Theoretical investigation of the power curve of small HAWT by combining aerodynamic and mechatronic systems
Summary In this paper, a dynamic model is presented to analytically evaluate the power performance of small horizontal axis wind turbine (HAWT) by integrating all related theories in aerodynamics and mechatronics. This model is implemented into a computer program for predicting the output torque and...
Saved in:
Published in | International journal of energy research Vol. 46; no. 1; pp. 433 - 440 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Inc
01.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
In this paper, a dynamic model is presented to analytically evaluate the power performance of small horizontal axis wind turbine (HAWT) by integrating all related theories in aerodynamics and mechatronics. This model is implemented into a computer program for predicting the output torque and power performance curve of small HAWT. In this implemented program, all pertinent formulations in the blade momentum theory (BEMT) and the Fleming's rule are combined together. For verifying the model, a small HAWT (rated 400 W) using an axial flux permanent magnet (AFPM) generator was experimented in a full‐scale wind tunnel. For a field test, the prototype was installed in National Penghu University International Small‐Medium Wind Turbine Site to collect data at various wind speeds in a whole month. The collected data turned out to agree with our prediction using the proposed model. In designing small HAWT, this model not only expedites the development process but also ensures safe operation of the complete system.
For analytically evaluating the performance of small horizontal axis wind turbine (HAWT), the present work has integrated theories in the aerodynamics and Mechatronics to work out a dynamic model. This proposed model only takes about 5 minutes to model the dynamic performances of a system. By overcoming experimental difficulties, prediction of the implemented program using the dynamic model has been verified. For additional verification, outdoor tests were carried out to make comparisons with our predictions, showing consistence between the both. |
---|---|
AbstractList | Summary
In this paper, a dynamic model is presented to analytically evaluate the power performance of small horizontal axis wind turbine (HAWT) by integrating all related theories in aerodynamics and mechatronics. This model is implemented into a computer program for predicting the output torque and power performance curve of small HAWT. In this implemented program, all pertinent formulations in the blade momentum theory (BEMT) and the Fleming's rule are combined together. For verifying the model, a small HAWT (rated 400 W) using an axial flux permanent magnet (AFPM) generator was experimented in a full‐scale wind tunnel. For a field test, the prototype was installed in National Penghu University International Small‐Medium Wind Turbine Site to collect data at various wind speeds in a whole month. The collected data turned out to agree with our prediction using the proposed model. In designing small HAWT, this model not only expedites the development process but also ensures safe operation of the complete system.
For analytically evaluating the performance of small horizontal axis wind turbine (HAWT), the present work has integrated theories in the aerodynamics and Mechatronics to work out a dynamic model. This proposed model only takes about 5 minutes to model the dynamic performances of a system. By overcoming experimental difficulties, prediction of the implemented program using the dynamic model has been verified. For additional verification, outdoor tests were carried out to make comparisons with our predictions, showing consistence between the both. In this paper, a dynamic model is presented to analytically evaluate the power performance of small horizontal axis wind turbine (HAWT) by integrating all related theories in aerodynamics and mechatronics. This model is implemented into a computer program for predicting the output torque and power performance curve of small HAWT. In this implemented program, all pertinent formulations in the blade momentum theory (BEMT) and the Fleming's rule are combined together. For verifying the model, a small HAWT (rated 400 W) using an axial flux permanent magnet (AFPM) generator was experimented in a full‐scale wind tunnel. For a field test, the prototype was installed in National Penghu University International Small‐Medium Wind Turbine Site to collect data at various wind speeds in a whole month. The collected data turned out to agree with our prediction using the proposed model. In designing small HAWT, this model not only expedites the development process but also ensures safe operation of the complete system. |
Author | Tsai, Yi‐Lun Chen, Ming‐Huang Chang, Chia‐Hsiang Shiah, Yui‐Chuin Chen, Yu‐Jen |
Author_xml | – sequence: 1 givenname: Yu‐Jen surname: Chen fullname: Chen, Yu‐Jen organization: Industrial Technology Research Institute – sequence: 2 givenname: Yui‐Chuin orcidid: 0000-0002-6016-1426 surname: Shiah fullname: Shiah, Yui‐Chuin email: ycshiah@mail.ncku.edu.tw organization: National Cheng Kung University – sequence: 3 givenname: Yi‐Lun surname: Tsai fullname: Tsai, Yi‐Lun organization: National University of Tainan – sequence: 4 givenname: Chia‐Hsiang surname: Chang fullname: Chang, Chia‐Hsiang organization: National Chung‐Shan Institute of Science and Technology – sequence: 5 givenname: Ming‐Huang surname: Chen fullname: Chen, Ming‐Huang organization: National Cheng Kung University |
BookMark | eNp10M9LwzAUB_AgE5xT_BcCHjxIZ9Kka3scYzphIEjB3UKWH1tmm8wk2-h_b7d5Ej2F996HF973GvSsswqAO4yGGKH0SflhVqbZBehjVJYJxnTRA31ERiQpUb64AtchbBDqZjjvg89qrZxX0QheQ2P3KkSz4tE4C52Gca3g1h2Uh2Ln9-rYCg2vazgbf1Rw2ULhmqWxxq4gV97J1vLGCMithI0Sax69s10d2hBVE27ApeZ1ULc_7wBUz9NqMkvmby-vk_E8ESmiWZJKXNKMU1FQqciSFkIQyXWWF5JoXnBcFiMtC0rlCAuZItJ18zxLCSm15pgMwP157da7r113ENu4nbfdjywdYdSlQsu8U8lZCe9C8EozYeLp8Oi5qRlG7BgnU54d4-z8wy-_9abhvv1DPp7lwdSq_Y-x6ftJfwPmSYX2 |
CitedBy_id | crossref_primary_10_1016_j_seta_2022_102570 |
Cites_doi | 10.1016/j.jweia.2012.04.026 10.1016/j.renene.2019.02.005 10.3390/en6062784 10.3390/en9050353 10.1016/j.renene.2018.07.050 10.1007/978-1-84996-175-2 10.1016/j.enconman.2014.06.055 10.1002/0470846127 10.1016/j.renene.2018.05.062 10.1016/j.jweia.2015.12.002 10.1051/rees/2017022 10.1002/0470846062 10.14419/ijet.v7i4.13.21333 10.1016/j.proeng.2013.12.027 10.1016/j.rser.2018.10.010 10.1016/j.jweia.2018.08.011 10.1016/j.apenergy.2017.06.099 10.1080/15325008.2015.1024356 |
ContentType | Journal Article |
Copyright | 2020 John Wiley & Sons Ltd 2022 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2020 John Wiley & Sons Ltd – notice: 2022 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SP 7ST 7TB 7TN 8FD C1K F1W F28 FR3 H96 KR7 L.G L7M SOI |
DOI | 10.1002/er.5925 |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Oceanic Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Environmental Sciences and Pollution Management Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1099-114X |
EndPage | 440 |
ExternalDocumentID | 10_1002_er_5925 ER5925 |
Genre | shortCommunication |
GrantInformation_xml | – fundername: Ministry of Science and Technology, Taiwan funderid: 108‐2221‐E‐006‐186 – fundername: Bureau of Energy, Ministry of Economic Affairs, R.O.C. funderid: No. 109‐D0107 – fundername: Diauson wind energy team |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHHS AAJEY AANHP AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJCF ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AEUYN AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AI. AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARAPS ASPBG ATCPS ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BKSAR BMNLL BMXJE BNHUX BROTX BRXPI BY8 CCPQU CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 FEDTE G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X H13 HCIFZ HF~ HHY HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 M7S MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PATMY PCBAR PIMPY PTHSS PYCSY Q.N Q11 QB0 QRW R.K RHX RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ TN5 UB1 V2E VH1 W8V W99 WBKPD WH7 WIH WIK WLBEL WOHZO WQJ WWI WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAYXX ADMLS AGQPQ CITATION PHGZM PHGZT 7SP 7ST 7TB 7TN 8FD C1K F1W F28 FR3 H96 KR7 L.G L7M SOI |
ID | FETCH-LOGICAL-c2045-2d1945a4c84de3b48cc3daf578d3fa8a1986fd844d61cd2033fa7752339ffa13 |
IEDL.DBID | DR2 |
ISSN | 0363-907X |
IngestDate | Wed Aug 13 07:18:02 EDT 2025 Thu Apr 24 23:10:48 EDT 2025 Tue Jul 01 01:41:32 EDT 2025 Wed Jan 22 16:28:04 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2045-2d1945a4c84de3b48cc3daf578d3fa8a1986fd844d61cd2033fa7752339ffa13 |
Notes | Funding information Bureau of Energy, Ministry of Economic Affairs, R.O.C., Grant/Award Number: No. 109‐D0107; Diauson wind energy team; Ministry of Science and Technology, Taiwan, Grant/Award Number: 108‐2221‐E‐006‐186 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6016-1426 |
PQID | 2610109497 |
PQPubID | 996365 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2610109497 crossref_citationtrail_10_1002_er_5925 crossref_primary_10_1002_er_5925 wiley_primary_10_1002_er_5925_ER5925 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2022 2022-01-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
PublicationDecade | 2020 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: Bognor Regis |
PublicationTitle | International journal of energy research |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2017; 207 2018; 7 2017; 2 2018; 181 2001 2011 2018; 129 2013; 67 2015; 11 2015; 43 2019; 138 2018 1995 2016; 149 2003 2002 2012; 107‐108 2011; 6 2013; 6 2019; 100 2016; 9 2019; 131 2014; 86 Medd A (e_1_2_6_5_1) 2018 e_1_2_6_10_1 Evans SP (e_1_2_6_9_1) 2018; 181 Evans S (e_1_2_6_4_1) 2017; 2 Pourrajabian A (e_1_2_6_18_1) 2019; 100 Marignetti F (e_1_2_6_15_1) 2015; 43 e_1_2_6_19_1 Fitzgerald AE (e_1_2_6_24_1) 2003 Johnson DE (e_1_2_6_26_1) 1995 e_1_2_6_11_1 Johari MK (e_1_2_6_12_1) 2018; 7 e_1_2_6_17_1 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_20_1 Mohan N (e_1_2_6_25_1) 1995 e_1_2_6_8_1 e_1_2_6_7_1 e_1_2_6_6_1 Mahmoudi A (e_1_2_6_14_1) 2011; 6 Frulla G (e_1_2_6_13_1) 2015; 11 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 Battisti L (e_1_2_6_3_1) 2018; 129 |
References_xml | – volume: 2 start-page: 31 year: 2017 article-title: The suitability of the IEC 61400‐2 wind model for small wind turbines operating in the built environment publication-title: Renewable Energy Environ Sustainability – year: 2011 – volume: 6 start-page: 2525 issue: 12 year: 2011 end-page: 2549 article-title: Axial‐flux permanent‐magnet machine modeling,design, simulation and analysis publication-title: Sci Res Essays – volume: 207 start-page: 78 year: 2017 end-page: 95 article-title: Cross axis wind turbine: pushing the limit of wind turbine technology with complementary design publication-title: Appl Energy – volume: 43 start-page: 1039 year: 2015 end-page: 1050 article-title: An analytical approach to eccentricity in axial flux permanent magnet synchronous generators for wind turbines publication-title: Electr Power Compon Syst – volume: 129 start-page: 102 year: 2018 end-page: 113 article-title: Small wind turbine effectiveness in the urban environment publication-title: Renewable Energy – volume: 86 start-page: 892 year: 2014 end-page: 900 article-title: Modeling, analysis and comparison of TSR and OTC methods for MPPT and power smoothing in permanent magnet synchronous generator‐based wind turbines publication-title: Energy Convers Manage – year: 2002 – volume: 67 start-page: 279 year: 2013 end-page: 287 article-title: Design of 10 kW horizontal‐axis wind turbine (HAWT) blade and aerodynamic investigation using numerical simulation publication-title: Procedia Eng – volume: 149 start-page: 17 year: 2016 end-page: 29 article-title: Experiments and numerical simulations of the rotor‐blade performance for a small‐scale horizontal axis wind turbine publication-title: J Wind Eng Ind Aerodyn – year: 2001 – volume: 9 start-page: 353 issue: 5 year: 2016 article-title: Experiments on the performance of small horizontal axis wind turbine with passive pitch control by disk pulley publication-title: Energies – volume: 138 start-page: 675 year: 2019 end-page: 690 article-title: Performance analysis of the deflector integrated cross axis wind turbine publication-title: Renewable Energy – year: 2003 – volume: 107‐108 start-page: 263 year: 2012 end-page: 273 article-title: The ideal power curve of small wind turbines from field data publication-title: J Wind Eng Ind Aerodyn – year: 1995 – volume: 11 start-page: 257 issue: 3 year: 2015 end-page: 277 article-title: A practical engineering approach to the design and manufacturing of a mini kW blade wind turbine: definition, optimization and CFD analysis publication-title: Fluid Dyn Mater Process – volume: 100 start-page: 1 year: 2019 end-page: 8 article-title: Choosing an appropriate timber for a small wind turbine blade: a comparative study publication-title: Renewable Sustainable Energy Rev – year: 2018 – volume: 6 start-page: 2784 issue: 6 year: 2013 end-page: 2803 article-title: The performance test of three different horizontal axis wind turbine (HAWT) blade shapes using experimental and numerical methods publication-title: Energies – volume: 131 start-page: 268 year: 2019 end-page: 283 article-title: Urban wind conditions and small wind turbines in the built environment: a review publication-title: Renewable Energy – volume: 181 start-page: 104 year: 2018 end-page: 111 article-title: Development and experimental verification of a 5 kW small wind turbine aeroelastic model publication-title: J Wind Eng Ind Aerodyn – volume: 7 start-page: 74 year: 2018 end-page: 80 article-title: Comparison of horizontal axis wind turbine (HAWT) and vertical axis wind turbine (VAWT) publication-title: Int J Eng Technol – ident: e_1_2_6_7_1 doi: 10.1016/j.jweia.2012.04.026 – volume-title: Power Electronics Converters, Applications, and Design year: 1995 ident: e_1_2_6_25_1 – ident: e_1_2_6_10_1 doi: 10.1016/j.renene.2019.02.005 – volume: 6 start-page: 2525 issue: 12 year: 2011 ident: e_1_2_6_14_1 article-title: Axial‐flux permanent‐magnet machine modeling,design, simulation and analysis publication-title: Sci Res Essays – volume: 11 start-page: 257 issue: 3 year: 2015 ident: e_1_2_6_13_1 article-title: A practical engineering approach to the design and manufacturing of a mini kW blade wind turbine: definition, optimization and CFD analysis publication-title: Fluid Dyn Mater Process – ident: e_1_2_6_22_1 doi: 10.3390/en6062784 – ident: e_1_2_6_17_1 doi: 10.3390/en9050353 – volume-title: Wind Energy Exploitation in Urban Environment year: 2018 ident: e_1_2_6_5_1 – ident: e_1_2_6_2_1 doi: 10.1016/j.renene.2018.07.050 – volume-title: Basic Electric Circuit Analysis year: 1995 ident: e_1_2_6_26_1 – ident: e_1_2_6_6_1 doi: 10.1007/978-1-84996-175-2 – ident: e_1_2_6_16_1 doi: 10.1016/j.enconman.2014.06.055 – volume-title: Electric Machinery year: 2003 ident: e_1_2_6_24_1 – ident: e_1_2_6_21_1 doi: 10.1002/0470846127 – volume: 129 start-page: 102 year: 2018 ident: e_1_2_6_3_1 article-title: Small wind turbine effectiveness in the urban environment publication-title: Renewable Energy doi: 10.1016/j.renene.2018.05.062 – ident: e_1_2_6_19_1 doi: 10.1016/j.jweia.2015.12.002 – volume: 2 start-page: 31 year: 2017 ident: e_1_2_6_4_1 article-title: The suitability of the IEC 61400‐2 wind model for small wind turbines operating in the built environment publication-title: Renewable Energy Environ Sustainability doi: 10.1051/rees/2017022 – ident: e_1_2_6_20_1 doi: 10.1002/0470846062 – volume: 7 start-page: 74 year: 2018 ident: e_1_2_6_12_1 article-title: Comparison of horizontal axis wind turbine (HAWT) and vertical axis wind turbine (VAWT) publication-title: Int J Eng Technol doi: 10.14419/ijet.v7i4.13.21333 – ident: e_1_2_6_8_1 – ident: e_1_2_6_23_1 doi: 10.1016/j.proeng.2013.12.027 – volume: 100 start-page: 1 year: 2019 ident: e_1_2_6_18_1 article-title: Choosing an appropriate timber for a small wind turbine blade: a comparative study publication-title: Renewable Sustainable Energy Rev doi: 10.1016/j.rser.2018.10.010 – volume: 181 start-page: 104 year: 2018 ident: e_1_2_6_9_1 article-title: Development and experimental verification of a 5 kW small wind turbine aeroelastic model publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/j.jweia.2018.08.011 – ident: e_1_2_6_11_1 doi: 10.1016/j.apenergy.2017.06.099 – volume: 43 start-page: 1039 year: 2015 ident: e_1_2_6_15_1 article-title: An analytical approach to eccentricity in axial flux permanent magnet synchronous generators for wind turbines publication-title: Electr Power Compon Syst doi: 10.1080/15325008.2015.1024356 |
SSID | ssj0009917 |
Score | 2.3210964 |
Snippet | Summary
In this paper, a dynamic model is presented to analytically evaluate the power performance of small horizontal axis wind turbine (HAWT) by integrating... In this paper, a dynamic model is presented to analytically evaluate the power performance of small horizontal axis wind turbine (HAWT) by integrating all... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 433 |
SubjectTerms | Aerodynamics Computer software Data collection dynamic model Dynamic models Field tests Horizontal Axis Wind Turbines Mechatronics Momentum Momentum theory Performance evaluation Permanent magnets prediction of power performance curve Prototypes small HAWT Torque Turbine engines Turbines Wind power Wind speed Wind tunnel testing Wind tunnels |
Title | Theoretical investigation of the power curve of small HAWT by combining aerodynamic and mechatronic systems |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fer.5925 https://www.proquest.com/docview/2610109497 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA4yX_TBuzhv5EF867a2aZs-Di8MUR-04vClJCcJymYn7SborzdpWjsVQXwqhHNCaHKSL5fzfQgdRQCxr0LqSBe4QyjRIRUwM5ZV0HMFBY-Zc8ir63BwRy6GwXBO6svyQ3weuJnIKOdrE-CMF92GNFTmnSD2THq5eall4NBNQxylUU9U31Lq7d_Qpssaz27l93UdasDlPEQt15jzVfRQt84-LRl1ZlPegfdvxI3_av4aWqmQJ-7bobKOFmS2gZbn-Ag30Shp0hrxU8PAMcnwRGENFfGLEVXDMMtfpSkqntl4jAf9-wTzN6ybwEu9Ccyknpet1j1mmcDPEh6ZVdvBlju62ELJ-VlyMnAqNQYHDGW94wk3JgEjQImQPicUwBdM6YgXvmKUuTENlaCEiNAF4fV8XRpFep_rx0ox199GrWySyR2EwVPggkZirMcJl4JJoYGeikFPvlTKsI2O665JoWIqN4IZ49RyLHupzFPz89q6rtrwxZJz_DTZr_s2raKzSPWu0dwIkjhqo6Oyk35zT89uzGf3b2Z7aMkz2RHlCc0-ak3zmTzQmGXKD9Fi__Tq8vawHKYfWZbsPA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9-HNSD3-J0ag7irXNt0zY9DlGqbh6k4sBDSV8SlG2ddJugf71J01o_EMRTISQlbfKS33vJ-_0QOg4AQlf61BI2pBahRJmUx_Rcll7b5hQcpuOQvRs_uiNXfa9f3qrUuTCGH-Ij4KYto1ivtYHrgPRpzRoq8pYXOt48WtR63oU7dVtTRyncE1TnlMoB7JuEWd30tGz4dSeq4eVnkFrsMhdr6KHqn7lcMmjNpmkL3r5RN_7vA9bRagk-ccfMlg00J7JNtPKJknALDeI6sxE_1SQc4wyPJVZoET9rXTUMs_xF6KLJiA2HOOrcxzh9xaoPaSE5gZlQS7ORu8cs43gk4JEZwR1s6KMn2yi-OI_PIqsUZLBAs9ZbDrdD4jEClHDhpoQCuJxJZfTclYwyO6S-5JQQ7tvAnbarSoNAubpuKCWz3R20kI0zsYswOBJsUGCMtVOSCs4EV1hPhqDWXyqE30An1dgkUJKVa82MYWJolp1E5In-eQ31rqris-Hn-FmlWQ1uUhroJFGOoz4UJGHQQMfFKP3WPDm_1Y-9v1U7QktR3Osm3cub63207OhkiSJg00QL03wmDhSEmaaHxVx9B5ym7sM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46QfTBuzidmgfxrXNt0zZ9HG5jXhGZOHwp6UmCsq0buwj6602a1k5FEJ8KISmHnnOS7yTN9yF0EgCErvSpJWyILUKJSimP6ViWXs3mFBym9yFvbv32A7nset05qS_DD_G54aYzI52vdYKPuDwrSEPFuOqFjreIlohfozqgG_cFc5SCPUF-TKnqv665L6uHnmUDvy5EBbqcx6jpItNaR0-5eebfkl51No2r8P6NufFf9m-gtQx64rqJlU20IJIttDpHSLiNep3iXiN-KSg4hgkeSqywIh5pVTUMs_Gr0E2TAev3cbv-2MHxG1YmxKngBGZCTcxG7B6zhOOBgGdm5HawIY-e7KBOq9k5b1uZHIMFmrPecrgdEo8RoIQLNyYUwOVMqpTnrmSU2SH1JaeEcN8G7tRc1RoEqtB1QymZ7e6iUjJMxB7C4EiwQUExVotJLDgTXCE9GYKafakQfhmd5q6JIKMq14oZ_ciQLDuRGEf645XVu_KOI8PO8bNLJfdtlKXnJFJloz4SJGFQRiepk34bHjXv9WP_b92O0fJdoxVdX9xeHaAVR9-USHdrKqg0Hc_EocIv0_gojdQPBBbtew |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theoretical+investigation+of+the+power+curve+of+small+HAWT+by+combining+aerodynamic+and+mechatronic+systems&rft.jtitle=International+journal+of+energy+research&rft.au=Chen%2C+Yu%E2%80%90Jen&rft.au=Shiah%2C+Yui%E2%80%90Chuin&rft.au=Tsai%2C+Yi%E2%80%90Lun&rft.au=Chang%2C+Chia%E2%80%90Hsiang&rft.date=2022-01-01&rft.issn=0363-907X&rft.eissn=1099-114X&rft.volume=46&rft.issue=1&rft.spage=433&rft.epage=440&rft_id=info:doi/10.1002%2Fer.5925&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_er_5925 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-907X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-907X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-907X&client=summon |