Matrix transformation method in quadratic binary optimization

The paper deals with the binary minimization of a quadratic functional. Typically the problem is NP-hard and the organization of the quadratic functional landscape in space of multiple binary variables even without constraints is not currently understood. We tackle the problem with the classical Hop...

Full description

Saved in:
Bibliographic Details
Published inOptical memory & neural networks Vol. 24; no. 2; pp. 67 - 81
Main Authors Karandashev, I., Kryzhanovsky, B.
Format Journal Article
LanguageEnglish
Published Moscow Pleiades Publishing 01.04.2015
Subjects
Online AccessGet full text
ISSN1060-992X
1934-7898
DOI10.3103/S1060992X1502006X

Cover

Abstract The paper deals with the binary minimization of a quadratic functional. Typically the problem is NP-hard and the organization of the quadratic functional landscape in space of multiple binary variables even without constraints is not currently understood. We tackle the problem with the classical Hopfield neural network and show theoretically the exponential dependence between the energy and the attraction area of a minimum. As a consequence we propose a new algorithm using matrix transformation to cope with the problem. The matrix that gave birth to the functional is replaced by a new mix-matrix. This change of the objective function brings about a sharp increase in the minimization algorithm efficiency: the chances to find a global minimum grow as exp(α N ) where N is the dimensionality of the problem, and the energy spectrum of minima being found shifts considerably to the deep side so that the average of the spectrum differs from the energy of the global minimum by only 4–6% (subject to the type of matrix).
AbstractList The paper deals with the binary minimization of a quadratic functional. Typically the problem is NP-hard and the organization of the quadratic functional landscape in space of multiple binary variables even without constraints is not currently understood. We tackle the problem with the classical Hopfield neural network and show theoretically the exponential dependence between the energy and the attraction area of a minimum. As a consequence we propose a new algorithm using matrix transformation to cope with the problem. The matrix that gave birth to the functional is replaced by a new mix-matrix. This change of the objective function brings about a sharp increase in the minimization algorithm efficiency: the chances to find a global minimum grow as exp(α N ) where N is the dimensionality of the problem, and the energy spectrum of minima being found shifts considerably to the deep side so that the average of the spectrum differs from the energy of the global minimum by only 4–6% (subject to the type of matrix).
Author Karandashev, I.
Kryzhanovsky, B.
Author_xml – sequence: 1
  givenname: I.
  surname: Karandashev
  fullname: Karandashev, I.
  email: Yakov.Karandashev@phystech.edu
  organization: Moscow Institute of Physics and Technologies (State University)
– sequence: 2
  givenname: B.
  surname: Kryzhanovsky
  fullname: Kryzhanovsky, B.
  organization: Scientific Research Institute for System Analysis, Russian Academy of Sciences
BookMark eNp9kE1LAzEQhoNUsK3-AG_7B1YnH5smBw9S_IKKBxX2tmSzG03pJjVJQf31pq0nhZ5mmPd9hnlngkbOux6hcwwXFAO9fMbAQUpS4woIAK-P0BhLysqZkGKU-yyXW_0ETWJcAlScMDxGV48qBftZpKBcND4MKlnviqFP774rrCs-NqoLeaiL1joVvgq_Tnaw3zvfKTo2ahX7s986Ra-3Ny_z-3LxdPcwv16UmgCtSw5GEsaJMUTiTivKsKkYp7rjPeXCCGM0ky2pDKhWV1owPqMCtxSACC45naLZfq8OPsbQm0bbtLsg321XDYZm-4Xm3xcyif-Q62CHnOMgQ_ZMzF731odm6TfB5YAHoB9xFnCf
CitedBy_id crossref_primary_10_25682_NIISI_2016_1_12142
crossref_primary_10_3103_S1060992X16010057
crossref_primary_10_3103_S1060992X20030054
Cites_doi 10.3103/S1060992X1402009X
10.1007/978-3-540-85640-5_4
10.1073/pnas.79.8.2554
10.1137/S1052623400382467
10.1088/0305-4470/19/9/033
10.1002/3527603794
10.1142/S0129065799000083
10.1007/s10898-012-9947-7
10.1287/ijoc.1080.0275
10.1007/s10107-008-0235-8
10.1002/3527600876
10.1126/science.247.4945.978
10.1140/epjb/e2005-00280-6
10.1287/ijoc.11.1.15
10.1016/S0893-6080(03)00130-8
10.3103/S1060992X10020025
10.1016/S0925-2312(01)00337-X
10.1007/11550907_63
10.1002/3527603794.ch4
10.1007/11550907_64
10.1007/BF00339943
ContentType Journal Article
Copyright Allerton Press, Inc. 2015
Copyright_xml – notice: Allerton Press, Inc. 2015
DBID AAYXX
CITATION
DOI 10.3103/S1060992X1502006X
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1934-7898
EndPage 81
ExternalDocumentID 10_3103_S1060992X1502006X
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
29N
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
408
40D
40E
5VS
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACCUX
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
B-.
BA0
BDATZ
BGNMA
CAG
COF
CS3
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
I~X
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P9O
PF0
PT4
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
XU3
YLTOR
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
ID FETCH-LOGICAL-c203X-60f92462ff291dca341f5463cd6e368f8ffc49b25f0abc5c8467381b300286963
IEDL.DBID AGYKE
ISSN 1060-992X
IngestDate Tue Jul 01 01:43:13 EDT 2025
Thu Apr 24 23:05:05 EDT 2025
Fri Feb 21 02:38:04 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Gradient methods
Minimization methods
Combinatorial mathematics
Hopfield neural networks
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c203X-60f92462ff291dca341f5463cd6e368f8ffc49b25f0abc5c8467381b300286963
PageCount 15
ParticipantIDs crossref_citationtrail_10_3103_S1060992X1502006X
crossref_primary_10_3103_S1060992X1502006X
springer_journals_10_3103_S1060992X1502006X
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20150400
2015-4-00
PublicationDateYYYYMMDD 2015-04-01
PublicationDate_xml – month: 4
  year: 2015
  text: 20150400
PublicationDecade 2010
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
PublicationSubtitle Information Optics
PublicationTitle Optical memory & neural networks
PublicationTitleAbbrev Opt. Mem. Neural Networks
PublicationYear 2015
Publisher Pleiades Publishing
Publisher_xml – name: Pleiades Publishing
References Kryzhanovsky, Kryzhanovsky (CR25) 2009; 24
Marti, Duarte, Laguna (CR30) 2009; 1
(CR28) 2001; 64
Litinskii, Magomedov (CR22) 2005; 15
Hopfield, Tank (CR8) 1985; 52
Boettecher (CR23) 2005; 46
Karandashev, Kryzhanovsky (CR1) 2010; 19
Burer, Monteiro, Zhang (CR31) 2000; 12
Wu, Tam (CR12) 1999; 9
Pinkas, Dechter (CR13) 1995; 3
Kryzhanovsky, Magomedov (CR15) 2005; 3697
Karandashev, Kryzhanovsky (CR27) 2014; 23
Smith (CR20) 1999; 11
Rendl, Rinaldi, Wiegele (CR5) 2010; 121
Mulder, Wunsch (CR11) 2003; 16
Wiegele (CR6) 2006
Kryzhanovsky, Magomedov, Fonarev (CR24) 2006
Duch, Korczak (CR17) 1998
Litinskii (CR19) 2005; 3697
Joya, Atencia, Sandoval (CR21) 2002; 43
Goemans, Williamson (CR3) 1994
Hartmann, Rieger (CR18) 2001
CR29
Kryzhanovskii, Magomedov, Mikaelyan (CR14) 2005; 72
Hartmann, Rieger (CR16) 2004
Hopfield (CR7) 1981; 79
Liers, Junger, Reinelt, Rinaldi, Hartmann, Rieger (CR2) 2004
Poggio, Girosi (CR10) 1990; 247
Bellare, Goldreich, Sudan (CR4) 1995
Karandashev, Kryzhanovsky (CR26) 2013; 56
Kryzhanovsky (CR32) 2008; 17
Fu, Anderson (CR9) 1986; 19
BV Kryzhanovskii (4259_CR14) 2005; 72
R Marti (4259_CR30) 2009; 1
W Duch (4259_CR17) 1998
S Boettecher (4259_CR23) 2005; 46
F Liers (4259_CR2) 2004
AK Hartmann (4259_CR18) 2001
JJ Hopfield (4259_CR8) 1985; 52
AK Hartmann (4259_CR16) 2004
4259_CR29
YM Karandashev (4259_CR1) 2010; 19
KA Smith (4259_CR20) 1999; 11
LB Litinskii (4259_CR19) 2005; 3697
MX Goemans (4259_CR3) 1994
BV Kryzhanovsky (4259_CR25) 2009; 24
T Poggio (4259_CR10) 1990; 247
G Pinkas (4259_CR13) 1995; 3
LB Litinskii (4259_CR22) 2005; 15
A Wiegele (4259_CR6) 2006
F Rendl (4259_CR5) 2010; 121
G Joya (4259_CR21) 2002; 43
S Mulder (4259_CR11) 2003; 16
BV Kryzhanovsky (4259_CR24) 2006
I Karandashev (4259_CR27) 2014; 23
S Burer (4259_CR31) 2000; 12
M Bellare (4259_CR4) 1995
JJ Hopfield (4259_CR7) 1981; 79
F Wu (4259_CR12) 1999; 9
I Karandashev (4259_CR26) 2013; 56
(4259_CR28) 2001; 64
B Kryzhanovsky (4259_CR15) 2005; 3697
BV Kryzhanovsky (4259_CR32) 2008; 17
Y Fu (4259_CR9) 1986; 19
References_xml – start-page: 5888
  year: 2006
  end-page: 5892
  ident: CR24
  article-title: On the probability of finding local minima in optimization problems
  publication-title: Proc. of IJCNN
– volume: 23
  start-page: 84
  issue: 2
  year: 2014
  end-page: 88
  ident: CR27
  article-title: Attraction area of minima in quadratic binary optimization
  publication-title: Opt. Mem. Neural Networks (Inform. Opt.)
  doi: 10.3103/S1060992X1402009X
– volume: 24
  start-page: 51
  year: 2009
  end-page: 61
  ident: CR25
  article-title: The shape of a local minimum and the probability of its detection in random search
  publication-title: Lect. Notes Electric. Eng.
  doi: 10.1007/978-3-540-85640-5_4
– year: 1994
  ident: CR3
  article-title: 878-approximation algorithms for MAXCUT and MAX2SAT
  publication-title: ACM Symposium on Theory of Computing
– volume: 79
  start-page: 2554
  year: 1981
  end-page: 2558
  ident: CR7
  article-title: Neural Networks and physical systems with emergent collective computational abilities
  publication-title: Proc. Nat. Acad. Sci. USA
  doi: 10.1073/pnas.79.8.2554
– year: 1998
  ident: CR17
  article-title: Optimization and global minimization methods suitable for neural networks
  publication-title: KMK UMK Technical Report, 1/99; Neural Computing Surveys
– volume: 12
  start-page: 503
  year: 2000
  end-page: 521
  ident: CR31
  article-title: Rank-two relaxation heuristics for max-cut and other binary quadratic programs
  publication-title: SIAM J. Optimization
  doi: 10.1137/S1052623400382467
– volume: 19
  start-page: 1605
  year: 1986
  end-page: 1620
  ident: CR9
  article-title: Application of statistical mechanics to NP-complete problems in combinatorial optimization
  publication-title: J. Phys., Ser. A
  doi: 10.1088/0305-4470/19/9/033
– year: 2004
  ident: CR16
  publication-title: New Optimization Algorithms in Physics
  doi: 10.1002/3527603794
– volume: 9
  start-page: 87
  issue: 2
  year: 1999
  end-page: 93
  ident: CR12
  article-title: A neural network methodology of quadratic optimization
  publication-title: Int. J. Neural Systems
  doi: 10.1142/S0129065799000083
– ident: CR29
– start-page: 422
  year: 1995
  end-page: 431
  ident: CR4
  article-title: Free bits, PCPs and non-approximability, towards tight on fundations of computer science
  publication-title: IEEE Comput. Soc.
– volume: 56
  start-page: 1167
  issue: 3
  year: 2013
  end-page: 1185
  ident: CR26
  article-title: Increasing the attraction area of the global minimum in the binary optimization problem
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-012-9947-7
– year: 2006
  ident: CR6
  publication-title: Nonlinear optimization techniques applied to combinatorial optimization problems
– volume: 17
  start-page: 62
  issue: 1
  year: 2008
  end-page: 68
  ident: CR32
  article-title: Expansion of a matrix in terms of external products of configuration vectors
  publication-title: Opt. Mem. Neural Networks (Inform. Opt.)
– volume: 1
  start-page: 26
  issue: 21
  year: 2009
  end-page: 38
  ident: CR30
  article-title: Advanced scatter search for the max-cut problem
  publication-title: Informs J. Comput.
  doi: 10.1287/ijoc.1080.0275
– volume: 121
  start-page: 307
  issue: 2
  year: 2010
  ident: CR5
  article-title: Solving max-cut to optimality by intersecting semidefinite and polyhedral relaxations
  publication-title: Math. Programming
  doi: 10.1007/s10107-008-0235-8
– year: 2001
  ident: CR18
  publication-title: Optimization Algorithms in Physics
  doi: 10.1002/3527600876
– volume: 247
  start-page: 978
  year: 1990
  end-page: 982
  ident: CR10
  article-title: Regularization algorithms for learning that are equivalent to multilayer networks
  publication-title: Science
  doi: 10.1126/science.247.4945.978
– volume: 15
  start-page: 80
  issue: 1
  year: 2005
  end-page: 82
  ident: CR22
  article-title: Global minimization of a quadratic functional: neural networks approach
  publication-title: Pat. Rec. Image Analysis
– volume: 64
  issue: 056704
  year: 2001
  ident: CR28
  publication-title: Phys. Rev., Ser. E
– start-page: 47
  year: 2004
  end-page: 68
  ident: CR2
  article-title: Computing Exact Ground States of Hard Ising Spin Glass Problems by Branch-and-Cut
  publication-title: New Optimization Algorithms in Physics
– volume: 3697
  start-page: 397
  year: 2005
  end-page: 403
  ident: CR15
  article-title: Application of domain neural network to optimization tasks
  publication-title: Lect. Notes Comput. Sci.
– volume: 46
  start-page: 501
  year: 2005
  ident: CR23
  article-title: Extremal optimization for Sherrington-Kirkpatrick spin glasses
  publication-title: Eur. Phys. J., Ser. B
  doi: 10.1140/epjb/e2005-00280-6
– volume: 11
  start-page: 15
  issue: 1
  year: 1999
  end-page: 34
  ident: CR20
  article-title: Neural networks for combinatorial optimization: a review of more than a decade of research
  publication-title: Informs J. Comput.
  doi: 10.1287/ijoc.11.1.15
– volume: 16
  start-page: 827
  issue: 5–6
  year: 2003
  end-page: 832
  ident: CR11
  article-title: II, A Million city traveling salesman problem solution by divide and conquer clustering and adaptive resonance neural networks
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(03)00130-8
– volume: 3697
  start-page: 405
  year: 2005
  end-page: 410
  ident: CR19
  article-title: Eigenvalue problem approach to discrete minimization
  publication-title: Lect. Notes Comput. Sci.
– volume: 19
  start-page: 110
  issue: 2
  year: 2010
  end-page: 125
  ident: CR1
  article-title: Binary optimization: efficient increasing of global minimum basin of attraction
  publication-title: Opt. Mem. Neural Networks (Inform. Opt.)
  doi: 10.3103/S1060992X10020025
– volume: 3
  start-page: 23
  issue: 195
  year: 1995
  end-page: 48
  ident: CR13
  article-title: Improving connectionist energy minimization
  publication-title: J. Artificial Inteligence Res.
– volume: 52
  start-page: 141
  year: 1985
  end-page: 152
  ident: CR8
  article-title: Neural computation of decisions in optimization problems
  publication-title: Biological Cybernetics
– volume: 43
  start-page: 219
  year: 2002
  end-page: 237
  ident: CR21
  article-title: Hopfield neural networks for optimization: study of the different dynamics
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(01)00337-X
– volume: 72
  start-page: 986
  issue: 3
  year: 2005
  end-page: 990
  ident: CR14
  article-title: A relation between the depth of a local minimum and the probability of its detection in the generalized Hopfield model
  publication-title: Dokl. Math.
– volume-title: New Optimization Algorithms in Physics
  year: 2004
  ident: 4259_CR16
  doi: 10.1002/3527603794
– volume: 9
  start-page: 87
  issue: 2
  year: 1999
  ident: 4259_CR12
  publication-title: Int. J. Neural Systems
  doi: 10.1142/S0129065799000083
– volume: 15
  start-page: 80
  issue: 1
  year: 2005
  ident: 4259_CR22
  publication-title: Pat. Rec. Image Analysis
– volume: 3697
  start-page: 397
  year: 2005
  ident: 4259_CR15
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/11550907_63
– volume: 3
  start-page: 23
  issue: 195
  year: 1995
  ident: 4259_CR13
  publication-title: J. Artificial Inteligence Res.
– volume: 12
  start-page: 503
  year: 2000
  ident: 4259_CR31
  publication-title: SIAM J. Optimization
  doi: 10.1137/S1052623400382467
– volume: 17
  start-page: 62
  issue: 1
  year: 2008
  ident: 4259_CR32
  publication-title: Opt. Mem. Neural Networks (Inform. Opt.)
– volume: 46
  start-page: 501
  year: 2005
  ident: 4259_CR23
  publication-title: Eur. Phys. J., Ser. B
  doi: 10.1140/epjb/e2005-00280-6
– volume: 247
  start-page: 978
  year: 1990
  ident: 4259_CR10
  publication-title: Science
  doi: 10.1126/science.247.4945.978
– volume: 64
  issue: 056704
  year: 2001
  ident: 4259_CR28
  publication-title: Phys. Rev., Ser. E
– volume: 1
  start-page: 26
  issue: 21
  year: 2009
  ident: 4259_CR30
  publication-title: Informs J. Comput.
  doi: 10.1287/ijoc.1080.0275
– volume: 19
  start-page: 1605
  year: 1986
  ident: 4259_CR9
  publication-title: J. Phys., Ser. A
  doi: 10.1088/0305-4470/19/9/033
– volume-title: KMK UMK Technical Report, 1/99; Neural Computing Surveys
  year: 1998
  ident: 4259_CR17
– volume: 79
  start-page: 2554
  year: 1981
  ident: 4259_CR7
  publication-title: Proc. Nat. Acad. Sci. USA
  doi: 10.1073/pnas.79.8.2554
– volume-title: Nonlinear optimization techniques applied to combinatorial optimization problems
  year: 2006
  ident: 4259_CR6
– start-page: 47
  volume-title: New Optimization Algorithms in Physics
  year: 2004
  ident: 4259_CR2
  doi: 10.1002/3527603794.ch4
– volume: 56
  start-page: 1167
  issue: 3
  year: 2013
  ident: 4259_CR26
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-012-9947-7
– volume-title: ACM Symposium on Theory of Computing
  year: 1994
  ident: 4259_CR3
– start-page: 422
  volume-title: IEEE Comput. Soc.
  year: 1995
  ident: 4259_CR4
– volume: 16
  start-page: 827
  issue: 5–6
  year: 2003
  ident: 4259_CR11
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(03)00130-8
– start-page: 5888
  volume-title: Proc. of IJCNN
  year: 2006
  ident: 4259_CR24
– volume: 24
  start-page: 51
  year: 2009
  ident: 4259_CR25
  publication-title: Lect. Notes Electric. Eng.
  doi: 10.1007/978-3-540-85640-5_4
– volume-title: Optimization Algorithms in Physics
  year: 2001
  ident: 4259_CR18
  doi: 10.1002/3527600876
– volume: 43
  start-page: 219
  year: 2002
  ident: 4259_CR21
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(01)00337-X
– ident: 4259_CR29
– volume: 121
  start-page: 307
  issue: 2
  year: 2010
  ident: 4259_CR5
  publication-title: Math. Programming
  doi: 10.1007/s10107-008-0235-8
– volume: 3697
  start-page: 405
  year: 2005
  ident: 4259_CR19
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/11550907_64
– volume: 72
  start-page: 986
  issue: 3
  year: 2005
  ident: 4259_CR14
  publication-title: Dokl. Math.
– volume: 19
  start-page: 110
  issue: 2
  year: 2010
  ident: 4259_CR1
  publication-title: Opt. Mem. Neural Networks (Inform. Opt.)
  doi: 10.3103/S1060992X10020025
– volume: 52
  start-page: 141
  year: 1985
  ident: 4259_CR8
  publication-title: Biological Cybernetics
  doi: 10.1007/BF00339943
– volume: 23
  start-page: 84
  issue: 2
  year: 2014
  ident: 4259_CR27
  publication-title: Opt. Mem. Neural Networks (Inform. Opt.)
  doi: 10.3103/S1060992X1402009X
– volume: 11
  start-page: 15
  issue: 1
  year: 1999
  ident: 4259_CR20
  publication-title: Informs J. Comput.
  doi: 10.1287/ijoc.11.1.15
SSID ssj0056241
Score 1.9683386
Snippet The paper deals with the binary minimization of a quadratic functional. Typically the problem is NP-hard and the organization of the quadratic functional...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 67
SubjectTerms Complexity
Computer Science
Information Storage and Retrieval
Title Matrix transformation method in quadratic binary optimization
URI https://link.springer.com/article/10.3103/S1060992X1502006X
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4IXPQgihrxQfbgSVMs225pj8SARKMXIamnprvdTYhaFEpi_PXOtlsDvhLus81mujPzfZkXwBkGcYHAwbaYr1tyOjK2OJXIeZibdFzhdaWru5Hv7r3h2L0JWWj6uOdltXuZksw9dc4rbefyAckLwhkaIoTRPDisQI11_MCvQq13_XjbLx0wRvR8YaWWt_SBIpn5-0dWw9FqLjQPMYM6jMrLFZUlT-1Fxtvi49vcxjVvvwPbBnKSXvFGdmFDpg2ol-sciLHuBmwtzSbcA70JfDZ5J9kSsp2mpNg4TSYpeVvEiX4-gvC8p5dM0fu8mLbOfRgP-qOroWV2LViC2k5oebZCJuZRpWjQSUSMwU3pSfki8aTj-cpXSrgBp0zZMRdMaNiCwZ47mrR5aMUHUE2nqTwEkug2ri5F38GRfrkytl3BA18K6iQOZ90m2KXKI2EGket9GM8REhKtrOiHsppw_nXktZjC8Z_wRfkLImOQ87-lj9aSPoZNREysKN05gWo2W8hTRCUZb5lX2ILKmPY-AYoT1fk
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgHIADjwFiPHPgBKrI0ibrjhNiGrDtwib1VjVpIk2CFvaQ-Pk4bYo28ZC4Oz04tf19cuwP4AqLuELgQD0e2pGcpk48yTRyHh6kzUCJlg7sNPJgKHrj4DHikZvjnlWv3auWZJGpC15J_dtnJC8IZ1iEEMby4GgdNhALhFa2YMw6VfrFel7IVVprz5qXrcyfP7FajFY7oUWB6e7BjkOGpFNe5T6s6awOu5XqAnFBWIftpRWCB2AFu6eTDzJfAqB5RkphaDLJyPsiSe0tKyKL0VuSY5J4ddOXhzDu3o_uep6TRPAUo37kCWqQMAlmDGs3U5VgDTJ2ob1KhfZFaEJjVNCWjBuaSMWVRRdYk6VvuZXAYDuCWpZn-hhIaqetWgxDXCJLCnRCAyXboVbMT33JWw2glW9i5faFW9mKlxh5g3Vn_M2dDbj-OvJWLsv4y_imcnjs4mb2u_XJv6wvYbM3GvTj_sPw6RS2EOTw8rXNGdTm04U-RyAxlxfFj_MJy2y69Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60gujBR1Wszz14UkKTzSZNj0Ut9VUELeQWsptdKNS0tin4853JQ1p8gPdJDrM7M9_H7MwHcIFFXCFwsC0voJEcR8eW5Bo5jycSRyi_pQVNIz_1_d5A3IdeWOqczqrX7lVLsphpoC1NadacJKaZc0zbbb4gkUFow0OEM8SJw1VYw2zs0EUf8E6VirG259KVZG2RedHW_PkXy4VpuSuaF5vuDmyVKJF1imPdhRWd1mG7UmBgZUDWYXNhneAekHj3dPjBsgUwOk5ZIRLNhil7n8cJnbhiMh_DZWNMGG_lJOY-DLq3r9c9q5RHsBS33dDybYPkyefG8LaTqBjrkaHl9irxtesHJjBGibbknrFjqTxFSAPrs3SJZ_kYeAdQS8epPgSW0ORVi2O4S2RMQse2ULIdaMXdxJVeqwF25ZtIlbvDScJiFCGHIHdG39zZgMuvTybF4oy_jK8qh0dlDM1-tz76l_U5rD_fdKPHu_7DMWwg3vGKhzcnUMumc32KmCKTZ_m9-QQXNL8x
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Matrix+transformation+method+in+quadratic+binary+optimization&rft.jtitle=Optical+memory+%26+neural+networks&rft.au=Karandashev%2C+I.&rft.au=Kryzhanovsky%2C+B.&rft.date=2015-04-01&rft.pub=Pleiades+Publishing&rft.issn=1060-992X&rft.eissn=1934-7898&rft.volume=24&rft.issue=2&rft.spage=67&rft.epage=81&rft_id=info:doi/10.3103%2FS1060992X1502006X&rft.externalDocID=10_3103_S1060992X1502006X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1060-992X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1060-992X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1060-992X&client=summon