Chem. C – volume: 8 start-page: 7370 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 59 start-page: 326 year: 2014 publication-title: Int. Mater. Rev – volume: 6 start-page: 24837 year: 2016 publication-title: Sci. Rep – volume: 44 start-page: 1280 year: 2011 publication-title: Macromolecules – volume: 75 start-page: 205407 year: 2007 publication-title: Phys. Rev. B – volume: 58 start-page: 203 year: 2013 publication-title: Int. Mater. Rev – volume: 1 start-page: 765 year: 2013 publication-title: J. Mater. Chem. C – volume: 8 start-page: 3494 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 27 start-page: 2049 year: 2015 publication-title: Adv. Mater – volume: 7 start-page: 7073 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 48 start-page: 788 year: 2010 publication-title: Carbon – volume: 7 start-page: 19408 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 154 start-page: 64 year: 2013 publication-title: Solid State Commun – volume: 565 start-page: 66 year: 2013 publication-title: J. Alloy. Comp – volume: 65 start-page: 124 year: 2013 publication-title: Carbon – volume: 26 start-page: 3484 year: 2014 publication-title: Adv. Mater – volume: 117 start-page: 2135 year: 2013 publication-title: J. Phys. Chem. C – volume: 15 start-page: 600 year: 2003 publication-title: Adv. Mater – volume: 8 start-page: 6101 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 97 start-page: 187401 year: 2006 publication-title: Phy. Rev. Lett – volume: 3 start-page: 10017 year: 2015 publication-title: J. Mater. Chem. C – volume: 3 start-page: 4670 year: 2015 publication-title: J. Mater. Chem. C – volume: 25 start-page: 6905 year: 2013 publication-title: Adv. Mater – volume: 2 start-page: 214 year: 2014 publication-title: Adv. Opt. Mater – volume: 96 start-page: 2211 year: 2013 publication-title: J. Am. Ceram. Soc – volume: 34 start-page: 589 year: 2014 publication-title: J. Eur. Ceram. Soc – volume: 84 start-page: 2179 year: 2001 publication-title: J. Am. Ceram. Soc – volume: 61 start-page: 14095 year: 2000 publication-title: Phys. Rev. B – volume: 237 start-page: 309 year: 2013 publication-title: Powder Technol – volume: 163 start-page: 1 year: 2013 publication-title: Solid State Commun – volume: 79 start-page: 2017 year: 1996 publication-title: J. Am. Ceram. Soc – volume: 111 start-page: 061301 year: 2012 publication-title: J. Appl. Phys – volume: 353 start-page: 1137 year: 2016 publication-title: Science – volume: 2 start-page: 10540 year: 2014 publication-title: J. Mater. Chem. A – volume: 48 start-page: 10078 year: 2009 publication-title: Inorg. Chem – volume: 4 start-page: 7614 year: 2016 publication-title: J. Mater. Chem. C – volume: 9 start-page: 20038 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 26 start-page: 8120 year: 2014 publication-title: Adv. Mater – volume: 96 start-page: 972 year: 2016 publication-title: Carbon – volume: 99 start-page: 114306 year: 2006 publication-title: J. Appl. Phys – volume: 39 start-page: 3651 year: 2013 publication-title: Ceram. Int – volume: 93 start-page: 223112 year: 2008 publication-title: Appl. Phys. Lett – volume: 5 start-page: 7910 year: 2015 publication-title: Sci. Rep – volume: 84 start-page: 2213 year: 2001 publication-title: J. Am. Ceram. Soc – volume: 7 start-page: 6733 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 10367 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 16 start-page: 401 year: 2004 publication-title: Adv. Mater – volume: 2 start-page: 633 year: 2014 publication-title: J. Mater. Chem. C – volume: 7 start-page: 13604 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 20258 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 92 start-page: 563 year: 2016 publication-title: Mater. Des – volume: 107 start-page: 1025 year: 1999 publication-title: J. Ceram. Soc. Jap – volume: 126 start-page: 364 year: 2011 publication-title: Mater. Chem. Phys – volume: 26 start-page: 5480 year: 2014 publication-title: Adv. Mater – volume: 40 start-page: 1797 year: 2014 publication-title: Ceram. Int – volume: 382 start-page: 796 year: 1996 publication-title: Nature – ident: e_1_2_5_1_1 doi: 10.1002/adma.200306460 – ident: e_1_2_5_58_1 doi: 10.2109/jcersj.107.1025 – ident: e_1_2_5_60_1 doi: 10.1111/j.1151-2916.2001.tb00984.x – ident: e_1_2_5_35_1 doi: 10.1016/j.matdes.2015.12.090 – ident: e_1_2_5_38_1 doi: 10.1039/C3TC31888E – ident: e_1_2_5_49_1 doi: 10.1063/1.2202111 – ident: e_1_2_5_9_1 doi: 10.1002/adma.201405788 – ident: e_1_2_5_37_1 doi: 10.1021/acs.jpcc.6b03995 – ident: e_1_2_5_5_1 doi: 10.1179/1743280412Y.0000000011 – ident: e_1_2_5_28_1 doi: 10.1016/j.ssc.2013.03.004 – ident: e_1_2_5_8_1 doi: 10.1002/adma.201305293 – ident: e_1_2_5_53_1 doi: 10.1103/PhysRevB.75.205407 – ident: e_1_2_5_32_1 doi: 10.1021/acsami.5b05595 – ident: e_1_2_5_44_1 doi: 10.1038/srep07910 – ident: e_1_2_5_19_1 doi: 10.1021/acsami.6b00388 – ident: e_1_2_5_15_1 doi: 10.1126/science.aag2421 – ident: e_1_2_5_21_1 doi: 10.1016/j.ceramint.2013.07.080 – ident: e_1_2_5_31_1 doi: 10.1039/C5TC02185E – ident: e_1_2_5_18_1 doi: 10.1016/j.carbon.2015.09.087 – ident: e_1_2_5_51_1 doi: 10.1021/acsami.6b00264 – ident: e_1_2_5_6_1 doi: 10.1063/1.3688435 – ident: e_1_2_5_13_1 doi: 10.1016/j.matchemphys.2010.11.011 – ident: e_1_2_5_24_1 doi: 10.1002/adom.201300439 – ident: e_1_2_5_59_1 doi: 10.1111/j.1151-2916.2001.tb00990.x – ident: e_1_2_5_26_1 doi: 10.1063/1.3042210 – ident: e_1_2_5_46_1 doi: 10.1021/am403464e – ident: e_1_2_5_20_1 doi: 10.1021/acsami.5b03177 – ident: e_1_2_5_30_1 doi: 10.1039/C5TC00426H – ident: e_1_2_5_40_1 doi: 10.1016/j.jeurceramsoc.2013.08.042 – ident: e_1_2_5_2_1 doi: 10.1002/adma.201400108 – ident: e_1_2_5_34_1 doi: 10.1111/jace.12321 – ident: e_1_2_5_36_1 doi: 10.1038/382796a0 – ident: e_1_2_5_50_1 doi: 10.1039/C6TC01912A – ident: e_1_2_5_33_1 doi: 10.1021/acsami.5b01122 – ident: e_1_2_5_22_1 doi: 10.1016/j.ceramint.2012.10.194 – ident: e_1_2_5_56_1 doi: 10.1038/srep24837 – ident: e_1_2_5_11_1 doi: 10.1016/j.carbon.2009.10.028 – ident: e_1_2_5_47_1 doi: 10.1111/j.1151-2916.1996.tb08932.x – ident: e_1_2_5_25_1 doi: 10.1016/j.apsusc.2008.01.076 – ident: e_1_2_5_14_1 doi: 10.1002/adma.201403735 – ident: e_1_2_5_52_1 doi: 10.1021/acsami.6b03159 – ident: e_1_2_5_57_1 doi: 10.1111/jace.12321 – ident: e_1_2_5_23_1 doi: 10.1016/j.powtec.2012.12.020 – ident: e_1_2_5_45_1 doi: 10.1103/PhysRevLett.97.187401 – ident: e_1_2_5_48_1 doi: 10.1021/ic900934u – ident: e_1_2_5_3_1 doi: 10.1179/1743280414Y.0000000037 – ident: e_1_2_5_43_1 doi: 10.1103/PhysRevB.61.14095 – ident: e_1_2_5_41_1 doi: 10.1016/j.jallcom.2013.02.176 – ident: e_1_2_5_10_1 doi: 10.1039/C2TC00159D – ident: e_1_2_5_16_1 doi: 10.1021/acsami.7b04602 – ident: e_1_2_5_29_1 doi: 10.1039/c4ta01715c – ident: e_1_2_5_55_1 doi: 10.1016/j.carbon.2013.07.110 – ident: e_1_2_5_17_1 doi: 10.1021/acsami.5b12203 – ident: e_1_2_5_4_1 doi: 10.1021/jp309984p – ident: e_1_2_5_42_1 doi: 10.1021/am509129a – ident: e_1_2_5_27_1 doi: 10.1016/j.ssc.2012.10.028 – ident: e_1_2_5_54_1 doi: 10.1063/1.3152764 – ident: e_1_2_5_7_1 doi: 10.1002/adma.200304485 – ident: e_1_2_5_39_1 doi: 10.1021/ma1029086 – ident: e_1_2_5_12_1 doi: 10.1002/adma.201303088 |
SSID | ssj0011013 |
Score | 2.5132022 |
Snippet | The enhancement of electromagnetic wave absorption at high‐temperature as well as oxidation is cutting‐edge issue in current electromagnetic functional... |
SourceID | crossref wiley |
SourceType | Enrichment Source Index Database Publisher |
SubjectTerms | electromagnetic wave absorption high‐temperature stealth polymer‐derived ceramics siliconboron carbonitride |
Title | Excellent Electromagnetic Wave Absorption of Iron‐Containing SiBCN Ceramics at 1158 K High‐Temperature |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadem.201701168 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA6ykx78Lf4mB8FTt65N0_Y4x8ZU2EE33K0kaSLibKXrRDzt6s2_cX-Jec1WN0EEvbXwAm3yXt5H8r3vIXQmmS2kT0NL1YWyiNShGNpKWa7O1rFHXRYbtkWXdvrkauANFqr4jT5EeeAGkVHs1xDgjI9qX6KhwB4HapYPVwlQ7QuELUBFN6V-lE5tRX9kaPFtgczMXLXRdmrLw5ey0iJKLdJMewOx-QcadsljdZzzqnj7pt34nz_YROszDIobxmm20IpMttHagjLhDhq2Xosj_STHLdMo54ndJ1DwiO_Yi8QNPkqzYrfBqcKXWZpMJx-gdGUaTuDbh4tmFzdlBu3uR5jlWGPCYDp5v8bALNHGPakBuxF03kX9dqvX7FizxgyWAJ1fS2qQEtN6zJiSRCrmhlz7AtxQcqUc5rv12A6YJwmjggaBElyjSCL13kqpz0no7qFKkiZyH2ESa4zAlc99ygjXaC0MhXKF9h5BXObZB8iaL0wkZqrl0DxjGBm9ZSeCWYzKWTxA56X9s9Hr-NHSKRbnF7MIAqJ8O_zLoCO0qp8DQzA7RpU8G8sTDWVyflq46ycdGe3A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFG4UD-rB30b82YOJp-FgpduOSCAgyEEhelvarjVGHAaGMZ64evNv5C-xb4UJJsZEj1tek659r-9b-_p9CJ1KZgvpUt9SeaEsInUo-rZSlqOzdVikDgtNtUWL1jrk8q44rSaEuzCGHyLdcIPISNZrCHDYkD7_Yg2F8nGozXLhLMFbREsg6538VV2nDFI6uSUKySDybQHRzJS30S6cz7efy0uzODVJNNV1xKddNPUlj7lhzHPi7Rt747--YQOtTWAoLhm_2UQLMtpCqzPkhNuoW3lNdvWjGFeMVs4Tu4_gziO-ZS8Sl_ig108WHNxTuN7vRePRB5BdGc0JfPNwUW7hsuyD4v0AsxhrWOiNR-8NDMUl2rgtNWY3nM47qFOttMs1a6LNYAmg-rWkxikhzYeMKUmkYo7PtTvAISVXqsBcJx_aHitKwqignqcE10CSSL28Uupy4ju7KBP1IrmHMAk1TODK5S5lhGvA5vtCOUI7kCAOK9pZZE1nJhAT4nLQz-gGhnK5EMAoBukoZtFZav9sKDt-tCwks_OLWQAxkT7t_6XRCVquta-aQbPeahygFf3eM_VmhygT94fySCObmB8nvvsJ_OPx2w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8MwGA46QfTgtzg_cxA81XVrlrZHnRvOyRDd0FtJ0kTE2Y5aRTzt6s3f6C8xb7PVTRBBjy1voE3ej4fkzfMgtC-ZLaRLfUuVhbKI1KHo20pZjq7WYZU6LDTdFm162iVnN9WbsVv8hh8i33CDyMjyNQR4P1SlL9JQ6B6H1iwXjhK8aTRDqO2BX59c5gRSurZlAsmg8W0Bz8yIttGulCbHT5SlcZia1ZnGImKjLzTtJfeHTyk_FK_fyBv_8wtLaGEIQvGR8ZplNCWjFTQ_Rk24inr1l2xPP0px3SjlPLDbCG484mv2LPERf4yTLN3gWOFmEkcfg3egujKKE_jq7rjWxjWZgN79I2Yp1qDQ-xi8tTC0lmjjjtSI3TA6r6Fuo96pnVpDZQZLANGvJTVKCWk5ZExJIhVzfK6dAY4ouVIV5jrl0PZYVRJGBfU8JbiGkUTq5Eqpy4nvrKNCFEdyA2ESapDAlctdygjXcM33hXKEdh9BHFa1i8gaLUwghrTloJ7RCwzhciWAWQzyWSyig9y-bwg7frSsZIvzi1kAEZE_bf5l0B6avThpBOfNdmsLzenXnmk220aFNHmSOxrWpHw389xPTNXwkw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Excellent+Electromagnetic+Wave+Absorption+of+Iron%E2%80%90Containing+SiBCN+Ceramics+at+1158%E2%80%89K+High%E2%80%90Temperature&rft.jtitle=Advanced+engineering+materials&rft.au=Luo%2C+Chunjia&rft.au=Jiao%2C+Tian&rft.au=Tang%2C+Yusheng&rft.au=Kong%2C+Jie&rft.date=2018-06-01&rft.issn=1438-1656&rft.eissn=1527-2648&rft.volume=20&rft.issue=6&rft_id=info:doi/10.1002%2Fadem.201701168&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adem_201701168 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1438-1656&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1438-1656&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1438-1656&client=summon |