Methodology Development and Determination of Solubility-limiting Solid Phases for a Performance Assessment of Geological Disposal of High-level Radioactive and TRU Wastes
Evaluation and estimation of solubility values are required for a performance assessment of geological disposal of high-level radioactive and TRU wastes. Selection of solubility-limiting solid phases (SSPs) that control the solubility of radionuclides is necessary for the evaluation and estimation...
Saved in:
Published in | Journal of Nuclear Fuel Cycle and Environment Vol. 27; no. 2; pp. 58 - 71 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Division of Nuclear Fuel Cycle and Environment, Atomic Energy Society of Japan
15.12.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1884-7579 1884-7579 |
DOI | 10.3327/jnuce.27.2_58 |
Cover
Abstract | Evaluation and estimation of solubility values are required for a performance assessment of geological disposal of high-level radioactive and TRU wastes. Selection of solubility-limiting solid phases (SSPs) that control the solubility of radionuclides is necessary for the evaluation and estimation of solubility values. The authors have developed a methodology for selection of the SSP through a calculation of saturation indices (SIs) using thermodynamic database to show a transparent procedure for the selection. Literature survey has been performed to confirm decision of the SSP from candidate SSPs which generally have larger SIs from realistic point of view for precipitation and solubility control. The authors have selected the SSPs for the elements of interest for the latest Japanese performance assessment in bentonite and cement porewaters after grouping various water compositions. |
---|---|
AbstractList | Evaluation and estimation of solubility values are required for a performance assessment of geological disposal of high-level radioactive and TRU wastes. Selection of solubility-limiting solid phases (SSPs) that control the solubility of radionuclides is necessary for the evaluation and estimation of solubility values. The authors have developed a methodology for selection of the SSP through a calculation of saturation indices (SIs) using thermodynamic database to show a transparent procedure for the selection. Literature survey has been performed to confirm decision of the SSP from candidate SSPs which generally have larger SIs from realistic point of view for precipitation and solubility control. The authors have selected the SSPs for the elements of interest for the latest Japanese performance assessment in bentonite and cement porewaters after grouping various water compositions. |
Author | GOTO, Takahiro YOSHIDA, Yasushi SHIBUTANI, Sanae KITAMURA, Akira |
Author_xml | – sequence: 1 fullname: GOTO, Takahiro organization: Nuclear Waste Management Organization of Japan – sequence: 1 fullname: SHIBUTANI, Sanae organization: Nuclear Waste Management Organization of Japan – sequence: 1 fullname: YOSHIDA, Yasushi organization: NESI Company Limited – sequence: 1 fullname: KITAMURA, Akira organization: Japan Atomic Energy Agency |
BookMark | eNp1UMFq3DAUFCWFpmmOvesHvJUle629FELSJoWUhDShR_MsP-2-RZYWSQnsL_UrK29KCIFepHmjeTNiPrIjHzwy9rkWC6Vk92XrHw0uZLeQfavfseNa66bq2m519Ap_YKcpbYUQSoll3bTH7M9PzJswBhfWe36BT-jCbkKfOfixzBnjRB4yBc-D5b-CexzIUd5XjibK5NczRyO_3UDCxG2IHPgtxgIm8Ab5WSp8OlgWg0uck8iA4xeUdiEVUOgrWm8qN6fzOxgpgMn0hIc_3N898N-QMqZP7L0Fl_D0333CHr5_uz-_qq5vLn-cn11XRgqlq1G3gwCtOtPZ1uqVbZYGWqPMgEvTjst6QA3S1lYqHFYWuwFXQjVGykaaRozqhFXPviaGlCLafhdpgrjva9HPXfeHrvsC5q6LXr3RG8qHynIEcv_d-vq8tU0Z1viSATGTcfhaXY5WvzyYDcQevfoLU9-imw |
CitedBy_id | crossref_primary_10_3208_jgs_19_273 crossref_primary_10_1080_00223131_2021_1936255 |
Cites_doi | 10.1524/ract.1992.5859.1.71 10.1007/BF00649561 10.1080/18811248.2000.9714980 10.1139/v84-070 10.1016/j.apgeochem.2014.12.017 10.1524/ract.1989.48.34.145 10.1524/ract.2002.90.9-11_2002.805 10.1524/ract.1992.56.1.7 10.13182/NT99-A2959 10.1016/0016-7037(84)90051-6 10.1080/00223131.2015.1137245 10.3151/jact.3.77 10.1524/ract.2001.89.1.001 10.1007/s007060170128 10.2343/geochemj.42.295 |
ContentType | Journal Article |
Copyright | 2020 Division of Nuclear Fuel Cycle and Environment, Atomic Energy Society of Japan |
Copyright_xml | – notice: 2020 Division of Nuclear Fuel Cycle and Environment, Atomic Energy Society of Japan |
DBID | AAYXX CITATION |
DOI | 10.3327/jnuce.27.2_58 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1884-7579 |
EndPage | 71 |
ExternalDocumentID | 10_3327_jnuce_27_2_58 article_jnuce_27_2_27_58_article_char_en |
GroupedDBID | ALMA_UNASSIGNED_HOLDINGS JSF KQ8 RJT AAYXX CITATION |
ID | FETCH-LOGICAL-c2038-d85b0a837c7f5f89f46ca5c3cbe6c5d61be8a2f1f23eb9fe7be9034c2242c40d3 |
ISSN | 1884-7579 |
IngestDate | Tue Jul 01 02:22:33 EDT 2025 Thu Apr 24 23:08:24 EDT 2025 Wed Sep 03 06:31:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2038-d85b0a837c7f5f89f46ca5c3cbe6c5d61be8a2f1f23eb9fe7be9034c2242c40d3 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jnuce/27/2/27_58/_article/-char/en |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_3327_jnuce_27_2_58 crossref_citationtrail_10_3327_jnuce_27_2_58 jstage_primary_article_jnuce_27_2_27_58_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020/12/15 |
PublicationDateYYYYMMDD | 2020-12-15 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020/12/15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Journal of Nuclear Fuel Cycle and Environment |
PublicationTitleAlternate | Journal of Nuclear Fuel Cycle and Environment |
PublicationYear | 2020 |
Publisher | Division of Nuclear Fuel Cycle and Environment, Atomic Energy Society of Japan |
Publisher_xml | – name: Division of Nuclear Fuel Cycle and Environment, Atomic Energy Society of Japan |
References | [18] Curti, E., Wersin, P.: Assessment of porewater chemistry in the bentonite backfill for the Swiss SF/HLW repository. Technical Report 02-09, Nagra (2002). [3] Duro, L., Grivé, M., Cera, E., Gaona, X., Domènech, C., Bruno, J.: Determination and assessment of the concentration limits to be used in SR-Can. TR-06-32, SKB (2006). [15] Grivé, M., Domènech, C., Montoya, V., García, D., Duro, L.: Determination and assessment of the concentration limits to be used in SR-Can - Supplement to TR-06-32. R-10-50, SKB (2010). [19] Berner, U.: Project Opalinus Clay - Radionuclide concentration limits in the near-field of a repository for spent fuel and vitrified high-level waste. Technical Report 02-10, Nagra (2002). [10] Guillaumont, R., Fanghänel, T., Neck, V., Fuger, J., Palmer, D. A., Grenthe, I., Rand, M. H.: Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium. Elsevier, Amsterdam (2003). [12] Rand, M., Fuger, J., Grenthe, I., Neck, V., Rai, D.: Chemical Thermodynamics of Thorium. Elsevier, Amsterdam (2008). [46] Rard, J. A., Rand, M. H., Anderegg, G., Wanner, H.: Chemical Thermodynamics of Technetium. Elsevier, Amsterdam (1999). [43] Felmy, A. R., Rai, D., Mason, M. J.: The solubility of CaMoO4(c) and an aqueous thermodynamic model for Ca2+-MoO42--ion-interactions. J. Solution Chem. 21, pp.525-532 (1992). [20] Thoenen, T., Hummel, W., Berner, U., Curti, E.: The PSI/Nagra chemical thermodynamic database 12/07. Arbeitsbericht NAB 14-49, Nagra (2014). [57] U. S. Department of Energy (US-DOE): Yucca Mountain repository license application: Safety analysis report. DOE/RW-0573 (2008). [4] Östhols, E., Wanner, H.: TDB-0 - The NEA thermochemical data base project. OECD, available online at http://www.oecd-nea.org/dbtdb/guidelines/tdb0new.pdf (2000). [11] Gamsjäger, H., Gajda, T., Sangster, J., Saxena, S. K., Voigt, W.: Chemical Thermodynamics of Tin. OECD, Paris (2012). [27] Berner, U.: Project Opalinus Clay - Radionuclide concentration limits in the cementitious near-field of an ILW repository . Technical Report 02-22, Nagra (2002). [31] Kitamura, A.: Update of JAEA-TDB: Update of thermodynamic data for zirconium and those for isosaccahrinate, tentative selection of thermodynamic data for ternary M2+-UO22+-CO32- system and integration with JAEA’s thermodynamic database for geochemical calculations. JAEA-Data/Code 2018-018, JAEA (2019). [56] Duro, L., Montoya, V., Colàs, E., García, D.: Groundwater equilibration and radionuclide solubility calculations. NWMO TR-2010-02, NWMO (2010). [53] Rai, D., Felmy, A. R., Fulton, R. W.: Solubility and ion activity product of AmPO4·xH2O(am). Radiochim. Acta 56(1), pp.7-14 (1992). [17] Wersin, P., Kiczka, M., Rosch, D.: Safety case for the disposal of spent nuclear fuel at Olkiluoto - Radionuclide solubility limits and migration parameters for the canister and buffer. POSIVA 2012-39, Posiva Oy (2014). [35] Parkhurst, D. L., Appelo, C. A. J.: Description of input and examples for PHREEQC version 3 - A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U. S. Geological Survey Techniques and Methods, Book 6, Chap. A43, 497 p. (2013). [44] Grambow, B., Muller, R., Rother, A.: Determination of molybdate mean ionic activity coefficients for the assessment of radionuclide mobility. Radiochim. Acta 58/59, pp.71-77 (1992). [50] Uhler, A. D., Helz, G. R.: Solubility product of galena at 298 °K: A possible explanation for apparent supersaturation in nature. Geochim. Cosmochim. Acta 48, pp.1155-1160 (1984). [54] Neck, V., Kim. J. I.: Solubility and hydrolysis of tetravalent actinides. Radiochim. Acta 89(1), pp.1-16 (2001). [13] Hummel, W., Anderegg, G., Puigdomènech, I., Rao, L., Tochiyama, O.: Chemical Thermodynamics of Compounds and Complexes of U, Np, Pu, Am, Tc, Se, Ni and Zr with selected Organic Ligands. Elsevier, Amsterdam (2005). [2] Swedish Nuclear Fuel and Waste Management Co. (SKB): Radionuclide transport and dose calculations for the safety assessment SR-PSU. TR-14-09 (2014). [26] JAEA Radioactive Waste Processing and Disposal Research Department: Preliminary assessment of geological disposal system for spent fuel in Japan - First progress report on direct disposal -. JAEA-Research 2015-016 (2015) (in Japanese). [6] Lemire, R. J., Palmer, D. A., Taylor, P., Schlenz, H.: Chemical Thermodynamics of Iron (Part 2) . OECD, Paris (2013). [9] Brown, P. L., Curti, E., Grambow, B., Ekberg, C.: Chemical Thermodynamics of Zirconium. Elsevier, Amsterdam (2005). [32] Yui, M., Azuma, J., Shibata, M.: JNC thermodynamic database for performance assessment of high-level radioactive waste disposal system. JNC TN8400 99-070, Japan Nuclear Cycle Development institute (JNC) (1999). [25] Kitamura, A., Doi, R., Yoshida, Y.: Update of JAEA-TDB: Update of thermodynamic data for palladium and tin, refinement of thermodynamic data for protactinium, and preparation of PHREEQC database for use of the Brønsted-Guggenheim-Scatchard model. JAEA-Data/Code 2014-009, JAEA (2014). [33] Nuclear Waste Management Organization of Japan (NUMO): NUMO safety case report - Development of Pre-siting SDM-based Safety Case - (Draft for external review). NUMO-TR-18-03 (2018) (in Japanese). [8] Olin, Å., Noläng, B., Osadchii, E. G., Öhman, L.-O., Rosén, E.: Chemical Thermodynamics of Selenium. Elsevier, Amsterdam (2005). [7] Gamsjäger, H., Bugajski, J., Gajda, T., Lemire, R. J., Preis, W.: Chemical Thermodynamics of Nickel. Elsevier, Amsterdam (2005). [21] Berner, U.: Solubility of radionuclides in a bentonite environment for provisional safety analyses for SGT-E2. Technical Report 14-06, Nagra (2014). [38] Gamsjäger, H., Preis, W., Wallner, H.: Solid-solute phase equilibria in aqueous solutions XIV. Thermodynamic analysis of the solubility of hellyerite in water. Monatsh. Chemie 132 (3), pp.411-415 (2001). [39] Doi, R., Uchikoshi, K., Beppu, H.: The FeSe2(cr) solubility determined by solubility experiments of Se co-existing with Fe. J. Nucl. Sci. Technol. 53(10), pp.1554-1562 (2016). [48] Rai, D., Yui, M., Schaef, H. T., Kitamura, A.: Thermodynamic model for SnO2(cr) and SnO2(am) solubility in the aqueous Na+-H+-OH−-Cl−-H2O system. J. Solution Chem. 40(7), pp.1155-1172 (2011). [16] Grivé, M., Duro, M., Colàs, E., Giffaut, E.: Thermodynamic data selection applied to radionuclides and chemotoxic elements: An overview of the ThermoChimie-TDB. Appl. Geochem.55, pp.85-94 (2015). [52] Kitamura, A., Fujiwara, K., Yui, M.: JAEA thermodynamic database for performance assessment of geological disposal of high-level and TRU wastes: Refinement of thermodynamic data for trivalent actinoids and samarium. JAEA-Review 2009-047, JAEA (2010). [5] Lemire, R., Berner, U., Musikas, C., Palmer, D. A., Taylor, P., Tochiyama, O.:Chemical Thermodynamics of Iron (Part 1). OECD, Paris (2013). [24] Nuclear Waste Management Organization of Canada (NWMO): Pre-project report on adaptive phased management - Used fuel repository conceptual design and postclosure safety assessment in crystalline rock. TR-2012-16 (2012). [30] Kitamura, A., Fujiwara, K., Doi, R., Yoshida Y., Mihara, M., Terashima, M., Yui, M.: JAEA thermodynamic database for performance assessment of geological disposal of high-level radioactive and TRU wastes. JAEA-Data/Code 2009-024, JAEA (2010). [36] Hirao, H., Yamada, K., Takahashi, H., Zibara, H.: Chloride binding of cement estimated by binding isotherms of hydrates. J. Adv. Concrete Technol.3(1), pp.77-84 (2005). [14] Hummel, W., Berner, U., Curti, E., Pearson, F. J., Thoenen, T.: Nagra / PSI chemical thermodynamic data base 01/01. Technical Report 02-16, National Cooperative for the Disposal of Radioactive Waste in Switzerland (Nagra) (2002). [55] Kim, J. I., Kanellakopulos, B.: Solubility products of plutonium(IV) oxide and hydroxide. Radiochim. Acta 48 (3-4), pp.145-150 (1989). [22] National Agency for Radioactive Waste Management (ANDRA): Dossier 2005 Argile - Tome: Phenomenological evolution of a geological repository. ANDRA (2005). [51] Taylor, P., Lopata, V. J.: Stability and solubility relationships between some solids in the system PbO-CO2-H2O. Can. J. Chem. 62, pp.395-402 (1984). [42] Kitamura, A., Kirishima, A., Saito, T., Shibutani, S., Tochiyama, O.: JAEA thermodynamic database for performance assessment of geological disposal of high-level and TRU wastes: Selection of thermodynamic data of molybdenum. JAEA-Review 2010-010 (2010) (in Japanese). [49] Toyohara, M., Kaneko, M., Ueda, H., Mitsutsuka, N., Fujihara, H., Murase, T., Saito N.: Iodine sorption onto mixed solid alumina cement and calcium compounds. J. Nucl. Sci. Technol. 37(11), pp.970-978 (2000). [29] Berner, U.: Solubility of radionuclides in a concrete environment for provisional safety analyses for SGT-E2. Technical Report 14-07, Nagra (2014). [47] Rai, D., Yui, M., Kitamura, A.: Thermodynamic model for amorphous Pd(OH)2 solubility in the aqueous Na+-K+-H+-OH−-Cl−-ClO4−-H2O system at 25 °C: A critical review. J. Solution Chem. 41(11), pp.1965-1985 (2012). [41] Talerico, C., Ochs, M., Giffaut, E.: Solubility of Nb(V) under cementitious conditions: Importance of Ca-niobate. Scientific Basis for Nuclear Waste Management XXVIII(Mat. Res. Soc. Symp. Proc Vol. 824), (Hanchar, J. M., Stroes-Gascoyne, S., and Browning, L. ed.) San Francisco, U.S.A., April 13-16, 2004, CC8.31 (6 p.) (2004). [23] Sandia National Laboratories (SNL): Dissolved concentration limits of elements with radioactive isotopes. ANL-WIS-MD-000010 Rev. 06, US Department of Energy (US-DOE) (2007). [1] Nuclear Energy Agency (NEA) within Organisation for Economic Co-Operation and Development (OECD): Geologic Disposal of Radioactive Waste in Perspective. OECD, Paris (2000). [40] Yoshida, Y., Yoshikawa, H., Nakanishi, T.: Partition coefficients of Ra and Ba in calcite. Geochem. J. 42(3), pp.295-304 (2008). [28] JAEA: Project on advanced assessment technology development for impact of cement on geological disposal system for long-lived radioactive waste. Technical 44 45 46 47 48 49 50 51 52 53 10 54 11 55 12 56 13 57 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
References_xml | – reference: [17] Wersin, P., Kiczka, M., Rosch, D.: Safety case for the disposal of spent nuclear fuel at Olkiluoto - Radionuclide solubility limits and migration parameters for the canister and buffer. POSIVA 2012-39, Posiva Oy (2014). – reference: [35] Parkhurst, D. L., Appelo, C. A. J.: Description of input and examples for PHREEQC version 3 - A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U. S. Geological Survey Techniques and Methods, Book 6, Chap. A43, 497 p. (2013). – reference: [5] Lemire, R., Berner, U., Musikas, C., Palmer, D. A., Taylor, P., Tochiyama, O.:Chemical Thermodynamics of Iron (Part 1). OECD, Paris (2013). – reference: [2] Swedish Nuclear Fuel and Waste Management Co. (SKB): Radionuclide transport and dose calculations for the safety assessment SR-PSU. TR-14-09 (2014). – reference: [42] Kitamura, A., Kirishima, A., Saito, T., Shibutani, S., Tochiyama, O.: JAEA thermodynamic database for performance assessment of geological disposal of high-level and TRU wastes: Selection of thermodynamic data of molybdenum. JAEA-Review 2010-010 (2010) (in Japanese). – reference: [43] Felmy, A. R., Rai, D., Mason, M. J.: The solubility of CaMoO4(c) and an aqueous thermodynamic model for Ca2+-MoO42--ion-interactions. J. Solution Chem. 21, pp.525-532 (1992). – reference: [21] Berner, U.: Solubility of radionuclides in a bentonite environment for provisional safety analyses for SGT-E2. Technical Report 14-06, Nagra (2014). – reference: [18] Curti, E., Wersin, P.: Assessment of porewater chemistry in the bentonite backfill for the Swiss SF/HLW repository. Technical Report 02-09, Nagra (2002). – reference: [29] Berner, U.: Solubility of radionuclides in a concrete environment for provisional safety analyses for SGT-E2. Technical Report 14-07, Nagra (2014). – reference: [31] Kitamura, A.: Update of JAEA-TDB: Update of thermodynamic data for zirconium and those for isosaccahrinate, tentative selection of thermodynamic data for ternary M2+-UO22+-CO32- system and integration with JAEA’s thermodynamic database for geochemical calculations. JAEA-Data/Code 2018-018, JAEA (2019). – reference: [12] Rand, M., Fuger, J., Grenthe, I., Neck, V., Rai, D.: Chemical Thermodynamics of Thorium. Elsevier, Amsterdam (2008). – reference: [19] Berner, U.: Project Opalinus Clay - Radionuclide concentration limits in the near-field of a repository for spent fuel and vitrified high-level waste. Technical Report 02-10, Nagra (2002). – reference: [27] Berner, U.: Project Opalinus Clay - Radionuclide concentration limits in the cementitious near-field of an ILW repository . Technical Report 02-22, Nagra (2002). – reference: [30] Kitamura, A., Fujiwara, K., Doi, R., Yoshida Y., Mihara, M., Terashima, M., Yui, M.: JAEA thermodynamic database for performance assessment of geological disposal of high-level radioactive and TRU wastes. JAEA-Data/Code 2009-024, JAEA (2010). – reference: [49] Toyohara, M., Kaneko, M., Ueda, H., Mitsutsuka, N., Fujihara, H., Murase, T., Saito N.: Iodine sorption onto mixed solid alumina cement and calcium compounds. J. Nucl. Sci. Technol. 37(11), pp.970-978 (2000). – reference: [53] Rai, D., Felmy, A. R., Fulton, R. W.: Solubility and ion activity product of AmPO4·xH2O(am). Radiochim. Acta 56(1), pp.7-14 (1992). – reference: [26] JAEA Radioactive Waste Processing and Disposal Research Department: Preliminary assessment of geological disposal system for spent fuel in Japan - First progress report on direct disposal -. JAEA-Research 2015-016 (2015) (in Japanese). – reference: [9] Brown, P. L., Curti, E., Grambow, B., Ekberg, C.: Chemical Thermodynamics of Zirconium. Elsevier, Amsterdam (2005). – reference: [46] Rard, J. A., Rand, M. H., Anderegg, G., Wanner, H.: Chemical Thermodynamics of Technetium. Elsevier, Amsterdam (1999). – reference: [6] Lemire, R. J., Palmer, D. A., Taylor, P., Schlenz, H.: Chemical Thermodynamics of Iron (Part 2) . OECD, Paris (2013). – reference: [36] Hirao, H., Yamada, K., Takahashi, H., Zibara, H.: Chloride binding of cement estimated by binding isotherms of hydrates. J. Adv. Concrete Technol.3(1), pp.77-84 (2005). – reference: [51] Taylor, P., Lopata, V. J.: Stability and solubility relationships between some solids in the system PbO-CO2-H2O. Can. J. Chem. 62, pp.395-402 (1984). – reference: [15] Grivé, M., Domènech, C., Montoya, V., García, D., Duro, L.: Determination and assessment of the concentration limits to be used in SR-Can - Supplement to TR-06-32. R-10-50, SKB (2010). – reference: [50] Uhler, A. D., Helz, G. R.: Solubility product of galena at 298 °K: A possible explanation for apparent supersaturation in nature. Geochim. Cosmochim. Acta 48, pp.1155-1160 (1984). – reference: [45] Morin, K. A., Hutt, N. M.: Geochemical characterization of molybdenum leaching from rock and tailings at the Brenda Minesite, British Columbia. Proceedings of the 1999 Workshop on Molybdenum Issues in Reclamation (Price, W. A., Hart, B., and Howell, C. ed.) Kamloops, U.S.A., September 24, 1999, pp.76-85 (1999). – reference: [41] Talerico, C., Ochs, M., Giffaut, E.: Solubility of Nb(V) under cementitious conditions: Importance of Ca-niobate. Scientific Basis for Nuclear Waste Management XXVIII(Mat. Res. Soc. Symp. Proc Vol. 824), (Hanchar, J. M., Stroes-Gascoyne, S., and Browning, L. ed.) San Francisco, U.S.A., April 13-16, 2004, CC8.31 (6 p.) (2004). – reference: [33] Nuclear Waste Management Organization of Japan (NUMO): NUMO safety case report - Development of Pre-siting SDM-based Safety Case - (Draft for external review). NUMO-TR-18-03 (2018) (in Japanese). – reference: [55] Kim, J. I., Kanellakopulos, B.: Solubility products of plutonium(IV) oxide and hydroxide. Radiochim. Acta 48 (3-4), pp.145-150 (1989). – reference: [13] Hummel, W., Anderegg, G., Puigdomènech, I., Rao, L., Tochiyama, O.: Chemical Thermodynamics of Compounds and Complexes of U, Np, Pu, Am, Tc, Se, Ni and Zr with selected Organic Ligands. Elsevier, Amsterdam (2005). – reference: [39] Doi, R., Uchikoshi, K., Beppu, H.: The FeSe2(cr) solubility determined by solubility experiments of Se co-existing with Fe. J. Nucl. Sci. Technol. 53(10), pp.1554-1562 (2016). – reference: [16] Grivé, M., Duro, M., Colàs, E., Giffaut, E.: Thermodynamic data selection applied to radionuclides and chemotoxic elements: An overview of the ThermoChimie-TDB. Appl. Geochem.55, pp.85-94 (2015). – reference: [1] Nuclear Energy Agency (NEA) within Organisation for Economic Co-Operation and Development (OECD): Geologic Disposal of Radioactive Waste in Perspective. OECD, Paris (2000). – reference: [22] National Agency for Radioactive Waste Management (ANDRA): Dossier 2005 Argile - Tome: Phenomenological evolution of a geological repository. ANDRA (2005). – reference: [37] Thoenen, T.: Pitfalls in the use of solubility limits for radioactive waste disposal: The case of nickel in sulfidic groundwaters. Nucl. Technol.126(1), pp.75-87 (1999). – reference: [52] Kitamura, A., Fujiwara, K., Yui, M.: JAEA thermodynamic database for performance assessment of geological disposal of high-level and TRU wastes: Refinement of thermodynamic data for trivalent actinoids and samarium. JAEA-Review 2009-047, JAEA (2010). – reference: [57] U. S. Department of Energy (US-DOE): Yucca Mountain repository license application: Safety analysis report. DOE/RW-0573 (2008). – reference: [10] Guillaumont, R., Fanghänel, T., Neck, V., Fuger, J., Palmer, D. A., Grenthe, I., Rand, M. H.: Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium. Elsevier, Amsterdam (2003). – reference: [20] Thoenen, T., Hummel, W., Berner, U., Curti, E.: The PSI/Nagra chemical thermodynamic database 12/07. Arbeitsbericht NAB 14-49, Nagra (2014). – reference: [54] Neck, V., Kim. J. I.: Solubility and hydrolysis of tetravalent actinides. Radiochim. Acta 89(1), pp.1-16 (2001). – reference: [34] Shibata, M. et al.: Enhancement of the methodology of repository design and post-closure performance assessment for preliminary investigation stage (3) - Progress report on NUMO-JAEA collaborative research in FY2013. JAEA-Research 2014-030 / NUMO-TR-14-05 (2014) (in Japanese). – reference: [14] Hummel, W., Berner, U., Curti, E., Pearson, F. J., Thoenen, T.: Nagra / PSI chemical thermodynamic data base 01/01. Technical Report 02-16, National Cooperative for the Disposal of Radioactive Waste in Switzerland (Nagra) (2002). – reference: [47] Rai, D., Yui, M., Kitamura, A.: Thermodynamic model for amorphous Pd(OH)2 solubility in the aqueous Na+-K+-H+-OH−-Cl−-ClO4−-H2O system at 25 °C: A critical review. J. Solution Chem. 41(11), pp.1965-1985 (2012). – reference: [11] Gamsjäger, H., Gajda, T., Sangster, J., Saxena, S. K., Voigt, W.: Chemical Thermodynamics of Tin. OECD, Paris (2012). – reference: [40] Yoshida, Y., Yoshikawa, H., Nakanishi, T.: Partition coefficients of Ra and Ba in calcite. Geochem. J. 42(3), pp.295-304 (2008). – reference: [28] JAEA: Project on advanced assessment technology development for impact of cement on geological disposal system for long-lived radioactive waste. Technical report submitted to Ministry of Economy, Trade and Industry of Japan in FY 2014 (2015) (in Japanese). – reference: [38] Gamsjäger, H., Preis, W., Wallner, H.: Solid-solute phase equilibria in aqueous solutions XIV. Thermodynamic analysis of the solubility of hellyerite in water. Monatsh. Chemie 132 (3), pp.411-415 (2001). – reference: [25] Kitamura, A., Doi, R., Yoshida, Y.: Update of JAEA-TDB: Update of thermodynamic data for palladium and tin, refinement of thermodynamic data for protactinium, and preparation of PHREEQC database for use of the Brønsted-Guggenheim-Scatchard model. JAEA-Data/Code 2014-009, JAEA (2014). – reference: [7] Gamsjäger, H., Bugajski, J., Gajda, T., Lemire, R. J., Preis, W.: Chemical Thermodynamics of Nickel. Elsevier, Amsterdam (2005). – reference: [48] Rai, D., Yui, M., Schaef, H. T., Kitamura, A.: Thermodynamic model for SnO2(cr) and SnO2(am) solubility in the aqueous Na+-H+-OH−-Cl−-H2O system. J. Solution Chem. 40(7), pp.1155-1172 (2011). – reference: [24] Nuclear Waste Management Organization of Canada (NWMO): Pre-project report on adaptive phased management - Used fuel repository conceptual design and postclosure safety assessment in crystalline rock. TR-2012-16 (2012). – reference: [4] Östhols, E., Wanner, H.: TDB-0 - The NEA thermochemical data base project. OECD, available online at http://www.oecd-nea.org/dbtdb/guidelines/tdb0new.pdf (2000). – reference: [8] Olin, Å., Noläng, B., Osadchii, E. G., Öhman, L.-O., Rosén, E.: Chemical Thermodynamics of Selenium. Elsevier, Amsterdam (2005). – reference: [32] Yui, M., Azuma, J., Shibata, M.: JNC thermodynamic database for performance assessment of high-level radioactive waste disposal system. JNC TN8400 99-070, Japan Nuclear Cycle Development institute (JNC) (1999). – reference: [44] Grambow, B., Muller, R., Rother, A.: Determination of molybdate mean ionic activity coefficients for the assessment of radionuclide mobility. Radiochim. Acta 58/59, pp.71-77 (1992). – reference: [3] Duro, L., Grivé, M., Cera, E., Gaona, X., Domènech, C., Bruno, J.: Determination and assessment of the concentration limits to be used in SR-Can. TR-06-32, SKB (2006). – reference: [56] Duro, L., Montoya, V., Colàs, E., García, D.: Groundwater equilibration and radionuclide solubility calculations. NWMO TR-2010-02, NWMO (2010). – reference: [23] Sandia National Laboratories (SNL): Dissolved concentration limits of elements with radioactive isotopes. ANL-WIS-MD-000010 Rev. 06, US Department of Energy (US-DOE) (2007). – ident: 2 – ident: 12 – ident: 35 – ident: 31 – ident: 44 doi: 10.1524/ract.1992.5859.1.71 – ident: 43 doi: 10.1007/BF00649561 – ident: 9 – ident: 45 – ident: 26 – ident: 41 – ident: 22 – ident: 17 – ident: 5 – ident: 1 – ident: 34 – ident: 13 – ident: 30 – ident: 48 – ident: 49 doi: 10.1080/18811248.2000.9714980 – ident: 8 – ident: 51 doi: 10.1139/v84-070 – ident: 27 – ident: 16 doi: 10.1016/j.apgeochem.2014.12.017 – ident: 23 – ident: 18 – ident: 4 – ident: 55 doi: 10.1524/ract.1989.48.34.145 – ident: 33 – ident: 10 – ident: 14 doi: 10.1524/ract.2002.90.9-11_2002.805 – ident: 28 – ident: 53 doi: 10.1524/ract.1992.56.1.7 – ident: 57 – ident: 37 doi: 10.13182/NT99-A2959 – ident: 24 – ident: 7 – ident: 47 – ident: 20 – ident: 50 doi: 10.1016/0016-7037(84)90051-6 – ident: 39 doi: 10.1080/00223131.2015.1137245 – ident: 42 – ident: 3 – ident: 11 – ident: 36 doi: 10.3151/jact.3.77 – ident: 19 – ident: 52 – ident: 54 doi: 10.1524/ract.2001.89.1.001 – ident: 15 – ident: 32 – ident: 29 – ident: 56 – ident: 38 doi: 10.1007/s007060170128 – ident: 40 doi: 10.2343/geochemj.42.295 – ident: 6 – ident: 46 – ident: 21 – ident: 25 |
SSID | ssj0003306145 |
Score | 2.1286073 |
Snippet | Evaluation and estimation of solubility values are required for a performance assessment of geological disposal of high-level radioactive and TRU wastes.... |
SourceID | crossref jstage |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 58 |
SubjectTerms | geological disposal high-level radioactive waste solubility solubility-limiting solid phase thermodynamic database TRU waste |
Title | Methodology Development and Determination of Solubility-limiting Solid Phases for a Performance Assessment of Geological Disposal of High-level Radioactive and TRU Wastes |
URI | https://www.jstage.jst.go.jp/article/jnuce/27/2/27_58/_article/-char/en |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Nuclear Fuel Cycle and Environment, 2020/12/15, Vol.27(2), pp.58-71 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe2wYELAgFifMkHxKWkpI4dp8dsbLRDbWFKxThFtuOo3aoU9eMw_iT-Sp7tJE1RJ5VdrNbf7fs579n5vWeE3muueUcqCSutIz0TAt1e5O6pDGzbnAaSUeM7PBiGvTG9uGJXB4cnTe-SlWyr3zv9Su4jVcgDuRov2f-QbN0pZMBnkC-kIGFI95LxwF7_7KIoNdg_Jb245LlUJqE5ALNM2FtvZryabCju-Wyatb5NQJUtHZ_SUOJrT4K4DttpOviiGw9Kw_ZydqxhingzM3rrUmTTubBPUDuH5HLc-iEAR8s7bOChiaYsFq3zNbQ-vYUvtt3Zxvuu5geNkpHFlrgREyisT4Z6_ZNxEg_77ni7EDVQf46g7HNsdYxYrpeTaa1c-kk8GF_aovhmuhDNow9iaSTO-dPxV6bO_36_-do-V8bVG3KtW2XFi4XmF2CZFA01EEXU48xdc9PWO_JK3eHiGpRrhDQUgYtHX5oU7pKZf5VVEBDzuvy6gDXcJrxN0qrRVvzvEl2prZcSnhKTsCitCox7HqyGQ_SAcG6pCl-_R_U5YxCYPb9h8tY_wIWaNcN_2hp8yzR7eA27k4rZaI2t5Al6XCIEx27sp-hAF8_QnwbccQPuGESAt-CO5zneAXds4Y4d3DGgHAvcgDvewN10sIE7ruBusjdwxw242zkA3LGD-3M0Pj9LTnteedWIp4gPKj-LmPRFFHDFc5ZH3ZyGSjAVKKlDxbKwI3UkSN7JSaBlN9dc6q4fUAUGMFHUz4IX6KiYF_olwkoqkVPaZYpKmmVhRPIu8ZmINMl8ycNj9LH6l1NVxuE318HMUtiPG6E0Jc2iY_Shrv7LBaC5qyJ3Iqur7YucV_du-Ro92qzLN-hotVjrt2Ckr-Q7i8K_PwL6Rw |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methodology+Development+and+Determination+of+Solubility-limiting+Solid+Phases+for+a+Performance+Assessment+of+Geological+Disposal+of+High-level+Radioactive+and+TRU+Wastes&rft.jtitle=Journal+of+Nuclear+Fuel+Cycle+and+Environment&rft.au=GOTO%2C+Takahiro&rft.au=SHIBUTANI%2C+Sanae&rft.au=YOSHIDA%2C+Yasushi&rft.au=KITAMURA%2C+Akira&rft.date=2020-12-15&rft.pub=Division+of+Nuclear+Fuel+Cycle+and+Environment%2C+Atomic+Energy+Society+of+Japan&rft.issn=1884-7579&rft.eissn=1884-7579&rft.volume=27&rft.issue=2&rft.spage=58&rft.epage=71&rft_id=info:doi/10.3327%2Fjnuce.27.2_58&rft.externalDocID=article_jnuce_27_2_27_58_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1884-7579&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1884-7579&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1884-7579&client=summon |