Theoretical investigation of the power curve of small HAWT by combining aerodynamic and mechatronic systems

Summary In this paper, a dynamic model is presented to analytically evaluate the power performance of small horizontal axis wind turbine (HAWT) by integrating all related theories in aerodynamics and mechatronics. This model is implemented into a computer program for predicting the output torque and...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of energy research Vol. 46; no. 1; pp. 433 - 440
Main Authors Chen, Yu‐Jen, Shiah, Yui‐Chuin, Tsai, Yi‐Lun, Chang, Chia‐Hsiang, Chen, Ming‐Huang
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Inc 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary In this paper, a dynamic model is presented to analytically evaluate the power performance of small horizontal axis wind turbine (HAWT) by integrating all related theories in aerodynamics and mechatronics. This model is implemented into a computer program for predicting the output torque and power performance curve of small HAWT. In this implemented program, all pertinent formulations in the blade momentum theory (BEMT) and the Fleming's rule are combined together. For verifying the model, a small HAWT (rated 400 W) using an axial flux permanent magnet (AFPM) generator was experimented in a full‐scale wind tunnel. For a field test, the prototype was installed in National Penghu University International Small‐Medium Wind Turbine Site to collect data at various wind speeds in a whole month. The collected data turned out to agree with our prediction using the proposed model. In designing small HAWT, this model not only expedites the development process but also ensures safe operation of the complete system. For analytically evaluating the performance of small horizontal axis wind turbine (HAWT), the present work has integrated theories in the aerodynamics and Mechatronics to work out a dynamic model. This proposed model only takes about 5 minutes to model the dynamic performances of a system. By overcoming experimental difficulties, prediction of the implemented program using the dynamic model has been verified. For additional verification, outdoor tests were carried out to make comparisons with our predictions, showing consistence between the both.
AbstractList Summary In this paper, a dynamic model is presented to analytically evaluate the power performance of small horizontal axis wind turbine (HAWT) by integrating all related theories in aerodynamics and mechatronics. This model is implemented into a computer program for predicting the output torque and power performance curve of small HAWT. In this implemented program, all pertinent formulations in the blade momentum theory (BEMT) and the Fleming's rule are combined together. For verifying the model, a small HAWT (rated 400 W) using an axial flux permanent magnet (AFPM) generator was experimented in a full‐scale wind tunnel. For a field test, the prototype was installed in National Penghu University International Small‐Medium Wind Turbine Site to collect data at various wind speeds in a whole month. The collected data turned out to agree with our prediction using the proposed model. In designing small HAWT, this model not only expedites the development process but also ensures safe operation of the complete system. For analytically evaluating the performance of small horizontal axis wind turbine (HAWT), the present work has integrated theories in the aerodynamics and Mechatronics to work out a dynamic model. This proposed model only takes about 5 minutes to model the dynamic performances of a system. By overcoming experimental difficulties, prediction of the implemented program using the dynamic model has been verified. For additional verification, outdoor tests were carried out to make comparisons with our predictions, showing consistence between the both.
In this paper, a dynamic model is presented to analytically evaluate the power performance of small horizontal axis wind turbine (HAWT) by integrating all related theories in aerodynamics and mechatronics. This model is implemented into a computer program for predicting the output torque and power performance curve of small HAWT. In this implemented program, all pertinent formulations in the blade momentum theory (BEMT) and the Fleming's rule are combined together. For verifying the model, a small HAWT (rated 400 W) using an axial flux permanent magnet (AFPM) generator was experimented in a full‐scale wind tunnel. For a field test, the prototype was installed in National Penghu University International Small‐Medium Wind Turbine Site to collect data at various wind speeds in a whole month. The collected data turned out to agree with our prediction using the proposed model. In designing small HAWT, this model not only expedites the development process but also ensures safe operation of the complete system.
Author Tsai, Yi‐Lun
Chen, Ming‐Huang
Chang, Chia‐Hsiang
Shiah, Yui‐Chuin
Chen, Yu‐Jen
Author_xml – sequence: 1
  givenname: Yu‐Jen
  surname: Chen
  fullname: Chen, Yu‐Jen
  organization: Industrial Technology Research Institute
– sequence: 2
  givenname: Yui‐Chuin
  orcidid: 0000-0002-6016-1426
  surname: Shiah
  fullname: Shiah, Yui‐Chuin
  email: ycshiah@mail.ncku.edu.tw
  organization: National Cheng Kung University
– sequence: 3
  givenname: Yi‐Lun
  surname: Tsai
  fullname: Tsai, Yi‐Lun
  organization: National University of Tainan
– sequence: 4
  givenname: Chia‐Hsiang
  surname: Chang
  fullname: Chang, Chia‐Hsiang
  organization: National Chung‐Shan Institute of Science and Technology
– sequence: 5
  givenname: Ming‐Huang
  surname: Chen
  fullname: Chen, Ming‐Huang
  organization: National Cheng Kung University
BookMark eNp10M9LwzAUB_AgE5xT_BcCHjxIZ9Kka3scYzphIEjB3UKWH1tmm8wk2-h_b7d5Ej2F996HF973GvSsswqAO4yGGKH0SflhVqbZBehjVJYJxnTRA31ERiQpUb64AtchbBDqZjjvg89qrZxX0QheQ2P3KkSz4tE4C52Gca3g1h2Uh2Ln9-rYCg2vazgbf1Rw2ULhmqWxxq4gV97J1vLGCMithI0Sax69s10d2hBVE27ApeZ1ULc_7wBUz9NqMkvmby-vk_E8ESmiWZJKXNKMU1FQqciSFkIQyXWWF5JoXnBcFiMtC0rlCAuZItJ18zxLCSm15pgMwP157da7r113ENu4nbfdjywdYdSlQsu8U8lZCe9C8EozYeLp8Oi5qRlG7BgnU54d4-z8wy-_9abhvv1DPp7lwdSq_Y-x6ftJfwPmSYX2
CitedBy_id crossref_primary_10_1016_j_seta_2022_102570
Cites_doi 10.1016/j.jweia.2012.04.026
10.1016/j.renene.2019.02.005
10.3390/en6062784
10.3390/en9050353
10.1016/j.renene.2018.07.050
10.1007/978-1-84996-175-2
10.1016/j.enconman.2014.06.055
10.1002/0470846127
10.1016/j.renene.2018.05.062
10.1016/j.jweia.2015.12.002
10.1051/rees/2017022
10.1002/0470846062
10.14419/ijet.v7i4.13.21333
10.1016/j.proeng.2013.12.027
10.1016/j.rser.2018.10.010
10.1016/j.jweia.2018.08.011
10.1016/j.apenergy.2017.06.099
10.1080/15325008.2015.1024356
ContentType Journal Article
Copyright 2020 John Wiley & Sons Ltd
2022 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2020 John Wiley & Sons Ltd
– notice: 2022 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SP
7ST
7TB
7TN
8FD
C1K
F1W
F28
FR3
H96
KR7
L.G
L7M
SOI
DOI 10.1002/er.5925
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Oceanic Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Environmental Sciences and Pollution Management
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-114X
EndPage 440
ExternalDocumentID 10_1002_er_5925
ER5925
Genre shortCommunication
GrantInformation_xml – fundername: Ministry of Science and Technology, Taiwan
  funderid: 108‐2221‐E‐006‐186
– fundername: Bureau of Energy, Ministry of Economic Affairs, R.O.C.
  funderid: No. 109‐D0107
– fundername: Diauson wind energy team
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AAJEY
AANHP
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJCF
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AEUYN
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AI.
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARAPS
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BKSAR
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CCPQU
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
FEDTE
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
H13
HCIFZ
HF~
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
M7S
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PATMY
PCBAR
PIMPY
PTHSS
PYCSY
Q.N
Q11
QB0
QRW
R.K
RHX
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WWI
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
ADMLS
AGQPQ
CITATION
PHGZM
PHGZT
7SP
7ST
7TB
7TN
8FD
C1K
F1W
F28
FR3
H96
KR7
L.G
L7M
SOI
ID FETCH-LOGICAL-c2045-2d1945a4c84de3b48cc3daf578d3fa8a1986fd844d61cd2033fa7752339ffa13
IEDL.DBID DR2
ISSN 0363-907X
IngestDate Wed Aug 13 07:18:02 EDT 2025
Thu Apr 24 23:10:48 EDT 2025
Tue Jul 01 01:41:32 EDT 2025
Wed Jan 22 16:28:04 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2045-2d1945a4c84de3b48cc3daf578d3fa8a1986fd844d61cd2033fa7752339ffa13
Notes Funding information
Bureau of Energy, Ministry of Economic Affairs, R.O.C., Grant/Award Number: No. 109‐D0107; Diauson wind energy team; Ministry of Science and Technology, Taiwan, Grant/Award Number: 108‐2221‐E‐006‐186
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6016-1426
PQID 2610109497
PQPubID 996365
PageCount 8
ParticipantIDs proquest_journals_2610109497
crossref_citationtrail_10_1002_er_5925
crossref_primary_10_1002_er_5925
wiley_primary_10_1002_er_5925_ER5925
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Bognor Regis
PublicationTitle International journal of energy research
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2017; 207
2018; 7
2017; 2
2018; 181
2001
2011
2018; 129
2013; 67
2015; 11
2015; 43
2019; 138
2018
1995
2016; 149
2003
2002
2012; 107‐108
2011; 6
2013; 6
2019; 100
2016; 9
2019; 131
2014; 86
Medd A (e_1_2_6_5_1) 2018
e_1_2_6_10_1
Evans SP (e_1_2_6_9_1) 2018; 181
Evans S (e_1_2_6_4_1) 2017; 2
Pourrajabian A (e_1_2_6_18_1) 2019; 100
Marignetti F (e_1_2_6_15_1) 2015; 43
e_1_2_6_19_1
Fitzgerald AE (e_1_2_6_24_1) 2003
Johnson DE (e_1_2_6_26_1) 1995
e_1_2_6_11_1
Johari MK (e_1_2_6_12_1) 2018; 7
e_1_2_6_17_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
Mohan N (e_1_2_6_25_1) 1995
e_1_2_6_8_1
e_1_2_6_7_1
e_1_2_6_6_1
Mahmoudi A (e_1_2_6_14_1) 2011; 6
Frulla G (e_1_2_6_13_1) 2015; 11
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
Battisti L (e_1_2_6_3_1) 2018; 129
References_xml – volume: 2
  start-page: 31
  year: 2017
  article-title: The suitability of the IEC 61400‐2 wind model for small wind turbines operating in the built environment
  publication-title: Renewable Energy Environ Sustainability
– year: 2011
– volume: 6
  start-page: 2525
  issue: 12
  year: 2011
  end-page: 2549
  article-title: Axial‐flux permanent‐magnet machine modeling,design, simulation and analysis
  publication-title: Sci Res Essays
– volume: 207
  start-page: 78
  year: 2017
  end-page: 95
  article-title: Cross axis wind turbine: pushing the limit of wind turbine technology with complementary design
  publication-title: Appl Energy
– volume: 43
  start-page: 1039
  year: 2015
  end-page: 1050
  article-title: An analytical approach to eccentricity in axial flux permanent magnet synchronous generators for wind turbines
  publication-title: Electr Power Compon Syst
– volume: 129
  start-page: 102
  year: 2018
  end-page: 113
  article-title: Small wind turbine effectiveness in the urban environment
  publication-title: Renewable Energy
– volume: 86
  start-page: 892
  year: 2014
  end-page: 900
  article-title: Modeling, analysis and comparison of TSR and OTC methods for MPPT and power smoothing in permanent magnet synchronous generator‐based wind turbines
  publication-title: Energy Convers Manage
– year: 2002
– volume: 67
  start-page: 279
  year: 2013
  end-page: 287
  article-title: Design of 10 kW horizontal‐axis wind turbine (HAWT) blade and aerodynamic investigation using numerical simulation
  publication-title: Procedia Eng
– volume: 149
  start-page: 17
  year: 2016
  end-page: 29
  article-title: Experiments and numerical simulations of the rotor‐blade performance for a small‐scale horizontal axis wind turbine
  publication-title: J Wind Eng Ind Aerodyn
– year: 2001
– volume: 9
  start-page: 353
  issue: 5
  year: 2016
  article-title: Experiments on the performance of small horizontal axis wind turbine with passive pitch control by disk pulley
  publication-title: Energies
– volume: 138
  start-page: 675
  year: 2019
  end-page: 690
  article-title: Performance analysis of the deflector integrated cross axis wind turbine
  publication-title: Renewable Energy
– year: 2003
– volume: 107‐108
  start-page: 263
  year: 2012
  end-page: 273
  article-title: The ideal power curve of small wind turbines from field data
  publication-title: J Wind Eng Ind Aerodyn
– year: 1995
– volume: 11
  start-page: 257
  issue: 3
  year: 2015
  end-page: 277
  article-title: A practical engineering approach to the design and manufacturing of a mini kW blade wind turbine: definition, optimization and CFD analysis
  publication-title: Fluid Dyn Mater Process
– volume: 100
  start-page: 1
  year: 2019
  end-page: 8
  article-title: Choosing an appropriate timber for a small wind turbine blade: a comparative study
  publication-title: Renewable Sustainable Energy Rev
– year: 2018
– volume: 6
  start-page: 2784
  issue: 6
  year: 2013
  end-page: 2803
  article-title: The performance test of three different horizontal axis wind turbine (HAWT) blade shapes using experimental and numerical methods
  publication-title: Energies
– volume: 131
  start-page: 268
  year: 2019
  end-page: 283
  article-title: Urban wind conditions and small wind turbines in the built environment: a review
  publication-title: Renewable Energy
– volume: 181
  start-page: 104
  year: 2018
  end-page: 111
  article-title: Development and experimental verification of a 5 kW small wind turbine aeroelastic model
  publication-title: J Wind Eng Ind Aerodyn
– volume: 7
  start-page: 74
  year: 2018
  end-page: 80
  article-title: Comparison of horizontal axis wind turbine (HAWT) and vertical axis wind turbine (VAWT)
  publication-title: Int J Eng Technol
– ident: e_1_2_6_7_1
  doi: 10.1016/j.jweia.2012.04.026
– volume-title: Power Electronics Converters, Applications, and Design
  year: 1995
  ident: e_1_2_6_25_1
– ident: e_1_2_6_10_1
  doi: 10.1016/j.renene.2019.02.005
– volume: 6
  start-page: 2525
  issue: 12
  year: 2011
  ident: e_1_2_6_14_1
  article-title: Axial‐flux permanent‐magnet machine modeling,design, simulation and analysis
  publication-title: Sci Res Essays
– volume: 11
  start-page: 257
  issue: 3
  year: 2015
  ident: e_1_2_6_13_1
  article-title: A practical engineering approach to the design and manufacturing of a mini kW blade wind turbine: definition, optimization and CFD analysis
  publication-title: Fluid Dyn Mater Process
– ident: e_1_2_6_22_1
  doi: 10.3390/en6062784
– ident: e_1_2_6_17_1
  doi: 10.3390/en9050353
– volume-title: Wind Energy Exploitation in Urban Environment
  year: 2018
  ident: e_1_2_6_5_1
– ident: e_1_2_6_2_1
  doi: 10.1016/j.renene.2018.07.050
– volume-title: Basic Electric Circuit Analysis
  year: 1995
  ident: e_1_2_6_26_1
– ident: e_1_2_6_6_1
  doi: 10.1007/978-1-84996-175-2
– ident: e_1_2_6_16_1
  doi: 10.1016/j.enconman.2014.06.055
– volume-title: Electric Machinery
  year: 2003
  ident: e_1_2_6_24_1
– ident: e_1_2_6_21_1
  doi: 10.1002/0470846127
– volume: 129
  start-page: 102
  year: 2018
  ident: e_1_2_6_3_1
  article-title: Small wind turbine effectiveness in the urban environment
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2018.05.062
– ident: e_1_2_6_19_1
  doi: 10.1016/j.jweia.2015.12.002
– volume: 2
  start-page: 31
  year: 2017
  ident: e_1_2_6_4_1
  article-title: The suitability of the IEC 61400‐2 wind model for small wind turbines operating in the built environment
  publication-title: Renewable Energy Environ Sustainability
  doi: 10.1051/rees/2017022
– ident: e_1_2_6_20_1
  doi: 10.1002/0470846062
– volume: 7
  start-page: 74
  year: 2018
  ident: e_1_2_6_12_1
  article-title: Comparison of horizontal axis wind turbine (HAWT) and vertical axis wind turbine (VAWT)
  publication-title: Int J Eng Technol
  doi: 10.14419/ijet.v7i4.13.21333
– ident: e_1_2_6_8_1
– ident: e_1_2_6_23_1
  doi: 10.1016/j.proeng.2013.12.027
– volume: 100
  start-page: 1
  year: 2019
  ident: e_1_2_6_18_1
  article-title: Choosing an appropriate timber for a small wind turbine blade: a comparative study
  publication-title: Renewable Sustainable Energy Rev
  doi: 10.1016/j.rser.2018.10.010
– volume: 181
  start-page: 104
  year: 2018
  ident: e_1_2_6_9_1
  article-title: Development and experimental verification of a 5 kW small wind turbine aeroelastic model
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/j.jweia.2018.08.011
– ident: e_1_2_6_11_1
  doi: 10.1016/j.apenergy.2017.06.099
– volume: 43
  start-page: 1039
  year: 2015
  ident: e_1_2_6_15_1
  article-title: An analytical approach to eccentricity in axial flux permanent magnet synchronous generators for wind turbines
  publication-title: Electr Power Compon Syst
  doi: 10.1080/15325008.2015.1024356
SSID ssj0009917
Score 2.3210964
Snippet Summary In this paper, a dynamic model is presented to analytically evaluate the power performance of small horizontal axis wind turbine (HAWT) by integrating...
In this paper, a dynamic model is presented to analytically evaluate the power performance of small horizontal axis wind turbine (HAWT) by integrating all...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 433
SubjectTerms Aerodynamics
Computer software
Data collection
dynamic model
Dynamic models
Field tests
Horizontal Axis Wind Turbines
Mechatronics
Momentum
Momentum theory
Performance evaluation
Permanent magnets
prediction of power performance curve
Prototypes
small HAWT
Torque
Turbine engines
Turbines
Wind power
Wind speed
Wind tunnel testing
Wind tunnels
Title Theoretical investigation of the power curve of small HAWT by combining aerodynamic and mechatronic systems
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fer.5925
https://www.proquest.com/docview/2610109497
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA4yX_TBuzhv5EF867a2aZs-Di8MUR-04vClJCcJymYn7SborzdpWjsVQXwqhHNCaHKSL5fzfQgdRQCxr0LqSBe4QyjRIRUwM5ZV0HMFBY-Zc8ir63BwRy6GwXBO6svyQ3weuJnIKOdrE-CMF92GNFTmnSD2THq5eall4NBNQxylUU9U31Lq7d_Qpssaz27l93UdasDlPEQt15jzVfRQt84-LRl1ZlPegfdvxI3_av4aWqmQJ-7bobKOFmS2gZbn-Ag30Shp0hrxU8PAMcnwRGENFfGLEVXDMMtfpSkqntl4jAf9-wTzN6ybwEu9Ccyknpet1j1mmcDPEh6ZVdvBlju62ELJ-VlyMnAqNQYHDGW94wk3JgEjQImQPicUwBdM6YgXvmKUuTENlaCEiNAF4fV8XRpFep_rx0ox199GrWySyR2EwVPggkZirMcJl4JJoYGeikFPvlTKsI2O665JoWIqN4IZ49RyLHupzFPz89q6rtrwxZJz_DTZr_s2raKzSPWu0dwIkjhqo6Oyk35zT89uzGf3b2Z7aMkz2RHlCc0-ak3zmTzQmGXKD9Fi__Tq8vawHKYfWZbsPA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9-HNSD3-J0ag7irXNt0zY9DlGqbh6k4sBDSV8SlG2ddJugf71J01o_EMRTISQlbfKS33vJ-_0QOg4AQlf61BI2pBahRJmUx_Rcll7b5hQcpuOQvRs_uiNXfa9f3qrUuTCGH-Ij4KYto1ivtYHrgPRpzRoq8pYXOt48WtR63oU7dVtTRyncE1TnlMoB7JuEWd30tGz4dSeq4eVnkFrsMhdr6KHqn7lcMmjNpmkL3r5RN_7vA9bRagk-ccfMlg00J7JNtPKJknALDeI6sxE_1SQc4wyPJVZoET9rXTUMs_xF6KLJiA2HOOrcxzh9xaoPaSE5gZlQS7ORu8cs43gk4JEZwR1s6KMn2yi-OI_PIqsUZLBAs9ZbDrdD4jEClHDhpoQCuJxJZfTclYwyO6S-5JQQ7tvAnbarSoNAubpuKCWz3R20kI0zsYswOBJsUGCMtVOSCs4EV1hPhqDWXyqE30An1dgkUJKVa82MYWJolp1E5In-eQ31rqris-Hn-FmlWQ1uUhroJFGOoz4UJGHQQMfFKP3WPDm_1Y-9v1U7QktR3Osm3cub63207OhkiSJg00QL03wmDhSEmaaHxVx9B5ym7sM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46QfTBuzidmgfxrXNt0zZ9HG5jXhGZOHwp6UmCsq0buwj6602a1k5FEJ8KISmHnnOS7yTN9yF0EgCErvSpJWyILUKJSimP6ViWXs3mFBym9yFvbv32A7nset05qS_DD_G54aYzI52vdYKPuDwrSEPFuOqFjreIlohfozqgG_cFc5SCPUF-TKnqv665L6uHnmUDvy5EBbqcx6jpItNaR0-5eebfkl51No2r8P6NufFf9m-gtQx64rqJlU20IJIttDpHSLiNep3iXiN-KSg4hgkeSqywIh5pVTUMs_Gr0E2TAev3cbv-2MHxG1YmxKngBGZCTcxG7B6zhOOBgGdm5HawIY-e7KBOq9k5b1uZHIMFmrPecrgdEo8RoIQLNyYUwOVMqpTnrmSU2SH1JaeEcN8G7tRc1RoEqtB1QymZ7e6iUjJMxB7C4EiwQUExVotJLDgTXCE9GYKafakQfhmd5q6JIKMq14oZ_ciQLDuRGEf645XVu_KOI8PO8bNLJfdtlKXnJFJloz4SJGFQRiepk34bHjXv9WP_b92O0fJdoxVdX9xeHaAVR9-USHdrKqg0Hc_EocIv0_gojdQPBBbtew
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theoretical+investigation+of+the+power+curve+of+small+HAWT+by+combining+aerodynamic+and+mechatronic+systems&rft.jtitle=International+journal+of+energy+research&rft.au=Chen%2C+Yu%E2%80%90Jen&rft.au=Shiah%2C+Yui%E2%80%90Chuin&rft.au=Tsai%2C+Yi%E2%80%90Lun&rft.au=Chang%2C+Chia%E2%80%90Hsiang&rft.date=2022-01-01&rft.issn=0363-907X&rft.eissn=1099-114X&rft.volume=46&rft.issue=1&rft.spage=433&rft.epage=440&rft_id=info:doi/10.1002%2Fer.5925&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_er_5925
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-907X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-907X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-907X&client=summon