Thermal plasma processing of technologically important materials

Thermal plasma is one of the upcoming powerful tools used for materials processing. It covers a wide range of technological applications such as synthesis of various refractory ceramic materials, metals and alloys, deposition of coatings, high temperature processing of materials as well as disintegr...

Full description

Saved in:
Bibliographic Details
Published inFundamental Plasma Physics Vol. 10; p. 100039
Main Authors Kamble, Shalaka A., Jangale, Sanket, Bhopale, Somnath, Bhoraskar, S.V., More, M.A., Mathe, V.L.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Thermal plasma is one of the upcoming powerful tools used for materials processing. It covers a wide range of technological applications such as synthesis of various refractory ceramic materials, metals and alloys, deposition of coatings, high temperature processing of materials as well as disintegration of waste materials. Representative technologically important material systems viz rare earth hexaboride (e.g. GdB6) and carbonaceous materials are focus of the present manuscript. Both the material systems have been processed using DC thermal plasma route and characterized thoroughly for structural, morphological, surface properties using XRD, TEM, XPS respectively. Morphology of GdB6 has been tailored by varying plasma parameters during synthesis. Further, these GdB6 powder were investigated for electron emission performance using Field Electron Emission and maximum current density of 0.5 mA/cm2 was noted for the nanocrystalline GdB6 sample. Feasibility of thermal plasmas for production of nanocrystalline GdB6 and processing of a bio-waste to obtain technologically important carbonaceous materials has also been explored. [Display omitted]
ISSN:2772-8285
2772-8285
DOI:10.1016/j.fpp.2024.100039