Global and Local Structure Preservation for Nonlinear High-dimensional Spectral Clustering

Abstract Spectral clustering is widely applied in real applications, as it utilizes a graph matrix to consider the similarity relationship of subjects. The quality of graph structure is usually important to the robustness of the clustering task. However, existing spectral clustering methods consider...

Full description

Saved in:
Bibliographic Details
Published inComputer journal Vol. 64; no. 7; pp. 993 - 1004
Main Authors Wen, Guoqiu, Zhu, Yonghua, Chen, Linjun, Zhan, Mengmeng, Xie, Yangcai
Format Journal Article
LanguageEnglish
Published Oxford University Press 24.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Spectral clustering is widely applied in real applications, as it utilizes a graph matrix to consider the similarity relationship of subjects. The quality of graph structure is usually important to the robustness of the clustering task. However, existing spectral clustering methods consider either the local structure or the global structure, which can not provide comprehensive information for clustering tasks. Moreover, previous clustering methods only consider the simple similarity relationship, which may not output the optimal clustering performance. To solve these problems, we propose a novel clustering method considering both the local structure and the global structure for conducting nonlinear clustering. Specifically, our proposed method simultaneously considers (i) preserving the local structure and the global structure of subjects to provide comprehensive information for clustering tasks, (ii) exploring the nonlinear similarity relationship to capture the complex and inherent correlation of subjects and (iii) embedding dimensionality reduction techniques and a low-rank constraint in the framework of adaptive graph learning to reduce clustering biases. These constraints are considered in a unified optimization framework to result in one-step clustering. Experimental results on real data sets demonstrate that our method achieved competitive clustering performance in comparison with state-of-the-art clustering methods.
AbstractList Abstract Spectral clustering is widely applied in real applications, as it utilizes a graph matrix to consider the similarity relationship of subjects. The quality of graph structure is usually important to the robustness of the clustering task. However, existing spectral clustering methods consider either the local structure or the global structure, which can not provide comprehensive information for clustering tasks. Moreover, previous clustering methods only consider the simple similarity relationship, which may not output the optimal clustering performance. To solve these problems, we propose a novel clustering method considering both the local structure and the global structure for conducting nonlinear clustering. Specifically, our proposed method simultaneously considers (i) preserving the local structure and the global structure of subjects to provide comprehensive information for clustering tasks, (ii) exploring the nonlinear similarity relationship to capture the complex and inherent correlation of subjects and (iii) embedding dimensionality reduction techniques and a low-rank constraint in the framework of adaptive graph learning to reduce clustering biases. These constraints are considered in a unified optimization framework to result in one-step clustering. Experimental results on real data sets demonstrate that our method achieved competitive clustering performance in comparison with state-of-the-art clustering methods.
Spectral clustering is widely applied in real applications, as it utilizes a graph matrix to consider the similarity relationship of subjects. The quality of graph structure is usually important to the robustness of the clustering task. However, existing spectral clustering methods consider either the local structure or the global structure, which can not provide comprehensive information for clustering tasks. Moreover, previous clustering methods only consider the simple similarity relationship, which may not output the optimal clustering performance. To solve these problems, we propose a novel clustering method considering both the local structure and the global structure for conducting nonlinear clustering. Specifically, our proposed method simultaneously considers (i) preserving the local structure and the global structure of subjects to provide comprehensive information for clustering tasks, (ii) exploring the nonlinear similarity relationship to capture the complex and inherent correlation of subjects and (iii) embedding dimensionality reduction techniques and a low-rank constraint in the framework of adaptive graph learning to reduce clustering biases. These constraints are considered in a unified optimization framework to result in one-step clustering. Experimental results on real data sets demonstrate that our method achieved competitive clustering performance in comparison with state-of-the-art clustering methods.
Author Zhan, Mengmeng
Wen, Guoqiu
Chen, Linjun
Zhu, Yonghua
Xie, Yangcai
Author_xml – sequence: 1
  givenname: Guoqiu
  surname: Wen
  fullname: Wen, Guoqiu
– sequence: 2
  givenname: Yonghua
  surname: Zhu
  fullname: Zhu, Yonghua
– sequence: 3
  givenname: Linjun
  surname: Chen
  fullname: Chen, Linjun
– sequence: 4
  givenname: Mengmeng
  surname: Zhan
  fullname: Zhan, Mengmeng
– sequence: 5
  givenname: Yangcai
  surname: Xie
  fullname: Xie, Yangcai
  email: ycxie2020@163.com
BookMark eNqFkEFLAzEQhYNUsK1ePe_Vw7aTTTZLjlK0LRQV1IuXJZvO1pQ0KUlW9N-7tT0J4mkeM-8bHm9EBs47JOSawoSCZFPtd1tnp82naqCAMzKkXEBegKgGZAhAIeeigAsyinEL0FukGJK3ufWNsply62zlda-eU-h06gJmTwEjhg-VjHdZ60P24J01DlXIFmbznq_NDl3sjwdqjzqFXsxsFxMG4zaX5LxVNuLVaY7J6_3dy2yRrx7ny9ntKtcFsJQzXgouC4mNlrQsGfbbosWWccG0VkAl55oVlUBQXMi2whIVVxI0FRUyzcaEH__q4GMM2NbapJ_QfSBjawr1oZ_62E996qfHJr-wfTA7Fb7-Bm6OgO_2_3m_AQQofOM
CitedBy_id crossref_primary_10_1093_comjnl_bxab095
crossref_primary_10_1016_j_knosys_2024_111900
Cites_doi 10.1109/TFUZZ.2003.814839
10.1109/TCYB.2020.3026190
10.1016/j.patcog.2020.107508
10.1007/s11280-017-0497-2
10.1109/TMM.2017.2703636
10.1007/s10107-012-0584-1
10.1109/TKDE.2018.2873378
10.1007/s11280-019-00731-8
10.1109/TKDE.2011.222
10.1016/S1535-6108(02)00030-2
10.1007/s11042-017-5120-0
10.1109/ACCESS.2018.2884441
10.1109/TPAMI.2005.33
10.1109/TPAMI.2010.161
10.1016/j.knosys.2018.09.009
10.1109/TPAMI.2013.57
10.1016/j.media.2020.101824
10.1109/TPAMI.2013.28
10.1016/j.camwa.2004.05.005
10.1073/pnas.35.11.652
10.1109/TCBB.2008.46
10.1016/j.inffus.2016.09.008
10.1016/j.inffus.2020.08.023
10.1109/TCYB.2017.2702343
10.1109/TNNLS.2016.2521602
10.1007/s11280-019-00766-x
10.1109/34.868688
10.1109/TKDE.2020.3017250
10.1109/TPAMI.2010.215
10.1145/1273496.1273512
ContentType Journal Article
Copyright The British Computer Society 2021. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021
Copyright_xml – notice: The British Computer Society 2021. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021
DBID AAYXX
CITATION
DOI 10.1093/comjnl/bxab020
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1460-2067
EndPage 1004
ExternalDocumentID 10_1093_comjnl_bxab020
10.1093/comjnl/bxab020
GroupedDBID -E4
-~X
.2P
.DC
.I3
0B8
0R~
123
18M
1OL
1TH
29F
3R3
4.4
41~
48X
5VS
5WA
6J9
6TJ
70D
85S
9M8
AAIJN
AAJKP
AAJQQ
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUAY
AAUQX
AAVAP
AAYOK
ABDTM
ABEFU
ABEUO
ABIXL
ABNKS
ABPTD
ABQLI
ABQTQ
ABSAR
ABSMQ
ABTAH
ABXVV
ABZBJ
ACBEA
ACFRR
ACGFS
ACGOD
ACIWK
ACNCT
ACUFI
ACUTJ
ACYTK
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADOCK
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AFXEN
AGINJ
AGKEF
AGMDO
AGSYK
AHXPO
AI.
AIDUJ
AIJHB
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
APWMN
ASAOO
ATDFG
ATGXG
AXUDD
AZVOD
BAYMD
BCRHZ
BEFXN
BEYMZ
BFFAM
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
CAG
CDBKE
COF
CS3
CXTWN
CZ4
DAKXR
DFGAJ
DILTD
DU5
D~K
EBS
EE~
EJD
F20
F9B
FA8
FLIZI
FLUFQ
FOEOM
GAUVT
GJXCC
H13
H5~
HAR
HW0
HZ~
H~9
IOX
J21
JAVBF
KBUDW
KOP
KSI
KSN
M-Z
M49
MBTAY
ML0
MVM
N9A
NGC
NMDNZ
NOMLY
NU-
O0~
O9-
OCL
ODMLO
OJQWA
OJZSN
OWPYF
O~Y
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RIG
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZO
SC5
TAE
TJP
TN5
UCJ
VH1
VOH
WH7
WHG
X7H
XJT
XOL
XSW
YAYTL
YKOAZ
YXANX
ZHY
ZKX
ZY4
~91
AAYXX
ABAZT
ABDFA
ABEJV
ABGNP
ABVGC
ABVLG
ACUXJ
ADMLS
ADYJX
AGORE
AHGBF
AJBYB
AJNCP
ALXQX
ANAKG
CITATION
JXSIZ
ID FETCH-LOGICAL-c203t-34564929ebc91553e2032fef3463cca01944c3276e0a469f7e5ea4a90c167e3c3
ISSN 0010-4620
IngestDate Tue Jul 01 02:55:08 EDT 2025
Thu Apr 24 23:06:10 EDT 2025
Wed Aug 28 03:19:00 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords similarity matrix learning
nonlinear learning
dimensionality reduction
spectral clustering
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c203t-34564929ebc91553e2032fef3463cca01944c3276e0a469f7e5ea4a90c167e3c3
PageCount 12
ParticipantIDs crossref_citationtrail_10_1093_comjnl_bxab020
crossref_primary_10_1093_comjnl_bxab020
oup_primary_10_1093_comjnl_bxab020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-24
PublicationDateYYYYMMDD 2021-08-24
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-24
  day: 24
PublicationDecade 2020
PublicationTitle Computer journal
PublicationYear 2021
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Zhu (2021103114302116200_ref10) 2021; 67
Zhu (2021103114302116200_ref22) 2020
Nie (2021103114302116200_ref31) 2017
Peng (2021103114302116200_ref41) 2017
Zeng (2021103114302116200_ref32) 2010; 33
Sun (2021103114302116200_ref12) 2017; 35
Boyd (2021103114302116200_ref42) 2011; 3
Wen (2021103114302116200_ref44) 2013; 142
Scholkopf (2021103114302116200_ref26) 1997
Shen (2021103114302116200_ref9) 2021; 66
Das (2021103114302116200_ref37) 2004; 48
Wang (2021103114302116200_ref20) 2018; 6
Fan and K (2021103114302116200_ref39) 1949; 35
Du (2021103114302116200_ref14) 2015
Chiang (2021103114302116200_ref16) 2003; 11
Hu (2021103114302116200_ref36) 2020; 23
Arbelaez (2021103114302116200_ref2) 2011; 33
Chen (2021103114302116200_ref47) 2017
Maaten (2021103114302116200_ref25) 2014; 15
F. (2021103114302116200_ref38) 1998
Huang (2021103114302116200_ref8) 2018; 48
Shen (2021103114302116200_ref18) 2020
Polito (2021103114302116200_ref28) 2001
Nie (2021103114302116200_ref40) 2017; 60
Zhu (2021103114302116200_ref29) 2018; 21
Wang (2021103114302116200_ref17) 2013; 35
Yang (2021103114302116200_ref27) 2005; 27
Cao (2021103114302116200_ref30) 2007
Elhamifar (2021103114302116200_ref48) 2013; 35
Zhu (2021103114302116200_ref13) 2017; 28
Hartigan (2021103114302116200_ref45) 1979; 28
Wu (2021103114302116200_ref34) 2006
Zhu (2021103114302116200_ref15) 2020; 23
Usha (2021103114302116200_ref4) 2018; 77
Jolliffe (2021103114302116200_ref23) 2002
Y (2021103114302116200_ref33) 2003
He (2021103114302116200_ref35) 2003
Zhu (2021103114302116200_ref6) 2019; 31
Singh (2021103114302116200_ref43) 2002; 1
Leung (2021103114302116200_ref1) 2010; 7
Shi (2021103114302116200_ref46) 2000; 22
Kang (2021103114302116200_ref3) 2011; 5
Ren (2021103114302116200_ref19) 2020
Zhu (2021103114302116200_ref11) 2017; 19
Scholkopft (2021103114302116200_ref24) 1999; 1
Zhao (2021103114302116200_ref7) 2013; 25
Tasoulis (2021103114302116200_ref5) 2020; 107
Kang (2021103114302116200_ref21) 2019; 163
References_xml – volume: 1
  start-page: 1
  year: 1999
  ident: 2021103114302116200_ref24
  article-title: Fisher discriminant analysis with kernels
  publication-title: Neur. Netw. Signal Proc. IX
– volume: 60
  start-page: 142
  year: 2017
  ident: 2021103114302116200_ref40
  article-title: A generalized power iteration method for solving quadratic problem on the stiefel manifold
  publication-title: Sci. China (Informat. Sci.)
– volume-title: Pincipal Component Analysis
  year: 2002
  ident: 2021103114302116200_ref23
– volume: 11
  start-page: 518
  year: 2003
  ident: 2021103114302116200_ref16
  article-title: A new kernel-based fuzzy clustering approach: support vector clustering with cell growing
  publication-title: IEEE Trans Fuzzy Syst.
  doi: 10.1109/TFUZZ.2003.814839
– start-page: 1
  year: 2020
  ident: 2021103114302116200_ref19
  article-title: Consensus affinity graph learning for multiple kernel clustering
  publication-title: IEEE Trans Cybernet.
  doi: 10.1109/TCYB.2020.3026190
– start-page: 1255
  volume-title: NIPS
  year: 2001
  ident: 2021103114302116200_ref28
  article-title: Grouping and Dimensionality Reduction by Locally Linear Embedding
– volume: 5
  start-page: 407
  year: 2011
  ident: 2021103114302116200_ref3
  article-title: A regularized k-means and multiphase scale segmentation
  publication-title: Inver. Prob. Imag.
– volume: 107
  year: 2020
  ident: 2021103114302116200_ref5
  article-title: Nonlinear dimensionality reduction for clustering
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107508
– volume: 21
  start-page: 1675
  year: 2018
  ident: 2021103114302116200_ref29
  article-title: Self-representation and pca embedding for unsupervised feature selection
  publication-title: World Wide Web
  doi: 10.1007/s11280-017-0497-2
– volume: 19
  start-page: 2033
  year: 2017
  ident: 2021103114302116200_ref11
  article-title: Graph PCA hashing for similarity search
  publication-title: IEEE Trans. Multim.
  doi: 10.1109/TMM.2017.2703636
– volume: 142
  start-page: 397
  year: 2013
  ident: 2021103114302116200_ref44
  article-title: A feasible method for optimization with orthogonality constraints
  publication-title: Mathemat. Program.
  doi: 10.1007/s10107-012-0584-1
– volume: 31
  start-page: 2022
  year: 2019
  ident: 2021103114302116200_ref6
  article-title: One-step multi-view spectral clustering
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2018.2873378
– volume: 23
  start-page: 1969
  year: 2020
  ident: 2021103114302116200_ref15
  article-title: Spectral clustering via half-quadratic optimization
  publication-title: World Wide Web
  doi: 10.1007/s11280-019-00731-8
– volume: 25
  start-page: 619
  year: 2013
  ident: 2021103114302116200_ref7
  article-title: On similarity preserving feature selection
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2011.222
– volume: 1
  start-page: 203
  year: 2002
  ident: 2021103114302116200_ref43
  article-title: Gene expression correlates of clinical prostate cancer behavior
  publication-title: Cancer Cell
  doi: 10.1016/S1535-6108(02)00030-2
– volume: 77
  start-page: 15353
  year: 2018
  ident: 2021103114302116200_ref4
  article-title: Improved segmentation and change detection of multi-spectral satellite imagery using graph cut based clustering and multiclass SVM
  publication-title: Multim. Tools Applicat.
  doi: 10.1007/s11042-017-5120-0
– volume: 6
  start-page: 77911
  year: 2018
  ident: 2021103114302116200_ref20
  article-title: Multiple kernel clustering with global and local structure alignment
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2884441
– start-page: 3476
  year: 2015
  ident: 2021103114302116200_ref14
  article-title: Robust multiple kernel k-means using l21-norm
  publication-title: IJCAI
– volume: 27
  start-page: 230
  year: 2005
  ident: 2021103114302116200_ref27
  article-title: KPCA plus LDA: a complete kernel fisher discriminant framework for feature extraction and recognition
  publication-title: IEEE Trans Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.33
– volume: 3
  start-page: 1
  year: 2011
  ident: 2021103114302116200_ref42
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Foundat. Trend. Mach. Lear.
– volume: 33
  start-page: 898
  year: 2011
  ident: 2021103114302116200_ref2
  article-title: Contour detection and hierarchical image segmentation
  publication-title: IEEE Trans Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2010.161
– volume: 163
  start-page: 510
  year: 2019
  ident: 2021103114302116200_ref21
  article-title: Low-rank kernel learning for graph-based clustering
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2018.09.009
– volume: 35
  start-page: 2765
  year: 2013
  ident: 2021103114302116200_ref48
  article-title: Sparse subspace clustering: algorithm, theory, and applications
  publication-title: IEEE Trans Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.57
– volume: 67
  year: 2021
  ident: 2021103114302116200_ref10
  article-title: Joint prediction and time estimation of covid-19 developing severe symptoms using chest CT scan
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101824
– start-page: 583
  year: 1997
  ident: 2021103114302116200_ref26
  article-title: Kernel principal component analysis
  publication-title: International Conference on Artificial Neural Networks (ICANN)
– volume: 35
  start-page: 2223
  year: 2013
  ident: 2021103114302116200_ref17
  article-title: Multi-exemplar affinity propagation
  publication-title: IEEE Trans Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.28
– volume: 48
  start-page: 715
  year: 2004
  ident: 2021103114302116200_ref37
  article-title: The Laplacian spectrum of a graph
  publication-title: Comp. Math. Applicat.
  doi: 10.1016/j.camwa.2004.05.005
– volume: 35
  start-page: 652
  year: 1949
  ident: 2021103114302116200_ref39
  article-title: On a theorem of weyl concerning eigenvalues of linear transformations I
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.35.11.652
– volume: 7
  start-page: 108
  year: 2010
  ident: 2021103114302116200_ref1
  article-title: A multiple-filter-multiple-wrapper approach to gene selection and microarray data classification
  publication-title: IEEE/ACM Trans Comput. Biol. Bioinform.
  doi: 10.1109/TCBB.2008.46
– start-page: 2408
  year: 2017
  ident: 2021103114302116200_ref31
  article-title: Multi-view clustering and semi-supervised classification with adaptive neighbours
  publication-title: AAAI
– volume: 35
  start-page: 117
  year: 2017
  ident: 2021103114302116200_ref12
  article-title: PAC-Bayes analysis of multi-view learning
  publication-title: Informat. Fusion
  doi: 10.1016/j.inffus.2016.09.008
– start-page: 153
  year: 2003
  ident: 2021103114302116200_ref35
  article-title: Locality preserving projections
  publication-title: Adv. Neural Informat. Proce. Syst.
– volume: 66
  start-page: 54
  year: 2021
  ident: 2021103114302116200_ref9
  article-title: Heterogeneous data fusion for predicting mild cognitive impairment conversion
  publication-title: Informat. Fusion
  doi: 10.1016/j.inffus.2020.08.023
– volume: 28
  start-page: 100
  year: 1979
  ident: 2021103114302116200_ref45
  article-title: A k-means clustering algorithm
  publication-title: J. Royal Statist. Soc.
– volume: 15
  start-page: 3221
  year: 2014
  ident: 2021103114302116200_ref25
  article-title: Accelerating t-SNE using tree-based algorithms
  publication-title: J. Mach. Lear. Res.
– volume: 48
  start-page: 1460
  year: 2018
  ident: 2021103114302116200_ref8
  article-title: Locally weighted ensemble clustering
  publication-title: IEEE Trans Cybern.
  doi: 10.1109/TCYB.2017.2702343
– volume: 28
  start-page: 1263
  year: 2017
  ident: 2021103114302116200_ref13
  article-title: Robust joint graph sparse coding for unsupervised spectral feature selection
  publication-title: IEEE Trans Neural. Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2521602
– volume: 23
  start-page: 1945
  year: 2020
  ident: 2021103114302116200_ref36
  article-title: Robust SVM with adaptive graph learning
  publication-title: World Wide Web
  doi: 10.1007/s11280-019-00766-x
– volume: 22
  start-page: 888
  year: 2000
  ident: 2021103114302116200_ref46
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Trans Pattern Anal. Mach. Intell.
  doi: 10.1109/34.868688
– year: 2020
  ident: 2021103114302116200_ref22
  article-title: Unsupervised spectral feature selection with dynamic hyper-graph learning
  publication-title: IEEE Trans. Knowl. Data Eng..
  doi: 10.1109/TKDE.2020.3017250
– volume: 33
  start-page: 1532
  year: 2010
  ident: 2021103114302116200_ref32
  article-title: Feature selection and kernel learning for local learning-based clustering
  publication-title: IEEE Trans Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2010.215
– start-page: 121
  year: 2007
  ident: 2021103114302116200_ref30
  article-title: Feature selection in a kernel space
  publication-title: ICML
  doi: 10.1145/1273496.1273512
– start-page: 1529
  year: 2006
  ident: 2021103114302116200_ref34
  article-title: A local learning approach for clustering
  publication-title: Adv. Neural Informat. Proc. Syst.
– volume-title: Cambridge University Press
  year: 1998
  ident: 2021103114302116200_ref38
– start-page: 2471
  year: 2017
  ident: 2021103114302116200_ref41
  article-title: A general framework for sparsity regularized feature selection via iteratively reweighted least square minimization
  publication-title: AAAI
– volume-title: Introductory Lectures on Convex Optimization: A Basic Course
  year: 2003
  ident: 2021103114302116200_ref33
– start-page: 1518
  year: 2017
  ident: 2021103114302116200_ref47
  article-title: Scalable normalized cut with improved spectral rotation
  publication-title: IJCAI
– year: 2020
  ident: 2021103114302116200_ref18
  article-title: Half-quadratic minimization for unsupervised feature selection on incomplete data
  publication-title: IEEE Trans Neural. Netw. Learn. Syst.
SSID ssj0002096
Score 2.2951188
Snippet Abstract Spectral clustering is widely applied in real applications, as it utilizes a graph matrix to consider the similarity relationship of subjects. The...
Spectral clustering is widely applied in real applications, as it utilizes a graph matrix to consider the similarity relationship of subjects. The quality of...
SourceID crossref
oup
SourceType Enrichment Source
Index Database
Publisher
StartPage 993
Title Global and Local Structure Preservation for Nonlinear High-dimensional Spectral Clustering
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5TX3zxLs4bQQQfRrRrstQ8jnlDpi86EF9GU1MvjE5lBdE_78mlbRwTLy-lZGna9Xw95-Qk5zsI7XKRRBL8BqKpNglrBimRiaCECbBWYRTx2KyYXlzysx47v2nd1GoffnbJSO4n7xPzSv4jVWgDueos2T9IthwUGuAc5AtHkDAcfyVjS9hv4v9dbZP0GnNu1wT01ooi3mq2El5aToz41WztIHea1d8ycpga9Drg0egMcs2bUFizgsDAFX5o-M9kFnOMxjrNhy-PeRWAzo1WH2b3D3m1C8jlgMDM9ynPqr42-qp31sLT3PsRiNCEVG3ic6FVQZczHtr1FWUVKeMB0dTwvqblzENU5KlNYaskOgusSewmanfLfAXyesoGcCLfYhkUd_WJtMcMXLnt0C64074doe-un0IzAErtXc-0jy66V6UhDwNT3q38eyXnJz2wIxy4Eb74NDpP0nNRrhfQnJtb4LYFyiKqqWwJzRfiw06NL6NbixsMuMEGN7jEDfZxgwE3uMQNHscNLnCDK9ysoN7J8XXnjLgaGyQJAzoiVNMJgYus4AvVJaQUtIapSinjFD5umAAwltAw4iqIGRdppFoqZrEIkiaPFE3oKprOhplaQ5ilAn6kMroLm0wJKZU8bMFlAmbYIpCtOiLFW-onjoBe10EZ9CfLpY72yv7Plnrl25478NJ_6LT-6-E20GwF8000DSJQW-B6juS2g8gnd6WLXA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+and+Local+Structure+Preservation+for+Nonlinear+High-dimensional+Spectral+Clustering&rft.jtitle=Computer+journal&rft.au=Wen%2C+Guoqiu&rft.au=Zhu%2C+Yonghua&rft.au=Chen%2C+Linjun&rft.au=Zhan%2C+Mengmeng&rft.date=2021-08-24&rft.issn=0010-4620&rft.eissn=1460-2067&rft.volume=64&rft.issue=7&rft.spage=993&rft.epage=1004&rft_id=info:doi/10.1093%2Fcomjnl%2Fbxab020&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_comjnl_bxab020
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4620&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4620&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4620&client=summon