Quantum Electric Dipole Lattice Water Molecules Confined to Nanocavities in Beryl
Water is subject to intense investigations due to its importance in biological matter but keeps many of its secrets. Here, we unveil an even other aspect by confining H 2 O molecules to nanosize cages. Our THz and infrared spectra of water in the gemstone beryl evidence quantum tunneling of H 2 O mo...
Saved in:
Published in | Journal of infrared, millimeter and terahertz waves Vol. 39; no. 9; pp. 799 - 815 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.09.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Water is subject to intense investigations due to its importance in biological matter but keeps many of its secrets. Here, we unveil an even other aspect by confining H
2
O molecules to nanosize cages. Our THz and infrared spectra of water in the gemstone beryl evidence quantum tunneling of H
2
O molecules in the crystal lattice. The water molecules are spread out when confined in a nanocage. In combination with low-frequency dielectric measurements, we were also able to show that dipolar coupling among the H
2
O molecules leads towards a ferroelectric state at low temperatures. Upon cooling, a ferroelectric soft mode shifts through the THz range. Only quantum fluctuations prevent perfect macroscopic order to be fully achieved. Beside the significance to life science and possible application, nanoconfined water may become the prime example of a quantum electric dipolar lattice. |
---|---|
AbstractList | Water is subject to intense investigations due to its importance in biological matter but keeps many of its secrets. Here, we unveil an even other aspect by confining H
2
O molecules to nanosize cages. Our THz and infrared spectra of water in the gemstone beryl evidence quantum tunneling of H
2
O molecules in the crystal lattice. The water molecules are spread out when confined in a nanocage. In combination with low-frequency dielectric measurements, we were also able to show that dipolar coupling among the H
2
O molecules leads towards a ferroelectric state at low temperatures. Upon cooling, a ferroelectric soft mode shifts through the THz range. Only quantum fluctuations prevent perfect macroscopic order to be fully achieved. Beside the significance to life science and possible application, nanoconfined water may become the prime example of a quantum electric dipolar lattice. |
Author | Dressel, Martin Thomas, Victor G. Gorshunov, Boris P. Zhukova, Elena S. |
Author_xml | – sequence: 1 givenname: Martin orcidid: 0000-0003-1907-052X surname: Dressel fullname: Dressel, Martin email: dressel@pi1.physik.uni-stuttgart.de organization: 1. Physikalisches Institut, Universität Stuttgart – sequence: 2 givenname: Elena S. surname: Zhukova fullname: Zhukova, Elena S. organization: Moscow Institute of Physics and Technology (State University) – sequence: 3 givenname: Victor G. surname: Thomas fullname: Thomas, Victor G. organization: Sobolev Institute of Geology and Mineralogy, SB RAS, Novosibirsk State University – sequence: 4 givenname: Boris P. surname: Gorshunov fullname: Gorshunov, Boris P. organization: Moscow Institute of Physics and Technology (State University) |
BookMark | eNp9z7FOwzAQgGELFYm28ABM9AUMtuNcLiMqpSBFQkgwW1fXRq7SpLKdgbcnVWFh6HS3_Hf6ZmzS9Z1j7FaKeylE9ZCkqEBxIZELXSmOF2wqEYBDLWDyt2OtrtgspZ0QoHUNU3b3PlCXh_1i1TqbY7CLp3DoW7doKOdg3TW79NQmd_M75-zzefWxfOHN2_p1-dhwq0SB3NWOyg1CWYNXmmBLFitNBSIpQdJ7rUoP1kFZWtzoGgtvsXBbAkEVbVUxZ_J018Y-pei8OcSwp_htpDBHoTkJzSg0R6HBsan-NTZkyqHvcqTQni3VqUzjl-7LRbPrh9iNwDPRDyJxZhI |
CitedBy_id | crossref_primary_10_1038_s41467_020_17832_y crossref_primary_10_1103_PhysRevB_108_064101 crossref_primary_10_3367_UFNe_2020_01_038721 crossref_primary_10_1063_5_0131510 crossref_primary_10_2139_ssrn_4196997 crossref_primary_10_3367_UFNr_2020_01_038721 crossref_primary_10_1039_D1CP05338H |
Cites_doi | 10.1002/pssb.2220510230 10.2138/am-1997-11-1202 10.1021/ja01315a102 10.1007/s10947-006-0261-4 10.1029/JC080i012p01656 10.1007/BF01008897 10.1103/PhysRev.135.A1732 10.1021/jz400782j 10.1103/PhysRevLett.116.167802 10.1007/s002690000102 10.1103/PhysRevB.19.3593 10.1007/s10762-005-7600-y 10.1063/1.1670922 10.1103/PhysRev.102.1008 10.1039/C7CP06472A 10.1017/CBO9780511606168 10.1016/0022-2860(94)08471-S 10.1021/cr2003568 10.1017/CBO9781139644181 10.1038/ncomms10569 10.1088/0953-8984/8/25/021 10.1103/PhysRevLett.94.160401 10.1103/PhysRevLett.95.150406 10.1007/BF01313549 10.1103/RevModPhys.62.993 10.1088/1742-6596/486/1/012019 10.1038/ncomms12842 10.1063/1.4978397 10.1126/science.1206376 10.1063/1.4882062 10.1103/RevModPhys.85.1473 10.1088/0034-4885/80/1/016502 10.1016/0921-4526(94)00290-C 10.2138/am-2016-5432 10.1103/PhysRevB.93.014421 10.1016/0025-5408(73)90167-0 10.1103/PhysRevLett.93.035503 10.1073/pnas.1210790109 10.1103/PhysRevLett.109.035701 10.1080/01411594.2014.954247 10.1103/RevModPhys.89.025003 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2018 |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018 |
DBID | AAYXX CITATION |
DOI | 10.1007/s10762-018-0472-8 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1866-6906 |
EndPage | 815 |
ExternalDocumentID | 10_1007_s10762_018_0472_8 |
GroupedDBID | -5F -5G -BR -EM -Y2 -~C .VR 06D 0R~ 0VY 199 1N0 203 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 78A 8FE 8FG 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJOX ABKCH ABKTR ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARAPS ARCEE ARMRJ AXYYD AYJHY AZFZN B-. BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXD IZIGR I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9G O9J OAM P62 P9T PF0 PT4 QOS R89 R9I ROL RSV S16 S3B SAP SCLPG SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN TSG TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7X Z7Y Z7Z Z83 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT |
ID | FETCH-LOGICAL-c2038-e9ea5b86596f24a6dac874a388a20a1ff425f6ce655c8b4983fc83eda60a7ad23 |
IEDL.DBID | U2A |
ISSN | 1866-6892 |
IngestDate | Tue Jul 01 03:33:29 EDT 2025 Thu Apr 24 23:07:26 EDT 2025 Fri Feb 21 02:37:22 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Water Dipolar interaction THz spectroscopy Quantum tunneling Dielectric spectroscopy Ferroelectricity Fourier transform infrared spectroscopy |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2038-e9ea5b86596f24a6dac874a388a20a1ff425f6ce655c8b4983fc83eda60a7ad23 |
ORCID | 0000-0003-1907-052X |
PageCount | 17 |
ParticipantIDs | crossref_primary_10_1007_s10762_018_0472_8 crossref_citationtrail_10_1007_s10762_018_0472_8 springer_journals_10_1007_s10762_018_0472_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180900 2018-9-00 |
PublicationDateYYYYMMDD | 2018-09-01 |
PublicationDate_xml | – month: 9 year: 2018 text: 20180900 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of infrared, millimeter and terahertz waves |
PublicationTitleAbbrev | J Infrared Milli Terahz Waves |
PublicationYear | 2018 |
Publisher | Springer US |
Publisher_xml | – name: Springer US |
References | A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, and T. Pfau, Phys. Rev. Lett. 94, 160401 (2005). H. D. Downing and D. Williams, J. Geophys. Res. 80, 1656 (1975). J. Stuhler, A. Griesmaier, T. Koch, M. Fattori, S. Giovanazzi, P. Pedri, L. Santos, and T. Pfau, Phys. Rev. Lett. 95, 150406 (2005). M. Born and E. Wolf, Principles of Optics, 7th edition (Cambridge University Press, Cambridge, 1999). L. Savary and L. Balents, Rep. Prog. Phys. 80, 16502 (2017). L. Pauling, J. Am. Chem. Soc. 57, 2680 (1935). Y. Finkelstein, R. Moreh, S.L. Shang, Y. Wang, and Z.K. Liu, J. Chem. Phys. 146, 124307 (2017). F. Gervais, B. Piriou, and F. Cabannes, Phys. Stat. Sol. (b) 51, 701 (1972). K.A. Müller and H. Burkhard, Phys. Rev. B 19, 3593 (1979). A.I. Kolesnikov, G.F. Reiter, N. Choudhury, T.R. Prisk, E. Mamontov, A. Podlesnyak, G. Ehlers, A.G. Seel, D.J. Wesolowski, and L.M. Anovitz, Phys. Rev. Lett. 116, 167802 (2016). D.C. Johnston, Phys. Rev. B 93, 014421 (2016). F. G. Alabarse, J. Haines, O. Cambon, C. Levelut, D. Bourgogne, A. Haidoux, D. Granier, and B. Coasne, Phys. Rev. Lett. 109, 035701 (2012). P.W. Anderson, Phys. Rev. 102, 1008 (1956); Mater. Res.Bull. 8, 153 (1973). P.I. Belobrov, R.S. Gekht, and V.A. Ignatchenko, Sov. Phys. JETP 57, 636 (1983). B.P. Gorshunov, V.I. Torgashev, E.S. Zhukova, V.G. Thomas, M.A. Belyanchikov, C. Kadlec, F. Kadlec, M. Savinov, T. Ostapchuk, J. Petzelt, J. Prokleska, P.V. Tomas, D.A. Fursenko, G.S. Shakurov, A.S. Prokhorov, V.S. Gorelik, L.S. Kadyrov, V.V. Uskov, R. Kremer, and M. Dressel, Nature Commun. 7, 12842 (2016). U. Kaatze, Physik Journal 15 (12), 19 (December 2016). B.E. Vugmeister and M.D. Glinchuk, Rev. Mod. Phys. 62, 993 (1990). A.S. Lebedev, A.G. Il’in, and V.A. Klyakhin, “Hydrothermally grown beryls of gem quality. // Morphology and Phase Equilibria of Minerals”, in: Proceedings of the 13th General Meeting of the International Mineralogical Association, Varna (Sofia, Bulgaria,1982), 1986, Vol. 2, pp. 403–411. J. Hemberger, M. Nicklas, R. Viana, P. Lunkenheimer, A. Loidl and R.Böhmer, J.Phys. Condens. Matter 8, 4673 (1996). B. Gorshunov, A. Volkov, I. Spektor, A. Prokhorov, A. Mukhin, M. Dressel, S. Uchida, and A. Loidl, Int. J. Infrared Millimeter Waves 26, 1217 (2005). C. C. Kim, M. I. Bell, and D. A. McKeown, Physica B 205, 193 (1995). C. Nisoli, R. Moessner, and P. Schiffer, Rev. Mod. Phys. 85, 1473 (2013). Y. Zhou, K. Kanoda, and T.-K. Ng, Rev. Mod. Phys. 89, 025003 (2017). A. I. Kolesnikov, J.-M. Zanotti, C.-K. Loong, P. Thiyagarajan, A. P. Moravsky, R. O. Loutfy, and C. J. Burnham, Phys. Rev. Lett. 93, 035503 (2004). E.S. Zhukova, V.I. Torgashev, B.P. Gorshunov, V.V. Lebedev, G.S. Shakurov, R.K. Kremer, E.V. Pestrjakov, V.G. Thomas, D.A. Fursenko, A.S. Prokhorov and M. Dressel, J. Chem. Phys. 140, 224317 (2014). S.-P. Shen, J.-C. Wu, J.-D. Song, X.-F. Sun, Y.-F. Yang, Y.-S. Chai, D.-S. Shang, S.-G. Wang, J.F. Scott, and Y. Sun, Nature Commun. 7, 10569 (2016). K. A. Müller, W. Berlinger, and E. Tosatti, Z. Phys. B 48, 277 (1991). K. Kuratobi and Y. Murata, Science 333, 613 (2011). B.P. Gorshunov, E.S. Zhukova, V.I. Torgashev, V.V. Lebedev, A.S. Prokhorov, G.S. Shakurov, R.K. Kremer, V.V. Uskov, E.V. Pestrjakov, V.G. Thomas, D.A. Fursenko, C. Kadlec, F. Kadlec, and M. Dressel, Phase Transitions 87, 966 (2014). B. A. Kolesov and C. A. Geiger, Phys. Chem. Minerals 27, 557 (2000). M.A. Belyanchikov, E.S. Zhukova, S. Tretiak, A. Zhugayevych, M. Dressel, F. Uhlig, J. Smiatek, M. Fyta, V.G. Thomas, and B.P. Gorshunov. Phys. Chem. Chem. Phys. 19, 30740 (2017). https://doi.org/10.1039/C7CP06472A. B.P. Gorshunov, E.S. Zhukova, V.I. Torgashev, V.V. Lebedev, G.S. Shakurov, R.K. Kremer, E.V. Pestrjakov, V.G. Thomas, D.A. Fursenko, and M. Dressel, J. Phys. Chem. Lett. 4, 2015 (2013). H. J. Liebe, G. A. Hufford, and T. Manabe, Int. J. Infrared Milli. Waves 12, 659 (1991). T. Pilati, F. Demartin, and C. M. Gramaccioli, Am. Mineralogist 82, 1054 (1997). C. Beduza, M. Carravettab, J. Y.-C. Chenc, M. Concistrèb, M. Denningb, M. Frunzic, A. J. Horsewilld, O. G. Johannessenb, R. Lawlere, X. Leic, M. H. Levittb, Y. Lic, S. Mamoneb, Y. Murataf, U. Nagelg, T. Nishidaf, J. Ollivierh, S. Rolsh, T. Rõõm, R. Sarkarb, N. J. Turroc, and Y. Yanga, Proc. Nat. Acad. Sci. (New York) 109, 12894 (2012). S.E. Rowley, L.J. Spalek, R.P Smith, M.P.M. Dean, M. Itoh, J.F. Scott, G.G. Lonzarich and S.S. Saxena, Nature Phys. 10, 367 (2014). G. Kozlov and A. Volkov, in: Millimeter and Submillimeter Spectroscopy of Solids, ed. by G. Grüner (Springer-Verlag, Berlin, 1998); p. 51. J. E. Bertie, H. J. Labbe, and E. Whalley. J. Chem. Phys. 50 4501 (1969). H. R. Zelsmann, J. Mol. Struct. 350, 95 (1995). M. A. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977). V. V. Bakakin and N. V. Belov, Geochemistry 5, 484 (1962). R.I. Mashkovtsev, V.G. Thomas, D.A. Fursenko E.S. Zhukova, V.V. Uskov, and B.P. Gorshunov, Am. Mineralogist. 101, 175 (2016). B. A. Kolesov, J. Struct. Chem. 47, 21 (2006). A. S. Barker and J. J. Hopfield, Phys. Rev. 135, A1732 (1964). E.S. Zhukova, B.P. Gorshunov, V.I. Torgashev, V.V. Lebedev, G.S. Shakurov, R.K. Kremer, E.V. Pestrjakov, V.G. Thomas, D.A. Fursenko, and M. Dressel, J. Phys.: Conf. Series 486, 012019 (2014). M. Dressel and G. Grüner, Electrodynamics of Solids (Cambridge University Press, Cambridge, 2002). M.A. Boranov, M. Dalmonte, G. Pupillo, and P. Zoller, Chem. Rev. 112, 5012 (2012). L.V. Belobrov, V.A. Voevodin, and V.A. Ignatchenko, Sov. Phys. JETP 61, 522 (1985). 472_CR45 472_CR46 472_CR47 472_CR48 472_CR10 472_CR11 472_CR34 472_CR35 472_CR36 472_CR37 472_CR38 472_CR39 cr-split#-472_CR5.1 472_CR40 cr-split#-472_CR5.2 472_CR41 472_CR42 472_CR43 472_CR44 472_CR23 472_CR24 472_CR25 472_CR26 472_CR27 472_CR28 472_CR29 472_CR30 472_CR31 472_CR32 472_CR33 472_CR12 472_CR13 472_CR14 472_CR15 472_CR16 472_CR17 472_CR18 472_CR19 472_CR9 472_CR8 472_CR7 472_CR2 472_CR1 472_CR6 472_CR20 472_CR4 472_CR21 472_CR3 472_CR22 |
References_xml | – reference: J. Stuhler, A. Griesmaier, T. Koch, M. Fattori, S. Giovanazzi, P. Pedri, L. Santos, and T. Pfau, Phys. Rev. Lett. 95, 150406 (2005). – reference: J. Hemberger, M. Nicklas, R. Viana, P. Lunkenheimer, A. Loidl and R.Böhmer, J.Phys. Condens. Matter 8, 4673 (1996). – reference: B.P. Gorshunov, E.S. Zhukova, V.I. Torgashev, V.V. Lebedev, G.S. Shakurov, R.K. Kremer, E.V. Pestrjakov, V.G. Thomas, D.A. Fursenko, and M. Dressel, J. Phys. Chem. Lett. 4, 2015 (2013). – reference: E.S. Zhukova, B.P. Gorshunov, V.I. Torgashev, V.V. Lebedev, G.S. Shakurov, R.K. Kremer, E.V. Pestrjakov, V.G. Thomas, D.A. Fursenko, and M. Dressel, J. Phys.: Conf. Series 486, 012019 (2014). – reference: M.A. Boranov, M. Dalmonte, G. Pupillo, and P. Zoller, Chem. Rev. 112, 5012 (2012). – reference: C. Beduza, M. Carravettab, J. Y.-C. Chenc, M. Concistrèb, M. Denningb, M. Frunzic, A. J. Horsewilld, O. G. Johannessenb, R. Lawlere, X. Leic, M. H. Levittb, Y. Lic, S. Mamoneb, Y. Murataf, U. Nagelg, T. Nishidaf, J. Ollivierh, S. Rolsh, T. Rõõm, R. Sarkarb, N. J. Turroc, and Y. Yanga, Proc. Nat. Acad. Sci. (New York) 109, 12894 (2012). – reference: J. E. Bertie, H. J. Labbe, and E. Whalley. J. Chem. Phys. 50 4501 (1969). – reference: S.-P. Shen, J.-C. Wu, J.-D. Song, X.-F. Sun, Y.-F. Yang, Y.-S. Chai, D.-S. Shang, S.-G. Wang, J.F. Scott, and Y. Sun, Nature Commun. 7, 10569 (2016). – reference: B. A. Kolesov, J. Struct. Chem. 47, 21 (2006). – reference: V. V. Bakakin and N. V. Belov, Geochemistry 5, 484 (1962). – reference: T. Pilati, F. Demartin, and C. M. Gramaccioli, Am. Mineralogist 82, 1054 (1997). – reference: B.P. Gorshunov, V.I. Torgashev, E.S. Zhukova, V.G. Thomas, M.A. Belyanchikov, C. Kadlec, F. Kadlec, M. Savinov, T. Ostapchuk, J. Petzelt, J. Prokleska, P.V. Tomas, D.A. Fursenko, G.S. Shakurov, A.S. Prokhorov, V.S. Gorelik, L.S. Kadyrov, V.V. Uskov, R. Kremer, and M. Dressel, Nature Commun. 7, 12842 (2016). – reference: M. A. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977). – reference: L.V. Belobrov, V.A. Voevodin, and V.A. Ignatchenko, Sov. Phys. JETP 61, 522 (1985). – reference: K.A. Müller and H. Burkhard, Phys. Rev. B 19, 3593 (1979). – reference: B. Gorshunov, A. Volkov, I. Spektor, A. Prokhorov, A. Mukhin, M. Dressel, S. Uchida, and A. Loidl, Int. J. Infrared Millimeter Waves 26, 1217 (2005). – reference: H. D. Downing and D. Williams, J. Geophys. Res. 80, 1656 (1975). – reference: A. S. Barker and J. J. Hopfield, Phys. Rev. 135, A1732 (1964). – reference: S.E. Rowley, L.J. Spalek, R.P Smith, M.P.M. Dean, M. Itoh, J.F. Scott, G.G. Lonzarich and S.S. Saxena, Nature Phys. 10, 367 (2014). – reference: Y. Zhou, K. Kanoda, and T.-K. Ng, Rev. Mod. Phys. 89, 025003 (2017). – reference: P.I. Belobrov, R.S. Gekht, and V.A. Ignatchenko, Sov. Phys. JETP 57, 636 (1983). – reference: R.I. Mashkovtsev, V.G. Thomas, D.A. Fursenko E.S. Zhukova, V.V. Uskov, and B.P. Gorshunov, Am. Mineralogist. 101, 175 (2016). – reference: G. Kozlov and A. Volkov, in: Millimeter and Submillimeter Spectroscopy of Solids, ed. by G. Grüner (Springer-Verlag, Berlin, 1998); p. 51. – reference: B. A. Kolesov and C. A. Geiger, Phys. Chem. Minerals 27, 557 (2000). – reference: L. Savary and L. Balents, Rep. Prog. Phys. 80, 16502 (2017). – reference: A.I. Kolesnikov, G.F. Reiter, N. Choudhury, T.R. Prisk, E. Mamontov, A. Podlesnyak, G. Ehlers, A.G. Seel, D.J. Wesolowski, and L.M. Anovitz, Phys. Rev. Lett. 116, 167802 (2016). – reference: Y. Finkelstein, R. Moreh, S.L. Shang, Y. Wang, and Z.K. Liu, J. Chem. Phys. 146, 124307 (2017). – reference: K. A. Müller, W. Berlinger, and E. Tosatti, Z. Phys. B 48, 277 (1991). – reference: A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, and T. Pfau, Phys. Rev. Lett. 94, 160401 (2005). – reference: M. Dressel and G. Grüner, Electrodynamics of Solids (Cambridge University Press, Cambridge, 2002). – reference: C. C. Kim, M. I. Bell, and D. A. McKeown, Physica B 205, 193 (1995). – reference: H. R. Zelsmann, J. Mol. Struct. 350, 95 (1995). – reference: K. Kuratobi and Y. Murata, Science 333, 613 (2011). – reference: E.S. Zhukova, V.I. Torgashev, B.P. Gorshunov, V.V. Lebedev, G.S. Shakurov, R.K. Kremer, E.V. Pestrjakov, V.G. Thomas, D.A. Fursenko, A.S. Prokhorov and M. Dressel, J. Chem. Phys. 140, 224317 (2014). – reference: M.A. Belyanchikov, E.S. Zhukova, S. Tretiak, A. Zhugayevych, M. Dressel, F. Uhlig, J. Smiatek, M. Fyta, V.G. Thomas, and B.P. Gorshunov. Phys. Chem. Chem. Phys. 19, 30740 (2017). https://doi.org/10.1039/C7CP06472A. – reference: L. Pauling, J. Am. Chem. Soc. 57, 2680 (1935). – reference: B.P. Gorshunov, E.S. Zhukova, V.I. Torgashev, V.V. Lebedev, A.S. Prokhorov, G.S. Shakurov, R.K. Kremer, V.V. Uskov, E.V. Pestrjakov, V.G. Thomas, D.A. Fursenko, C. Kadlec, F. Kadlec, and M. Dressel, Phase Transitions 87, 966 (2014). – reference: P.W. Anderson, Phys. Rev. 102, 1008 (1956); Mater. Res.Bull. 8, 153 (1973). – reference: B.E. Vugmeister and M.D. Glinchuk, Rev. Mod. Phys. 62, 993 (1990). – reference: A. I. Kolesnikov, J.-M. Zanotti, C.-K. Loong, P. Thiyagarajan, A. P. Moravsky, R. O. Loutfy, and C. J. Burnham, Phys. Rev. Lett. 93, 035503 (2004). – reference: F. Gervais, B. Piriou, and F. Cabannes, Phys. Stat. Sol. (b) 51, 701 (1972). – reference: C. Nisoli, R. Moessner, and P. Schiffer, Rev. Mod. Phys. 85, 1473 (2013). – reference: M. Born and E. Wolf, Principles of Optics, 7th edition (Cambridge University Press, Cambridge, 1999). – reference: H. J. Liebe, G. A. Hufford, and T. Manabe, Int. J. Infrared Milli. Waves 12, 659 (1991). – reference: D.C. Johnston, Phys. Rev. B 93, 014421 (2016). – reference: F. G. Alabarse, J. Haines, O. Cambon, C. Levelut, D. Bourgogne, A. Haidoux, D. Granier, and B. Coasne, Phys. Rev. Lett. 109, 035701 (2012). – reference: A.S. Lebedev, A.G. Il’in, and V.A. Klyakhin, “Hydrothermally grown beryls of gem quality. // Morphology and Phase Equilibria of Minerals”, in: Proceedings of the 13th General Meeting of the International Mineralogical Association, Varna (Sofia, Bulgaria,1982), 1986, Vol. 2, pp. 403–411. – reference: U. Kaatze, Physik Journal 15 (12), 19 (December 2016). – ident: 472_CR41 doi: 10.1002/pssb.2220510230 – ident: 472_CR39 doi: 10.2138/am-1997-11-1202 – ident: 472_CR4 doi: 10.1021/ja01315a102 – ident: 472_CR35 doi: 10.1007/s10947-006-0261-4 – ident: 472_CR42 doi: 10.1029/JC080i012p01656 – ident: 472_CR44 doi: 10.1007/BF01008897 – ident: 472_CR47 – ident: 472_CR38 doi: 10.1103/PhysRev.135.A1732 – ident: 472_CR21 doi: 10.1021/jz400782j – ident: 472_CR25 doi: 10.1103/PhysRevLett.116.167802 – ident: 472_CR32 – ident: 472_CR34 doi: 10.1007/s002690000102 – ident: 472_CR13 doi: 10.1103/PhysRevB.19.3593 – ident: 472_CR33 doi: 10.1007/s10762-005-7600-y – ident: 472_CR45 doi: 10.1063/1.1670922 – ident: #cr-split#-472_CR5.1 doi: 10.1103/PhysRev.102.1008 – ident: 472_CR27 doi: 10.1039/C7CP06472A – ident: 472_CR46 – ident: 472_CR29 – ident: 472_CR37 doi: 10.1017/CBO9780511606168 – ident: 472_CR43 doi: 10.1016/0022-2860(94)08471-S – ident: 472_CR10 doi: 10.1021/cr2003568 – ident: 472_CR36 doi: 10.1017/CBO9781139644181 – ident: 472_CR11 doi: 10.1038/ncomms10569 – ident: 472_CR15 doi: 10.1088/0953-8984/8/25/021 – ident: 472_CR16 – ident: 472_CR8 doi: 10.1103/PhysRevLett.94.160401 – ident: 472_CR9 doi: 10.1103/PhysRevLett.95.150406 – ident: 472_CR14 doi: 10.1007/BF01313549 – ident: 472_CR12 doi: 10.1103/RevModPhys.62.993 – ident: 472_CR22 doi: 10.1088/1742-6596/486/1/012019 – ident: 472_CR28 doi: 10.1038/ncomms12842 – ident: 472_CR26 doi: 10.1063/1.4978397 – ident: 472_CR17 doi: 10.1126/science.1206376 – ident: 472_CR23 doi: 10.1063/1.4882062 – ident: 472_CR1 doi: 10.1103/RevModPhys.85.1473 – ident: 472_CR2 doi: 10.1088/0034-4885/80/1/016502 – ident: 472_CR40 doi: 10.1016/0921-4526(94)00290-C – ident: 472_CR31 doi: 10.2138/am-2016-5432 – ident: 472_CR7 doi: 10.1103/PhysRevB.93.014421 – ident: #cr-split#-472_CR5.2 doi: 10.1016/0025-5408(73)90167-0 – ident: 472_CR19 doi: 10.1103/PhysRevLett.93.035503 – ident: 472_CR18 doi: 10.1073/pnas.1210790109 – ident: 472_CR48 – ident: 472_CR30 – ident: 472_CR20 doi: 10.1103/PhysRevLett.109.035701 – ident: 472_CR24 doi: 10.1080/01411594.2014.954247 – ident: 472_CR6 – ident: 472_CR3 doi: 10.1103/RevModPhys.89.025003 |
SSID | ssj0064496 |
Score | 2.1609092 |
Snippet | Water is subject to intense investigations due to its importance in biological matter but keeps many of its secrets. Here, we unveil an even other aspect by... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 799 |
SubjectTerms | Classical Electrodynamics Electrical Engineering Electronics and Microelectronics Engineering Instrumentation |
Subtitle | Water Molecules Confined to Nanocavities in Beryl |
Title | Quantum Electric Dipole Lattice |
URI | https://link.springer.com/article/10.1007/s10762-018-0472-8 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4oXPTgAzXiA_fgSdNk6bbd2SPqIvFB1EiCp03b7SYkCETg_9suuwqJmnjqZdqk084rM_MNwHkoWUBViiSlxrcBCqNEZagIQ2VCNJxy7RqFH7ui02N3fd4v-rinZbV7mZLMNfVSs5sVXBv6InEIhwTXocpd6G4_cY-2SvVr7Xs-lMsBuRGBES1TmT8dsWqMVjOhuYFp78BW4Rl6rcVT7sKaGdVgu_ASvUIGpzXYXIIQ3IOz57nlzfzdi_N5NgPt3Qwm46HxHuTM1bXtQ68dv153SDH0gGjqW-VjIiO5QsEjkVEmRSo1hkwGiJL6spllVsgyoY3gXKNiEQaZxsCkUvgylCkNDqAyGo_MIXgB0jz88VVTMRUJlTZVKiJtfLdmtA5-eftEF4jgbjDFMPnGMnYMSyzDEsewBOtw8bVlsoDD-Iv4smRpUkjG9Hfqo39RH8MGzd_RVXudQGX2MTen1j2YqQZUW7dv97Fdr-Lu00sj_x6fNkCx8A |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60HtSDj6pYX83Bk7KQbjabyVG0pWpbEFrobdlXoFDbYtv_726aaAsqeMplEthvMy9m5huA20SyiCqDxFAbugSFUaIyVIShsgnamMbaDwp3e7w9YC_DeFjMcc_LbveyJJlb6rVhN6e4LvVF4hkOCW7DjosF0PdxDehDaX6df8-XcnkiN8IxpWUp86dPbDqjzUpo7mBaR3BQRIbBw-oqj2HLTqpwWESJQaGD8yrsr1EInkD9bemwWb4HzXyfzUgHT6PZdGyDjlz4vrZTGLSa_cc2KZYeEE1DZ3xsamWskMcpzyiT3EiNCZPunJKGspFlTskyri2PY42KpRhlGiNrJA9lIg2NzqAymU7sOQQR0jz9CVVDMZVyZRrK8FTb0D8zWoOwPL3QBSO4X0wxFt9cxh4w4QATHjCBNbj7emW2osP4S_i-hFQUmjH_XfriX9J12G33ux3Ree69XsIeze_Ud35dQWXxsbTXLlRYqJv81_gElAqxtQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60gujBR1Wsr-bgSVlMNpvN5lhsS9VaFCz0FvYJhZoWm_5_d9NEW1DBUy6TQGZ3XszM9wFcx5yEWCiGFNa-LVAIRsIwgQgTOmY6wpF0i8LPA9obksdRNCp5TufVtHvVklzuNDiUpiy_mylzt7L4Zo3YlsEMObRDxDZhy3rjwF3rIW5VrtjG-oKgy4G6IcoSXLU1f_rEemBa74oWwaZ7AHtllui1lsd6CBs6q8N-mTF6pT3O67C7Aid4BM3XhdXT4t3rFNw2Y-m1x7PpRHt9nrsZt2MYdjtv9z1UEiAgiX3riHSieSQYjRJqMOFUccliwkPGOPZ5YIw1OEOlplEkmSAJC41koVac-jzmCocnUMummT4FL2S4KIV8EQgiEipUIBRNpPbd0-AG-NXfp7JEB3ckFZP0G9fYKSy1CkudwlLWgJuvV2ZLaIy_hG8rlaallcx_lz77l3QTtl_a3bT_MHg6hx1cHKkbAruAWv6x0Jc2a8jFVXEzPgFoj7Xx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+Electric+Dipole+Lattice&rft.jtitle=Journal+of+infrared%2C+millimeter+and+terahertz+waves&rft.au=Dressel%2C+Martin&rft.au=Zhukova%2C+Elena+S.&rft.au=Thomas%2C+Victor+G.&rft.au=Gorshunov%2C+Boris+P.&rft.date=2018-09-01&rft.issn=1866-6892&rft.eissn=1866-6906&rft.volume=39&rft.issue=9&rft.spage=799&rft.epage=815&rft_id=info:doi/10.1007%2Fs10762-018-0472-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10762_018_0472_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-6892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-6892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-6892&client=summon |