Quantum Electric Dipole Lattice Water Molecules Confined to Nanocavities in Beryl

Water is subject to intense investigations due to its importance in biological matter but keeps many of its secrets. Here, we unveil an even other aspect by confining H 2 O molecules to nanosize cages. Our THz and infrared spectra of water in the gemstone beryl evidence quantum tunneling of H 2 O mo...

Full description

Saved in:
Bibliographic Details
Published inJournal of infrared, millimeter and terahertz waves Vol. 39; no. 9; pp. 799 - 815
Main Authors Dressel, Martin, Zhukova, Elena S., Thomas, Victor G., Gorshunov, Boris P.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Water is subject to intense investigations due to its importance in biological matter but keeps many of its secrets. Here, we unveil an even other aspect by confining H 2 O molecules to nanosize cages. Our THz and infrared spectra of water in the gemstone beryl evidence quantum tunneling of H 2 O molecules in the crystal lattice. The water molecules are spread out when confined in a nanocage. In combination with low-frequency dielectric measurements, we were also able to show that dipolar coupling among the H 2 O molecules leads towards a ferroelectric state at low temperatures. Upon cooling, a ferroelectric soft mode shifts through the THz range. Only quantum fluctuations prevent perfect macroscopic order to be fully achieved. Beside the significance to life science and possible application, nanoconfined water may become the prime example of a quantum electric dipolar lattice.
AbstractList Water is subject to intense investigations due to its importance in biological matter but keeps many of its secrets. Here, we unveil an even other aspect by confining H 2 O molecules to nanosize cages. Our THz and infrared spectra of water in the gemstone beryl evidence quantum tunneling of H 2 O molecules in the crystal lattice. The water molecules are spread out when confined in a nanocage. In combination with low-frequency dielectric measurements, we were also able to show that dipolar coupling among the H 2 O molecules leads towards a ferroelectric state at low temperatures. Upon cooling, a ferroelectric soft mode shifts through the THz range. Only quantum fluctuations prevent perfect macroscopic order to be fully achieved. Beside the significance to life science and possible application, nanoconfined water may become the prime example of a quantum electric dipolar lattice.
Author Dressel, Martin
Thomas, Victor G.
Gorshunov, Boris P.
Zhukova, Elena S.
Author_xml – sequence: 1
  givenname: Martin
  orcidid: 0000-0003-1907-052X
  surname: Dressel
  fullname: Dressel, Martin
  email: dressel@pi1.physik.uni-stuttgart.de
  organization: 1. Physikalisches Institut, Universität Stuttgart
– sequence: 2
  givenname: Elena S.
  surname: Zhukova
  fullname: Zhukova, Elena S.
  organization: Moscow Institute of Physics and Technology (State University)
– sequence: 3
  givenname: Victor G.
  surname: Thomas
  fullname: Thomas, Victor G.
  organization: Sobolev Institute of Geology and Mineralogy, SB RAS, Novosibirsk State University
– sequence: 4
  givenname: Boris P.
  surname: Gorshunov
  fullname: Gorshunov, Boris P.
  organization: Moscow Institute of Physics and Technology (State University)
BookMark eNp9z7FOwzAQgGELFYm28ABM9AUMtuNcLiMqpSBFQkgwW1fXRq7SpLKdgbcnVWFh6HS3_Hf6ZmzS9Z1j7FaKeylE9ZCkqEBxIZELXSmOF2wqEYBDLWDyt2OtrtgspZ0QoHUNU3b3PlCXh_1i1TqbY7CLp3DoW7doKOdg3TW79NQmd_M75-zzefWxfOHN2_p1-dhwq0SB3NWOyg1CWYNXmmBLFitNBSIpQdJ7rUoP1kFZWtzoGgtvsXBbAkEVbVUxZ_J018Y-pei8OcSwp_htpDBHoTkJzSg0R6HBsan-NTZkyqHvcqTQni3VqUzjl-7LRbPrh9iNwDPRDyJxZhI
CitedBy_id crossref_primary_10_1038_s41467_020_17832_y
crossref_primary_10_1103_PhysRevB_108_064101
crossref_primary_10_3367_UFNe_2020_01_038721
crossref_primary_10_1063_5_0131510
crossref_primary_10_2139_ssrn_4196997
crossref_primary_10_3367_UFNr_2020_01_038721
crossref_primary_10_1039_D1CP05338H
Cites_doi 10.1002/pssb.2220510230
10.2138/am-1997-11-1202
10.1021/ja01315a102
10.1007/s10947-006-0261-4
10.1029/JC080i012p01656
10.1007/BF01008897
10.1103/PhysRev.135.A1732
10.1021/jz400782j
10.1103/PhysRevLett.116.167802
10.1007/s002690000102
10.1103/PhysRevB.19.3593
10.1007/s10762-005-7600-y
10.1063/1.1670922
10.1103/PhysRev.102.1008
10.1039/C7CP06472A
10.1017/CBO9780511606168
10.1016/0022-2860(94)08471-S
10.1021/cr2003568
10.1017/CBO9781139644181
10.1038/ncomms10569
10.1088/0953-8984/8/25/021
10.1103/PhysRevLett.94.160401
10.1103/PhysRevLett.95.150406
10.1007/BF01313549
10.1103/RevModPhys.62.993
10.1088/1742-6596/486/1/012019
10.1038/ncomms12842
10.1063/1.4978397
10.1126/science.1206376
10.1063/1.4882062
10.1103/RevModPhys.85.1473
10.1088/0034-4885/80/1/016502
10.1016/0921-4526(94)00290-C
10.2138/am-2016-5432
10.1103/PhysRevB.93.014421
10.1016/0025-5408(73)90167-0
10.1103/PhysRevLett.93.035503
10.1073/pnas.1210790109
10.1103/PhysRevLett.109.035701
10.1080/01411594.2014.954247
10.1103/RevModPhys.89.025003
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2018
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018
DBID AAYXX
CITATION
DOI 10.1007/s10762-018-0472-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1866-6906
EndPage 815
ExternalDocumentID 10_1007_s10762_018_0472_8
GroupedDBID -5F
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
199
1N0
203
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
78A
8FE
8FG
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJOX
ABKCH
ABKTR
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARAPS
ARCEE
ARMRJ
AXYYD
AYJHY
AZFZN
B-.
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXD
IZIGR
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
OAM
P62
P9T
PF0
PT4
QOS
R89
R9I
ROL
RSV
S16
S3B
SAP
SCLPG
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
TSG
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ID FETCH-LOGICAL-c2038-e9ea5b86596f24a6dac874a388a20a1ff425f6ce655c8b4983fc83eda60a7ad23
IEDL.DBID U2A
ISSN 1866-6892
IngestDate Tue Jul 01 03:33:29 EDT 2025
Thu Apr 24 23:07:26 EDT 2025
Fri Feb 21 02:37:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Water
Dipolar interaction
THz spectroscopy
Quantum tunneling
Dielectric spectroscopy
Ferroelectricity
Fourier transform infrared spectroscopy
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2038-e9ea5b86596f24a6dac874a388a20a1ff425f6ce655c8b4983fc83eda60a7ad23
ORCID 0000-0003-1907-052X
PageCount 17
ParticipantIDs crossref_primary_10_1007_s10762_018_0472_8
crossref_citationtrail_10_1007_s10762_018_0472_8
springer_journals_10_1007_s10762_018_0472_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180900
2018-9-00
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 9
  year: 2018
  text: 20180900
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of infrared, millimeter and terahertz waves
PublicationTitleAbbrev J Infrared Milli Terahz Waves
PublicationYear 2018
Publisher Springer US
Publisher_xml – name: Springer US
References A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, and T. Pfau, Phys. Rev. Lett. 94, 160401 (2005).
H. D. Downing and D. Williams, J. Geophys. Res. 80, 1656 (1975).
J. Stuhler, A. Griesmaier, T. Koch, M. Fattori, S. Giovanazzi, P. Pedri, L. Santos, and T. Pfau, Phys. Rev. Lett. 95, 150406 (2005).
M. Born and E. Wolf, Principles of Optics, 7th edition (Cambridge University Press, Cambridge, 1999).
L. Savary and L. Balents, Rep. Prog. Phys. 80, 16502 (2017).
L. Pauling, J. Am. Chem. Soc. 57, 2680 (1935).
Y. Finkelstein, R. Moreh, S.L. Shang, Y. Wang, and Z.K. Liu, J. Chem. Phys. 146, 124307 (2017).
F. Gervais, B. Piriou, and F. Cabannes, Phys. Stat. Sol. (b) 51, 701 (1972).
K.A. Müller and H. Burkhard, Phys. Rev. B 19, 3593 (1979).
A.I. Kolesnikov, G.F. Reiter, N. Choudhury, T.R. Prisk, E. Mamontov, A. Podlesnyak, G. Ehlers, A.G. Seel, D.J. Wesolowski, and L.M. Anovitz, Phys. Rev. Lett. 116, 167802 (2016).
D.C. Johnston, Phys. Rev. B 93, 014421 (2016).
F. G. Alabarse, J. Haines, O. Cambon, C. Levelut, D. Bourgogne, A. Haidoux, D. Granier, and B. Coasne, Phys. Rev. Lett. 109, 035701 (2012).
P.W. Anderson, Phys. Rev. 102, 1008 (1956); Mater. Res.Bull. 8, 153 (1973).
P.I. Belobrov, R.S. Gekht, and V.A. Ignatchenko, Sov. Phys. JETP 57, 636 (1983).
B.P. Gorshunov, V.I. Torgashev, E.S. Zhukova, V.G. Thomas, M.A. Belyanchikov, C. Kadlec, F. Kadlec, M. Savinov, T. Ostapchuk, J. Petzelt, J. Prokleska, P.V. Tomas, D.A. Fursenko, G.S. Shakurov, A.S. Prokhorov, V.S. Gorelik, L.S. Kadyrov, V.V. Uskov, R. Kremer, and M. Dressel, Nature Commun. 7, 12842 (2016).
U. Kaatze, Physik Journal 15 (12), 19 (December 2016).
B.E. Vugmeister and M.D. Glinchuk, Rev. Mod. Phys. 62, 993 (1990).
A.S. Lebedev, A.G. Il’in, and V.A. Klyakhin, “Hydrothermally grown beryls of gem quality. // Morphology and Phase Equilibria of Minerals”, in: Proceedings of the 13th General Meeting of the International Mineralogical Association, Varna (Sofia, Bulgaria,1982), 1986, Vol. 2, pp. 403–411.
J. Hemberger, M. Nicklas, R. Viana, P. Lunkenheimer, A. Loidl and R.Böhmer, J.Phys. Condens. Matter 8, 4673 (1996).
B. Gorshunov, A. Volkov, I. Spektor, A. Prokhorov, A. Mukhin, M. Dressel, S. Uchida, and A. Loidl, Int. J. Infrared Millimeter Waves 26, 1217 (2005).
C. C. Kim, M. I. Bell, and D. A. McKeown, Physica B 205, 193 (1995).
C. Nisoli, R. Moessner, and P. Schiffer, Rev. Mod. Phys. 85, 1473 (2013).
Y. Zhou, K. Kanoda, and T.-K. Ng, Rev. Mod. Phys. 89, 025003 (2017).
A. I. Kolesnikov, J.-M. Zanotti, C.-K. Loong, P. Thiyagarajan, A. P. Moravsky, R. O. Loutfy, and C. J. Burnham, Phys. Rev. Lett. 93, 035503 (2004).
E.S. Zhukova, V.I. Torgashev, B.P. Gorshunov, V.V. Lebedev, G.S. Shakurov, R.K. Kremer, E.V. Pestrjakov, V.G. Thomas, D.A. Fursenko, A.S. Prokhorov and M. Dressel, J. Chem. Phys. 140, 224317 (2014).
S.-P. Shen, J.-C. Wu, J.-D. Song, X.-F. Sun, Y.-F. Yang, Y.-S. Chai, D.-S. Shang, S.-G. Wang, J.F. Scott, and Y. Sun, Nature Commun. 7, 10569 (2016).
K. A. Müller, W. Berlinger, and E. Tosatti, Z. Phys. B 48, 277 (1991).
K. Kuratobi and Y. Murata, Science 333, 613 (2011).
B.P. Gorshunov, E.S. Zhukova, V.I. Torgashev, V.V. Lebedev, A.S. Prokhorov, G.S. Shakurov, R.K. Kremer, V.V. Uskov, E.V. Pestrjakov, V.G. Thomas, D.A. Fursenko, C. Kadlec, F. Kadlec, and M. Dressel, Phase Transitions 87, 966 (2014).
B. A. Kolesov and C. A. Geiger, Phys. Chem. Minerals 27, 557 (2000).
M.A. Belyanchikov, E.S. Zhukova, S. Tretiak, A. Zhugayevych, M. Dressel, F. Uhlig, J. Smiatek, M. Fyta, V.G. Thomas, and B.P. Gorshunov. Phys. Chem. Chem. Phys. 19, 30740 (2017). https://doi.org/10.1039/C7CP06472A.
B.P. Gorshunov, E.S. Zhukova, V.I. Torgashev, V.V. Lebedev, G.S. Shakurov, R.K. Kremer, E.V. Pestrjakov, V.G. Thomas, D.A. Fursenko, and M. Dressel, J. Phys. Chem. Lett. 4, 2015 (2013).
H. J. Liebe, G. A. Hufford, and T. Manabe, Int. J. Infrared Milli. Waves 12, 659 (1991).
T. Pilati, F. Demartin, and C. M. Gramaccioli, Am. Mineralogist 82, 1054 (1997).
C. Beduza, M. Carravettab, J. Y.-C. Chenc, M. Concistrèb, M. Denningb, M. Frunzic, A. J. Horsewilld, O. G. Johannessenb, R. Lawlere, X. Leic, M. H. Levittb, Y. Lic, S. Mamoneb, Y. Murataf, U. Nagelg, T. Nishidaf, J. Ollivierh, S. Rolsh, T. Rõõm, R. Sarkarb, N. J. Turroc, and Y. Yanga, Proc. Nat. Acad. Sci. (New York) 109, 12894 (2012).
S.E. Rowley, L.J. Spalek, R.P Smith, M.P.M. Dean, M. Itoh, J.F. Scott, G.G. Lonzarich and S.S. Saxena, Nature Phys. 10, 367 (2014).
G. Kozlov and A. Volkov, in: Millimeter and Submillimeter Spectroscopy of Solids, ed. by G. Grüner (Springer-Verlag, Berlin, 1998); p. 51.
J. E. Bertie, H. J. Labbe, and E. Whalley. J. Chem. Phys. 50 4501 (1969).
H. R. Zelsmann, J. Mol. Struct. 350, 95 (1995).
M. A. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977).
V. V. Bakakin and N. V. Belov, Geochemistry 5, 484 (1962).
R.I. Mashkovtsev, V.G. Thomas, D.A. Fursenko E.S. Zhukova, V.V. Uskov, and B.P. Gorshunov, Am. Mineralogist. 101, 175 (2016).
B. A. Kolesov, J. Struct. Chem. 47, 21 (2006).
A. S. Barker and J. J. Hopfield, Phys. Rev. 135, A1732 (1964).
E.S. Zhukova, B.P. Gorshunov, V.I. Torgashev, V.V. Lebedev, G.S. Shakurov, R.K. Kremer, E.V. Pestrjakov, V.G. Thomas, D.A. Fursenko, and M. Dressel, J. Phys.: Conf. Series 486, 012019 (2014).
M. Dressel and G. Grüner, Electrodynamics of Solids (Cambridge University Press, Cambridge, 2002).
M.A. Boranov, M. Dalmonte, G. Pupillo, and P. Zoller, Chem. Rev. 112, 5012 (2012).
L.V. Belobrov, V.A. Voevodin, and V.A. Ignatchenko, Sov. Phys. JETP 61, 522 (1985).
472_CR45
472_CR46
472_CR47
472_CR48
472_CR10
472_CR11
472_CR34
472_CR35
472_CR36
472_CR37
472_CR38
472_CR39
cr-split#-472_CR5.1
472_CR40
cr-split#-472_CR5.2
472_CR41
472_CR42
472_CR43
472_CR44
472_CR23
472_CR24
472_CR25
472_CR26
472_CR27
472_CR28
472_CR29
472_CR30
472_CR31
472_CR32
472_CR33
472_CR12
472_CR13
472_CR14
472_CR15
472_CR16
472_CR17
472_CR18
472_CR19
472_CR9
472_CR8
472_CR7
472_CR2
472_CR1
472_CR6
472_CR20
472_CR4
472_CR21
472_CR3
472_CR22
References_xml – reference: J. Stuhler, A. Griesmaier, T. Koch, M. Fattori, S. Giovanazzi, P. Pedri, L. Santos, and T. Pfau, Phys. Rev. Lett. 95, 150406 (2005).
– reference: J. Hemberger, M. Nicklas, R. Viana, P. Lunkenheimer, A. Loidl and R.Böhmer, J.Phys. Condens. Matter 8, 4673 (1996).
– reference: B.P. Gorshunov, E.S. Zhukova, V.I. Torgashev, V.V. Lebedev, G.S. Shakurov, R.K. Kremer, E.V. Pestrjakov, V.G. Thomas, D.A. Fursenko, and M. Dressel, J. Phys. Chem. Lett. 4, 2015 (2013).
– reference: E.S. Zhukova, B.P. Gorshunov, V.I. Torgashev, V.V. Lebedev, G.S. Shakurov, R.K. Kremer, E.V. Pestrjakov, V.G. Thomas, D.A. Fursenko, and M. Dressel, J. Phys.: Conf. Series 486, 012019 (2014).
– reference: M.A. Boranov, M. Dalmonte, G. Pupillo, and P. Zoller, Chem. Rev. 112, 5012 (2012).
– reference: C. Beduza, M. Carravettab, J. Y.-C. Chenc, M. Concistrèb, M. Denningb, M. Frunzic, A. J. Horsewilld, O. G. Johannessenb, R. Lawlere, X. Leic, M. H. Levittb, Y. Lic, S. Mamoneb, Y. Murataf, U. Nagelg, T. Nishidaf, J. Ollivierh, S. Rolsh, T. Rõõm, R. Sarkarb, N. J. Turroc, and Y. Yanga, Proc. Nat. Acad. Sci. (New York) 109, 12894 (2012).
– reference: J. E. Bertie, H. J. Labbe, and E. Whalley. J. Chem. Phys. 50 4501 (1969).
– reference: S.-P. Shen, J.-C. Wu, J.-D. Song, X.-F. Sun, Y.-F. Yang, Y.-S. Chai, D.-S. Shang, S.-G. Wang, J.F. Scott, and Y. Sun, Nature Commun. 7, 10569 (2016).
– reference: B. A. Kolesov, J. Struct. Chem. 47, 21 (2006).
– reference: V. V. Bakakin and N. V. Belov, Geochemistry 5, 484 (1962).
– reference: T. Pilati, F. Demartin, and C. M. Gramaccioli, Am. Mineralogist 82, 1054 (1997).
– reference: B.P. Gorshunov, V.I. Torgashev, E.S. Zhukova, V.G. Thomas, M.A. Belyanchikov, C. Kadlec, F. Kadlec, M. Savinov, T. Ostapchuk, J. Petzelt, J. Prokleska, P.V. Tomas, D.A. Fursenko, G.S. Shakurov, A.S. Prokhorov, V.S. Gorelik, L.S. Kadyrov, V.V. Uskov, R. Kremer, and M. Dressel, Nature Commun. 7, 12842 (2016).
– reference: M. A. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977).
– reference: L.V. Belobrov, V.A. Voevodin, and V.A. Ignatchenko, Sov. Phys. JETP 61, 522 (1985).
– reference: K.A. Müller and H. Burkhard, Phys. Rev. B 19, 3593 (1979).
– reference: B. Gorshunov, A. Volkov, I. Spektor, A. Prokhorov, A. Mukhin, M. Dressel, S. Uchida, and A. Loidl, Int. J. Infrared Millimeter Waves 26, 1217 (2005).
– reference: H. D. Downing and D. Williams, J. Geophys. Res. 80, 1656 (1975).
– reference: A. S. Barker and J. J. Hopfield, Phys. Rev. 135, A1732 (1964).
– reference: S.E. Rowley, L.J. Spalek, R.P Smith, M.P.M. Dean, M. Itoh, J.F. Scott, G.G. Lonzarich and S.S. Saxena, Nature Phys. 10, 367 (2014).
– reference: Y. Zhou, K. Kanoda, and T.-K. Ng, Rev. Mod. Phys. 89, 025003 (2017).
– reference: P.I. Belobrov, R.S. Gekht, and V.A. Ignatchenko, Sov. Phys. JETP 57, 636 (1983).
– reference: R.I. Mashkovtsev, V.G. Thomas, D.A. Fursenko E.S. Zhukova, V.V. Uskov, and B.P. Gorshunov, Am. Mineralogist. 101, 175 (2016).
– reference: G. Kozlov and A. Volkov, in: Millimeter and Submillimeter Spectroscopy of Solids, ed. by G. Grüner (Springer-Verlag, Berlin, 1998); p. 51.
– reference: B. A. Kolesov and C. A. Geiger, Phys. Chem. Minerals 27, 557 (2000).
– reference: L. Savary and L. Balents, Rep. Prog. Phys. 80, 16502 (2017).
– reference: A.I. Kolesnikov, G.F. Reiter, N. Choudhury, T.R. Prisk, E. Mamontov, A. Podlesnyak, G. Ehlers, A.G. Seel, D.J. Wesolowski, and L.M. Anovitz, Phys. Rev. Lett. 116, 167802 (2016).
– reference: Y. Finkelstein, R. Moreh, S.L. Shang, Y. Wang, and Z.K. Liu, J. Chem. Phys. 146, 124307 (2017).
– reference: K. A. Müller, W. Berlinger, and E. Tosatti, Z. Phys. B 48, 277 (1991).
– reference: A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, and T. Pfau, Phys. Rev. Lett. 94, 160401 (2005).
– reference: M. Dressel and G. Grüner, Electrodynamics of Solids (Cambridge University Press, Cambridge, 2002).
– reference: C. C. Kim, M. I. Bell, and D. A. McKeown, Physica B 205, 193 (1995).
– reference: H. R. Zelsmann, J. Mol. Struct. 350, 95 (1995).
– reference: K. Kuratobi and Y. Murata, Science 333, 613 (2011).
– reference: E.S. Zhukova, V.I. Torgashev, B.P. Gorshunov, V.V. Lebedev, G.S. Shakurov, R.K. Kremer, E.V. Pestrjakov, V.G. Thomas, D.A. Fursenko, A.S. Prokhorov and M. Dressel, J. Chem. Phys. 140, 224317 (2014).
– reference: M.A. Belyanchikov, E.S. Zhukova, S. Tretiak, A. Zhugayevych, M. Dressel, F. Uhlig, J. Smiatek, M. Fyta, V.G. Thomas, and B.P. Gorshunov. Phys. Chem. Chem. Phys. 19, 30740 (2017). https://doi.org/10.1039/C7CP06472A.
– reference: L. Pauling, J. Am. Chem. Soc. 57, 2680 (1935).
– reference: B.P. Gorshunov, E.S. Zhukova, V.I. Torgashev, V.V. Lebedev, A.S. Prokhorov, G.S. Shakurov, R.K. Kremer, V.V. Uskov, E.V. Pestrjakov, V.G. Thomas, D.A. Fursenko, C. Kadlec, F. Kadlec, and M. Dressel, Phase Transitions 87, 966 (2014).
– reference: P.W. Anderson, Phys. Rev. 102, 1008 (1956); Mater. Res.Bull. 8, 153 (1973).
– reference: B.E. Vugmeister and M.D. Glinchuk, Rev. Mod. Phys. 62, 993 (1990).
– reference: A. I. Kolesnikov, J.-M. Zanotti, C.-K. Loong, P. Thiyagarajan, A. P. Moravsky, R. O. Loutfy, and C. J. Burnham, Phys. Rev. Lett. 93, 035503 (2004).
– reference: F. Gervais, B. Piriou, and F. Cabannes, Phys. Stat. Sol. (b) 51, 701 (1972).
– reference: C. Nisoli, R. Moessner, and P. Schiffer, Rev. Mod. Phys. 85, 1473 (2013).
– reference: M. Born and E. Wolf, Principles of Optics, 7th edition (Cambridge University Press, Cambridge, 1999).
– reference: H. J. Liebe, G. A. Hufford, and T. Manabe, Int. J. Infrared Milli. Waves 12, 659 (1991).
– reference: D.C. Johnston, Phys. Rev. B 93, 014421 (2016).
– reference: F. G. Alabarse, J. Haines, O. Cambon, C. Levelut, D. Bourgogne, A. Haidoux, D. Granier, and B. Coasne, Phys. Rev. Lett. 109, 035701 (2012).
– reference: A.S. Lebedev, A.G. Il’in, and V.A. Klyakhin, “Hydrothermally grown beryls of gem quality. // Morphology and Phase Equilibria of Minerals”, in: Proceedings of the 13th General Meeting of the International Mineralogical Association, Varna (Sofia, Bulgaria,1982), 1986, Vol. 2, pp. 403–411.
– reference: U. Kaatze, Physik Journal 15 (12), 19 (December 2016).
– ident: 472_CR41
  doi: 10.1002/pssb.2220510230
– ident: 472_CR39
  doi: 10.2138/am-1997-11-1202
– ident: 472_CR4
  doi: 10.1021/ja01315a102
– ident: 472_CR35
  doi: 10.1007/s10947-006-0261-4
– ident: 472_CR42
  doi: 10.1029/JC080i012p01656
– ident: 472_CR44
  doi: 10.1007/BF01008897
– ident: 472_CR47
– ident: 472_CR38
  doi: 10.1103/PhysRev.135.A1732
– ident: 472_CR21
  doi: 10.1021/jz400782j
– ident: 472_CR25
  doi: 10.1103/PhysRevLett.116.167802
– ident: 472_CR32
– ident: 472_CR34
  doi: 10.1007/s002690000102
– ident: 472_CR13
  doi: 10.1103/PhysRevB.19.3593
– ident: 472_CR33
  doi: 10.1007/s10762-005-7600-y
– ident: 472_CR45
  doi: 10.1063/1.1670922
– ident: #cr-split#-472_CR5.1
  doi: 10.1103/PhysRev.102.1008
– ident: 472_CR27
  doi: 10.1039/C7CP06472A
– ident: 472_CR46
– ident: 472_CR29
– ident: 472_CR37
  doi: 10.1017/CBO9780511606168
– ident: 472_CR43
  doi: 10.1016/0022-2860(94)08471-S
– ident: 472_CR10
  doi: 10.1021/cr2003568
– ident: 472_CR36
  doi: 10.1017/CBO9781139644181
– ident: 472_CR11
  doi: 10.1038/ncomms10569
– ident: 472_CR15
  doi: 10.1088/0953-8984/8/25/021
– ident: 472_CR16
– ident: 472_CR8
  doi: 10.1103/PhysRevLett.94.160401
– ident: 472_CR9
  doi: 10.1103/PhysRevLett.95.150406
– ident: 472_CR14
  doi: 10.1007/BF01313549
– ident: 472_CR12
  doi: 10.1103/RevModPhys.62.993
– ident: 472_CR22
  doi: 10.1088/1742-6596/486/1/012019
– ident: 472_CR28
  doi: 10.1038/ncomms12842
– ident: 472_CR26
  doi: 10.1063/1.4978397
– ident: 472_CR17
  doi: 10.1126/science.1206376
– ident: 472_CR23
  doi: 10.1063/1.4882062
– ident: 472_CR1
  doi: 10.1103/RevModPhys.85.1473
– ident: 472_CR2
  doi: 10.1088/0034-4885/80/1/016502
– ident: 472_CR40
  doi: 10.1016/0921-4526(94)00290-C
– ident: 472_CR31
  doi: 10.2138/am-2016-5432
– ident: 472_CR7
  doi: 10.1103/PhysRevB.93.014421
– ident: #cr-split#-472_CR5.2
  doi: 10.1016/0025-5408(73)90167-0
– ident: 472_CR19
  doi: 10.1103/PhysRevLett.93.035503
– ident: 472_CR18
  doi: 10.1073/pnas.1210790109
– ident: 472_CR48
– ident: 472_CR30
– ident: 472_CR20
  doi: 10.1103/PhysRevLett.109.035701
– ident: 472_CR24
  doi: 10.1080/01411594.2014.954247
– ident: 472_CR6
– ident: 472_CR3
  doi: 10.1103/RevModPhys.89.025003
SSID ssj0064496
Score 2.1609092
Snippet Water is subject to intense investigations due to its importance in biological matter but keeps many of its secrets. Here, we unveil an even other aspect by...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 799
SubjectTerms Classical Electrodynamics
Electrical Engineering
Electronics and Microelectronics
Engineering
Instrumentation
Subtitle Water Molecules Confined to Nanocavities in Beryl
Title Quantum Electric Dipole Lattice
URI https://link.springer.com/article/10.1007/s10762-018-0472-8
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4oXPTgAzXiA_fgSdNk6bbd2SPqIvFB1EiCp03b7SYkCETg_9suuwqJmnjqZdqk084rM_MNwHkoWUBViiSlxrcBCqNEZagIQ2VCNJxy7RqFH7ui02N3fd4v-rinZbV7mZLMNfVSs5sVXBv6InEIhwTXocpd6G4_cY-2SvVr7Xs-lMsBuRGBES1TmT8dsWqMVjOhuYFp78BW4Rl6rcVT7sKaGdVgu_ASvUIGpzXYXIIQ3IOz57nlzfzdi_N5NgPt3Qwm46HxHuTM1bXtQ68dv153SDH0gGjqW-VjIiO5QsEjkVEmRSo1hkwGiJL6spllVsgyoY3gXKNiEQaZxsCkUvgylCkNDqAyGo_MIXgB0jz88VVTMRUJlTZVKiJtfLdmtA5-eftEF4jgbjDFMPnGMnYMSyzDEsewBOtw8bVlsoDD-Iv4smRpUkjG9Hfqo39RH8MGzd_RVXudQGX2MTen1j2YqQZUW7dv97Fdr-Lu00sj_x6fNkCx8A
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60HtSDj6pYX83Bk7KQbjabyVG0pWpbEFrobdlXoFDbYtv_726aaAsqeMplEthvMy9m5huA20SyiCqDxFAbugSFUaIyVIShsgnamMbaDwp3e7w9YC_DeFjMcc_LbveyJJlb6rVhN6e4LvVF4hkOCW7DjosF0PdxDehDaX6df8-XcnkiN8IxpWUp86dPbDqjzUpo7mBaR3BQRIbBw-oqj2HLTqpwWESJQaGD8yrsr1EInkD9bemwWb4HzXyfzUgHT6PZdGyDjlz4vrZTGLSa_cc2KZYeEE1DZ3xsamWskMcpzyiT3EiNCZPunJKGspFlTskyri2PY42KpRhlGiNrJA9lIg2NzqAymU7sOQQR0jz9CVVDMZVyZRrK8FTb0D8zWoOwPL3QBSO4X0wxFt9cxh4w4QATHjCBNbj7emW2osP4S_i-hFQUmjH_XfriX9J12G33ux3Ree69XsIeze_Ud35dQWXxsbTXLlRYqJv81_gElAqxtQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60gujBR1Wsr-bgSVlMNpvN5lhsS9VaFCz0FvYJhZoWm_5_d9NEW1DBUy6TQGZ3XszM9wFcx5yEWCiGFNa-LVAIRsIwgQgTOmY6wpF0i8LPA9obksdRNCp5TufVtHvVklzuNDiUpiy_mylzt7L4Zo3YlsEMObRDxDZhy3rjwF3rIW5VrtjG-oKgy4G6IcoSXLU1f_rEemBa74oWwaZ7AHtllui1lsd6CBs6q8N-mTF6pT3O67C7Aid4BM3XhdXT4t3rFNw2Y-m1x7PpRHt9nrsZt2MYdjtv9z1UEiAgiX3riHSieSQYjRJqMOFUccliwkPGOPZ5YIw1OEOlplEkmSAJC41koVac-jzmCocnUMummT4FL2S4KIV8EQgiEipUIBRNpPbd0-AG-NXfp7JEB3ckFZP0G9fYKSy1CkudwlLWgJuvV2ZLaIy_hG8rlaallcx_lz77l3QTtl_a3bT_MHg6hx1cHKkbAruAWv6x0Jc2a8jFVXEzPgFoj7Xx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+Electric+Dipole+Lattice&rft.jtitle=Journal+of+infrared%2C+millimeter+and+terahertz+waves&rft.au=Dressel%2C+Martin&rft.au=Zhukova%2C+Elena+S.&rft.au=Thomas%2C+Victor+G.&rft.au=Gorshunov%2C+Boris+P.&rft.date=2018-09-01&rft.issn=1866-6892&rft.eissn=1866-6906&rft.volume=39&rft.issue=9&rft.spage=799&rft.epage=815&rft_id=info:doi/10.1007%2Fs10762-018-0472-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10762_018_0472_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-6892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-6892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-6892&client=summon