Global and Local Structure Preservation for Nonlinear High-dimensional Spectral Clustering
Abstract Spectral clustering is widely applied in real applications, as it utilizes a graph matrix to consider the similarity relationship of subjects. The quality of graph structure is usually important to the robustness of the clustering task. However, existing spectral clustering methods consider...
Saved in:
Published in | Computer journal Vol. 64; no. 7; pp. 993 - 1004 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford University Press
24.08.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Spectral clustering is widely applied in real applications, as it utilizes a graph matrix to consider the similarity relationship of subjects. The quality of graph structure is usually important to the robustness of the clustering task. However, existing spectral clustering methods consider either the local structure or the global structure, which can not provide comprehensive information for clustering tasks. Moreover, previous clustering methods only consider the simple similarity relationship, which may not output the optimal clustering performance. To solve these problems, we propose a novel clustering method considering both the local structure and the global structure for conducting nonlinear clustering. Specifically, our proposed method simultaneously considers (i) preserving the local structure and the global structure of subjects to provide comprehensive information for clustering tasks, (ii) exploring the nonlinear similarity relationship to capture the complex and inherent correlation of subjects and (iii) embedding dimensionality reduction techniques and a low-rank constraint in the framework of adaptive graph learning to reduce clustering biases. These constraints are considered in a unified optimization framework to result in one-step clustering. Experimental results on real data sets demonstrate that our method achieved competitive clustering performance in comparison with state-of-the-art clustering methods. |
---|---|
AbstractList | Abstract
Spectral clustering is widely applied in real applications, as it utilizes a graph matrix to consider the similarity relationship of subjects. The quality of graph structure is usually important to the robustness of the clustering task. However, existing spectral clustering methods consider either the local structure or the global structure, which can not provide comprehensive information for clustering tasks. Moreover, previous clustering methods only consider the simple similarity relationship, which may not output the optimal clustering performance. To solve these problems, we propose a novel clustering method considering both the local structure and the global structure for conducting nonlinear clustering. Specifically, our proposed method simultaneously considers (i) preserving the local structure and the global structure of subjects to provide comprehensive information for clustering tasks, (ii) exploring the nonlinear similarity relationship to capture the complex and inherent correlation of subjects and (iii) embedding dimensionality reduction techniques and a low-rank constraint in the framework of adaptive graph learning to reduce clustering biases. These constraints are considered in a unified optimization framework to result in one-step clustering. Experimental results on real data sets demonstrate that our method achieved competitive clustering performance in comparison with state-of-the-art clustering methods. Spectral clustering is widely applied in real applications, as it utilizes a graph matrix to consider the similarity relationship of subjects. The quality of graph structure is usually important to the robustness of the clustering task. However, existing spectral clustering methods consider either the local structure or the global structure, which can not provide comprehensive information for clustering tasks. Moreover, previous clustering methods only consider the simple similarity relationship, which may not output the optimal clustering performance. To solve these problems, we propose a novel clustering method considering both the local structure and the global structure for conducting nonlinear clustering. Specifically, our proposed method simultaneously considers (i) preserving the local structure and the global structure of subjects to provide comprehensive information for clustering tasks, (ii) exploring the nonlinear similarity relationship to capture the complex and inherent correlation of subjects and (iii) embedding dimensionality reduction techniques and a low-rank constraint in the framework of adaptive graph learning to reduce clustering biases. These constraints are considered in a unified optimization framework to result in one-step clustering. Experimental results on real data sets demonstrate that our method achieved competitive clustering performance in comparison with state-of-the-art clustering methods. |
Author | Zhan, Mengmeng Wen, Guoqiu Chen, Linjun Zhu, Yonghua Xie, Yangcai |
Author_xml | – sequence: 1 givenname: Guoqiu surname: Wen fullname: Wen, Guoqiu – sequence: 2 givenname: Yonghua surname: Zhu fullname: Zhu, Yonghua – sequence: 3 givenname: Linjun surname: Chen fullname: Chen, Linjun – sequence: 4 givenname: Mengmeng surname: Zhan fullname: Zhan, Mengmeng – sequence: 5 givenname: Yangcai surname: Xie fullname: Xie, Yangcai email: ycxie2020@163.com |
BookMark | eNqFkEFLAzEQhYNUsK1ePe_Vw7aTTTZLjlK0LRQV1IuXJZvO1pQ0KUlW9N-7tT0J4mkeM-8bHm9EBs47JOSawoSCZFPtd1tnp82naqCAMzKkXEBegKgGZAhAIeeigAsyinEL0FukGJK3ufWNsply62zlda-eU-h06gJmTwEjhg-VjHdZ60P24J01DlXIFmbznq_NDl3sjwdqjzqFXsxsFxMG4zaX5LxVNuLVaY7J6_3dy2yRrx7ny9ntKtcFsJQzXgouC4mNlrQsGfbbosWWccG0VkAl55oVlUBQXMi2whIVVxI0FRUyzcaEH__q4GMM2NbapJ_QfSBjawr1oZ_62E996qfHJr-wfTA7Fb7-Bm6OgO_2_3m_AQQofOM |
CitedBy_id | crossref_primary_10_1093_comjnl_bxab095 crossref_primary_10_1016_j_knosys_2024_111900 |
Cites_doi | 10.1109/TFUZZ.2003.814839 10.1109/TCYB.2020.3026190 10.1016/j.patcog.2020.107508 10.1007/s11280-017-0497-2 10.1109/TMM.2017.2703636 10.1007/s10107-012-0584-1 10.1109/TKDE.2018.2873378 10.1007/s11280-019-00731-8 10.1109/TKDE.2011.222 10.1016/S1535-6108(02)00030-2 10.1007/s11042-017-5120-0 10.1109/ACCESS.2018.2884441 10.1109/TPAMI.2005.33 10.1109/TPAMI.2010.161 10.1016/j.knosys.2018.09.009 10.1109/TPAMI.2013.57 10.1016/j.media.2020.101824 10.1109/TPAMI.2013.28 10.1016/j.camwa.2004.05.005 10.1073/pnas.35.11.652 10.1109/TCBB.2008.46 10.1016/j.inffus.2016.09.008 10.1016/j.inffus.2020.08.023 10.1109/TCYB.2017.2702343 10.1109/TNNLS.2016.2521602 10.1007/s11280-019-00766-x 10.1109/34.868688 10.1109/TKDE.2020.3017250 10.1109/TPAMI.2010.215 10.1145/1273496.1273512 |
ContentType | Journal Article |
Copyright | The British Computer Society 2021. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021 |
Copyright_xml | – notice: The British Computer Society 2021. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021 |
DBID | AAYXX CITATION |
DOI | 10.1093/comjnl/bxab020 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1460-2067 |
EndPage | 1004 |
ExternalDocumentID | 10_1093_comjnl_bxab020 10.1093/comjnl/bxab020 |
GroupedDBID | -E4 -~X .2P .DC .I3 0B8 0R~ 123 18M 1OL 1TH 29F 3R3 4.4 41~ 48X 5VS 5WA 6J9 6TJ 70D 85S 9M8 AAIJN AAJKP AAJQQ AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUAY AAUQX AAVAP AAYOK ABDTM ABEFU ABEUO ABIXL ABNKS ABPTD ABQLI ABQTQ ABSAR ABSMQ ABTAH ABXVV ABZBJ ACBEA ACFRR ACGFS ACGOD ACIWK ACNCT ACUFI ACUTJ ACYTK ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADOCK ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFIYH AFOFC AFXEN AGINJ AGKEF AGMDO AGSYK AHXPO AI. AIDUJ AIJHB AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT APWMN ASAOO ATDFG ATGXG AXUDD AZVOD BAYMD BCRHZ BEFXN BEYMZ BFFAM BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN CAG CDBKE COF CS3 CXTWN CZ4 DAKXR DFGAJ DILTD DU5 D~K EBS EE~ EJD F20 F9B FA8 FLIZI FLUFQ FOEOM GAUVT GJXCC H13 H5~ HAR HW0 HZ~ H~9 IOX J21 JAVBF KBUDW KOP KSI KSN M-Z M49 MBTAY ML0 MVM N9A NGC NMDNZ NOMLY NU- O0~ O9- OCL ODMLO OJQWA OJZSN OWPYF O~Y P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 RIG RNI ROL ROX ROZ RUSNO RW1 RXO RZO SC5 TAE TJP TN5 UCJ VH1 VOH WH7 WHG X7H XJT XOL XSW YAYTL YKOAZ YXANX ZHY ZKX ZY4 ~91 AAYXX ABAZT ABDFA ABEJV ABGNP ABVGC ABVLG ACUXJ ADMLS ADYJX AGORE AHGBF AJBYB AJNCP ALXQX ANAKG CITATION JXSIZ |
ID | FETCH-LOGICAL-c203t-34564929ebc91553e2032fef3463cca01944c3276e0a469f7e5ea4a90c167e3c3 |
ISSN | 0010-4620 |
IngestDate | Tue Jul 01 02:55:08 EDT 2025 Thu Apr 24 23:06:10 EDT 2025 Wed Aug 28 03:19:00 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | similarity matrix learning nonlinear learning dimensionality reduction spectral clustering |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c203t-34564929ebc91553e2032fef3463cca01944c3276e0a469f7e5ea4a90c167e3c3 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1093_comjnl_bxab020 crossref_primary_10_1093_comjnl_bxab020 oup_primary_10_1093_comjnl_bxab020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-24 |
PublicationDateYYYYMMDD | 2021-08-24 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-24 day: 24 |
PublicationDecade | 2020 |
PublicationTitle | Computer journal |
PublicationYear | 2021 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Zhu (2021103114302116200_ref10) 2021; 67 Zhu (2021103114302116200_ref22) 2020 Nie (2021103114302116200_ref31) 2017 Peng (2021103114302116200_ref41) 2017 Zeng (2021103114302116200_ref32) 2010; 33 Sun (2021103114302116200_ref12) 2017; 35 Boyd (2021103114302116200_ref42) 2011; 3 Wen (2021103114302116200_ref44) 2013; 142 Scholkopf (2021103114302116200_ref26) 1997 Shen (2021103114302116200_ref9) 2021; 66 Das (2021103114302116200_ref37) 2004; 48 Wang (2021103114302116200_ref20) 2018; 6 Fan and K (2021103114302116200_ref39) 1949; 35 Du (2021103114302116200_ref14) 2015 Chiang (2021103114302116200_ref16) 2003; 11 Hu (2021103114302116200_ref36) 2020; 23 Arbelaez (2021103114302116200_ref2) 2011; 33 Chen (2021103114302116200_ref47) 2017 Maaten (2021103114302116200_ref25) 2014; 15 F. (2021103114302116200_ref38) 1998 Huang (2021103114302116200_ref8) 2018; 48 Shen (2021103114302116200_ref18) 2020 Polito (2021103114302116200_ref28) 2001 Nie (2021103114302116200_ref40) 2017; 60 Zhu (2021103114302116200_ref29) 2018; 21 Wang (2021103114302116200_ref17) 2013; 35 Yang (2021103114302116200_ref27) 2005; 27 Cao (2021103114302116200_ref30) 2007 Elhamifar (2021103114302116200_ref48) 2013; 35 Zhu (2021103114302116200_ref13) 2017; 28 Hartigan (2021103114302116200_ref45) 1979; 28 Wu (2021103114302116200_ref34) 2006 Zhu (2021103114302116200_ref15) 2020; 23 Usha (2021103114302116200_ref4) 2018; 77 Jolliffe (2021103114302116200_ref23) 2002 Y (2021103114302116200_ref33) 2003 He (2021103114302116200_ref35) 2003 Zhu (2021103114302116200_ref6) 2019; 31 Singh (2021103114302116200_ref43) 2002; 1 Leung (2021103114302116200_ref1) 2010; 7 Shi (2021103114302116200_ref46) 2000; 22 Kang (2021103114302116200_ref3) 2011; 5 Ren (2021103114302116200_ref19) 2020 Zhu (2021103114302116200_ref11) 2017; 19 Scholkopft (2021103114302116200_ref24) 1999; 1 Zhao (2021103114302116200_ref7) 2013; 25 Tasoulis (2021103114302116200_ref5) 2020; 107 Kang (2021103114302116200_ref21) 2019; 163 |
References_xml | – volume: 1 start-page: 1 year: 1999 ident: 2021103114302116200_ref24 article-title: Fisher discriminant analysis with kernels publication-title: Neur. Netw. Signal Proc. IX – volume: 60 start-page: 142 year: 2017 ident: 2021103114302116200_ref40 article-title: A generalized power iteration method for solving quadratic problem on the stiefel manifold publication-title: Sci. China (Informat. Sci.) – volume-title: Pincipal Component Analysis year: 2002 ident: 2021103114302116200_ref23 – volume: 11 start-page: 518 year: 2003 ident: 2021103114302116200_ref16 article-title: A new kernel-based fuzzy clustering approach: support vector clustering with cell growing publication-title: IEEE Trans Fuzzy Syst. doi: 10.1109/TFUZZ.2003.814839 – start-page: 1 year: 2020 ident: 2021103114302116200_ref19 article-title: Consensus affinity graph learning for multiple kernel clustering publication-title: IEEE Trans Cybernet. doi: 10.1109/TCYB.2020.3026190 – start-page: 1255 volume-title: NIPS year: 2001 ident: 2021103114302116200_ref28 article-title: Grouping and Dimensionality Reduction by Locally Linear Embedding – volume: 5 start-page: 407 year: 2011 ident: 2021103114302116200_ref3 article-title: A regularized k-means and multiphase scale segmentation publication-title: Inver. Prob. Imag. – volume: 107 year: 2020 ident: 2021103114302116200_ref5 article-title: Nonlinear dimensionality reduction for clustering publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107508 – volume: 21 start-page: 1675 year: 2018 ident: 2021103114302116200_ref29 article-title: Self-representation and pca embedding for unsupervised feature selection publication-title: World Wide Web doi: 10.1007/s11280-017-0497-2 – volume: 19 start-page: 2033 year: 2017 ident: 2021103114302116200_ref11 article-title: Graph PCA hashing for similarity search publication-title: IEEE Trans. Multim. doi: 10.1109/TMM.2017.2703636 – volume: 142 start-page: 397 year: 2013 ident: 2021103114302116200_ref44 article-title: A feasible method for optimization with orthogonality constraints publication-title: Mathemat. Program. doi: 10.1007/s10107-012-0584-1 – volume: 31 start-page: 2022 year: 2019 ident: 2021103114302116200_ref6 article-title: One-step multi-view spectral clustering publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2018.2873378 – volume: 23 start-page: 1969 year: 2020 ident: 2021103114302116200_ref15 article-title: Spectral clustering via half-quadratic optimization publication-title: World Wide Web doi: 10.1007/s11280-019-00731-8 – volume: 25 start-page: 619 year: 2013 ident: 2021103114302116200_ref7 article-title: On similarity preserving feature selection publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2011.222 – volume: 1 start-page: 203 year: 2002 ident: 2021103114302116200_ref43 article-title: Gene expression correlates of clinical prostate cancer behavior publication-title: Cancer Cell doi: 10.1016/S1535-6108(02)00030-2 – volume: 77 start-page: 15353 year: 2018 ident: 2021103114302116200_ref4 article-title: Improved segmentation and change detection of multi-spectral satellite imagery using graph cut based clustering and multiclass SVM publication-title: Multim. Tools Applicat. doi: 10.1007/s11042-017-5120-0 – volume: 6 start-page: 77911 year: 2018 ident: 2021103114302116200_ref20 article-title: Multiple kernel clustering with global and local structure alignment publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2884441 – start-page: 3476 year: 2015 ident: 2021103114302116200_ref14 article-title: Robust multiple kernel k-means using l21-norm publication-title: IJCAI – volume: 27 start-page: 230 year: 2005 ident: 2021103114302116200_ref27 article-title: KPCA plus LDA: a complete kernel fisher discriminant framework for feature extraction and recognition publication-title: IEEE Trans Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2005.33 – volume: 3 start-page: 1 year: 2011 ident: 2021103114302116200_ref42 article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers publication-title: Foundat. Trend. Mach. Lear. – volume: 33 start-page: 898 year: 2011 ident: 2021103114302116200_ref2 article-title: Contour detection and hierarchical image segmentation publication-title: IEEE Trans Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2010.161 – volume: 163 start-page: 510 year: 2019 ident: 2021103114302116200_ref21 article-title: Low-rank kernel learning for graph-based clustering publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2018.09.009 – volume: 35 start-page: 2765 year: 2013 ident: 2021103114302116200_ref48 article-title: Sparse subspace clustering: algorithm, theory, and applications publication-title: IEEE Trans Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.57 – volume: 67 year: 2021 ident: 2021103114302116200_ref10 article-title: Joint prediction and time estimation of covid-19 developing severe symptoms using chest CT scan publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101824 – start-page: 583 year: 1997 ident: 2021103114302116200_ref26 article-title: Kernel principal component analysis publication-title: International Conference on Artificial Neural Networks (ICANN) – volume: 35 start-page: 2223 year: 2013 ident: 2021103114302116200_ref17 article-title: Multi-exemplar affinity propagation publication-title: IEEE Trans Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.28 – volume: 48 start-page: 715 year: 2004 ident: 2021103114302116200_ref37 article-title: The Laplacian spectrum of a graph publication-title: Comp. Math. Applicat. doi: 10.1016/j.camwa.2004.05.005 – volume: 35 start-page: 652 year: 1949 ident: 2021103114302116200_ref39 article-title: On a theorem of weyl concerning eigenvalues of linear transformations I publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.35.11.652 – volume: 7 start-page: 108 year: 2010 ident: 2021103114302116200_ref1 article-title: A multiple-filter-multiple-wrapper approach to gene selection and microarray data classification publication-title: IEEE/ACM Trans Comput. Biol. Bioinform. doi: 10.1109/TCBB.2008.46 – start-page: 2408 year: 2017 ident: 2021103114302116200_ref31 article-title: Multi-view clustering and semi-supervised classification with adaptive neighbours publication-title: AAAI – volume: 35 start-page: 117 year: 2017 ident: 2021103114302116200_ref12 article-title: PAC-Bayes analysis of multi-view learning publication-title: Informat. Fusion doi: 10.1016/j.inffus.2016.09.008 – start-page: 153 year: 2003 ident: 2021103114302116200_ref35 article-title: Locality preserving projections publication-title: Adv. Neural Informat. Proce. Syst. – volume: 66 start-page: 54 year: 2021 ident: 2021103114302116200_ref9 article-title: Heterogeneous data fusion for predicting mild cognitive impairment conversion publication-title: Informat. Fusion doi: 10.1016/j.inffus.2020.08.023 – volume: 28 start-page: 100 year: 1979 ident: 2021103114302116200_ref45 article-title: A k-means clustering algorithm publication-title: J. Royal Statist. Soc. – volume: 15 start-page: 3221 year: 2014 ident: 2021103114302116200_ref25 article-title: Accelerating t-SNE using tree-based algorithms publication-title: J. Mach. Lear. Res. – volume: 48 start-page: 1460 year: 2018 ident: 2021103114302116200_ref8 article-title: Locally weighted ensemble clustering publication-title: IEEE Trans Cybern. doi: 10.1109/TCYB.2017.2702343 – volume: 28 start-page: 1263 year: 2017 ident: 2021103114302116200_ref13 article-title: Robust joint graph sparse coding for unsupervised spectral feature selection publication-title: IEEE Trans Neural. Netw. Learn. Syst. doi: 10.1109/TNNLS.2016.2521602 – volume: 23 start-page: 1945 year: 2020 ident: 2021103114302116200_ref36 article-title: Robust SVM with adaptive graph learning publication-title: World Wide Web doi: 10.1007/s11280-019-00766-x – volume: 22 start-page: 888 year: 2000 ident: 2021103114302116200_ref46 article-title: Normalized cuts and image segmentation publication-title: IEEE Trans Pattern Anal. Mach. Intell. doi: 10.1109/34.868688 – year: 2020 ident: 2021103114302116200_ref22 article-title: Unsupervised spectral feature selection with dynamic hyper-graph learning publication-title: IEEE Trans. Knowl. Data Eng.. doi: 10.1109/TKDE.2020.3017250 – volume: 33 start-page: 1532 year: 2010 ident: 2021103114302116200_ref32 article-title: Feature selection and kernel learning for local learning-based clustering publication-title: IEEE Trans Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2010.215 – start-page: 121 year: 2007 ident: 2021103114302116200_ref30 article-title: Feature selection in a kernel space publication-title: ICML doi: 10.1145/1273496.1273512 – start-page: 1529 year: 2006 ident: 2021103114302116200_ref34 article-title: A local learning approach for clustering publication-title: Adv. Neural Informat. Proc. Syst. – volume-title: Cambridge University Press year: 1998 ident: 2021103114302116200_ref38 – start-page: 2471 year: 2017 ident: 2021103114302116200_ref41 article-title: A general framework for sparsity regularized feature selection via iteratively reweighted least square minimization publication-title: AAAI – volume-title: Introductory Lectures on Convex Optimization: A Basic Course year: 2003 ident: 2021103114302116200_ref33 – start-page: 1518 year: 2017 ident: 2021103114302116200_ref47 article-title: Scalable normalized cut with improved spectral rotation publication-title: IJCAI – year: 2020 ident: 2021103114302116200_ref18 article-title: Half-quadratic minimization for unsupervised feature selection on incomplete data publication-title: IEEE Trans Neural. Netw. Learn. Syst. |
SSID | ssj0002096 |
Score | 2.2951188 |
Snippet | Abstract
Spectral clustering is widely applied in real applications, as it utilizes a graph matrix to consider the similarity relationship of subjects. The... Spectral clustering is widely applied in real applications, as it utilizes a graph matrix to consider the similarity relationship of subjects. The quality of... |
SourceID | crossref oup |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 993 |
Title | Global and Local Structure Preservation for Nonlinear High-dimensional Spectral Clustering |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5TX3zxLs4bQQQfRrRrstQ8jnlDpi86EF9GU1MvjE5lBdE_78mlbRwTLy-lZGna9Xw95-Qk5zsI7XKRRBL8BqKpNglrBimRiaCECbBWYRTx2KyYXlzysx47v2nd1GoffnbJSO4n7xPzSv4jVWgDueos2T9IthwUGuAc5AtHkDAcfyVjS9hv4v9dbZP0GnNu1wT01ooi3mq2El5aToz41WztIHea1d8ycpga9Drg0egMcs2bUFizgsDAFX5o-M9kFnOMxjrNhy-PeRWAzo1WH2b3D3m1C8jlgMDM9ynPqr42-qp31sLT3PsRiNCEVG3ic6FVQZczHtr1FWUVKeMB0dTwvqblzENU5KlNYaskOgusSewmanfLfAXyesoGcCLfYhkUd_WJtMcMXLnt0C64074doe-un0IzAErtXc-0jy66V6UhDwNT3q38eyXnJz2wIxy4Eb74NDpP0nNRrhfQnJtb4LYFyiKqqWwJzRfiw06NL6NbixsMuMEGN7jEDfZxgwE3uMQNHscNLnCDK9ysoN7J8XXnjLgaGyQJAzoiVNMJgYus4AvVJaQUtIapSinjFD5umAAwltAw4iqIGRdppFoqZrEIkiaPFE3oKprOhplaQ5ilAn6kMroLm0wJKZU8bMFlAmbYIpCtOiLFW-onjoBe10EZ9CfLpY72yv7Plnrl25478NJ_6LT-6-E20GwF8000DSJQW-B6juS2g8gnd6WLXA |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+and+Local+Structure+Preservation+for+Nonlinear+High-dimensional+Spectral+Clustering&rft.jtitle=Computer+journal&rft.au=Wen%2C+Guoqiu&rft.au=Zhu%2C+Yonghua&rft.au=Chen%2C+Linjun&rft.au=Zhan%2C+Mengmeng&rft.date=2021-08-24&rft.issn=0010-4620&rft.eissn=1460-2067&rft.volume=64&rft.issue=7&rft.spage=993&rft.epage=1004&rft_id=info:doi/10.1093%2Fcomjnl%2Fbxab020&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_comjnl_bxab020 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4620&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4620&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4620&client=summon |