Intelligent Equipment Scheduling Optimization Model for Transmission Lines Based on Improved BFO Algorithm

INTRODUCTION: In modern power systems, the optimization of intelligent equipment scheduling for transmission lines is a key task. OBJECTIVES: To improve the effectiveness of scheduling optimization, this study introduces an intelligent equipment scheduling optimization model for transmission lines o...

Full description

Saved in:
Bibliographic Details
Published inEAI endorsed transactions on energy web Vol. 12
Main Authors Zheng, Wulue, Zhang, Xin, Zhang, Fuchun, Wang, Ning, Zheng, Yangliang, Wang, Zhi
Format Journal Article
LanguageEnglish
Published European Alliance for Innovation (EAI) 22.04.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract INTRODUCTION: In modern power systems, the optimization of intelligent equipment scheduling for transmission lines is a key task. OBJECTIVES: To improve the effectiveness of scheduling optimization, this study introduces an intelligent equipment scheduling optimization model for transmission lines on the ground of the improved Bacterial Foraging Optimization algorithm. METHODS: This model achieves global and local search capabilities through an improved Bacterial Foraging Optimization algorithm, maintaining the diversity of equipment states and effectively improving the optimization level of scheduling results. RESULTS: At 3000 iterations, the model was able to reach its optimal state, and its optimization results showed excellent performance in terms of convergence and uniformity, which was very close to the optimal solution. In practical applications, the performance of the intelligent equipment scheduling optimization model for transmission lines on the ground of the improved Bacterial Foraging Optimization algorithm is also excellent. The average line usage rate of the scheduling scheme proposed by the model reached 70.69%, while the average line usage rate of the manual scheduling scheme was only 64.63%. In addition, the optimal relative error percentage of this model is less than 2.1%, while the BRE of other algorithms reaches around 10%. CONCLUSION: The intelligent equipment scheduling optimization model for transmission lines on the ground of improved Bacterial Foraging Optimization algorithm has important practical significance for improving the operational efficiency of the power system, reducing operating costs, and making sure the stable and reliable operation of the power system.
AbstractList INTRODUCTION: In modern power systems, the optimization of intelligent equipment scheduling for transmission lines is a key task. OBJECTIVES: To improve the effectiveness of scheduling optimization, this study introduces an intelligent equipment scheduling optimization model for transmission lines on the ground of the improved Bacterial Foraging Optimization algorithm. METHODS: This model achieves global and local search capabilities through an improved Bacterial Foraging Optimization algorithm, maintaining the diversity of equipment states and effectively improving the optimization level of scheduling results. RESULTS: At 3000 iterations, the model was able to reach its optimal state, and its optimization results showed excellent performance in terms of convergence and uniformity, which was very close to the optimal solution. In practical applications, the performance of the intelligent equipment scheduling optimization model for transmission lines on the ground of the improved Bacterial Foraging Optimization algorithm is also excellent. The average line usage rate of the scheduling scheme proposed by the model reached 70.69%, while the average line usage rate of the manual scheduling scheme was only 64.63%. In addition, the optimal relative error percentage of this model is less than 2.1%, while the BRE of other algorithms reaches around 10%. CONCLUSION: The intelligent equipment scheduling optimization model for transmission lines on the ground of improved Bacterial Foraging Optimization algorithm has important practical significance for improving the operational efficiency of the power system, reducing operating costs, and making sure the stable and reliable operation of the power system.
Author Zhang, Xin
Wang, Ning
Wang, Zhi
Zhang, Fuchun
Zheng, Yangliang
Zheng, Wulue
Author_xml – sequence: 1
  givenname: Wulue
  surname: Zheng
  fullname: Zheng, Wulue
– sequence: 2
  givenname: Xin
  surname: Zhang
  fullname: Zhang, Xin
– sequence: 3
  givenname: Fuchun
  surname: Zhang
  fullname: Zhang, Fuchun
– sequence: 4
  givenname: Ning
  surname: Wang
  fullname: Wang, Ning
– sequence: 5
  givenname: Yangliang
  surname: Zheng
  fullname: Zheng, Yangliang
– sequence: 6
  givenname: Zhi
  surname: Wang
  fullname: Wang, Zhi
BookMark eNpNkE1Lw0AQhhepYK3Fv5Cbp9T9ikmObWk1UOnBCt7CZnc23ZJk425q0V9vYkU8zTMvw8PwXqNRYxtA6JbgGSc4uYfTjKcJu0BjihkNU87fRv_4Ck29P2CMSRwxTtkYHbKmg6oyJTRdsHo_mrYe6EXuQR0r05TBtu1Mbb5EZ2wTPFsFVaCtC3ZONL423g_xxjTgg4XwoIJ-zerW2Y-eF-ttMK9K60y3r2_QpRaVh-nvnKDX9Wq3fAo328dsOd-Esv-ThUwURMk0ocCxLFINCqjErEgFVoQxnUIUF0z2Z7FKQICiHAQvlBYJMKqATVB29iorDnnrTC3cZ26FyX8C68pcuM7ICnKsCXlQlBHCUl6kcaITGWkaF5THkZKid92dXdJZ7x3oPx_B-dB4Dqd8aJx9Az8Cd2o
Cites_doi 10.1587/transele.2022ECP5057
10.1049/gtd2.12661
10.1016/j.epsr.2021.107305
10.3390/app12126177
10.1016/j.epsr.2022.107898
10.1007/s00500-022-06767-9
10.1109/JSYST.2021.3121682
10.1016/j.eswa.2022.116696
10.1049/iet-gtd.2019.0702
10.47852/bonviewJDSIS32021078
10.1049/gtd2.12140
10.1016/j.ijepes.2020.106362
10.1007/s11047-022-09907-0
10.1541/ieejias.141.330
10.3390/en14113239
10.1142/S0218488521400018
10.32604/cmc.2022.021575
10.1109/ICJECE.2021.3099402
10.1049/smt2.12023
10.1049/gtd2.12172
10.1088/1361-6501/ab6b51
10.1002/int.22274
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.4108/ew.4983
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2032-944X
ExternalDocumentID oai_doaj_org_article_0f116d2311394b978f8c5f27b2475dca
10_4108_ew_4983
GroupedDBID 5VS
8FE
8FG
AAYXX
ADBBV
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
CITATION
GROUPED_DOAJ
HCIFZ
KQ8
M~E
OK1
P62
PIMPY
ID FETCH-LOGICAL-c2033-3ab1dc982e40cb9fede2c03b9a0d133f9e57b3c3ab7d8eaed24ea4bdfa8e32de3
IEDL.DBID DOA
ISSN 2032-944X
IngestDate Wed Aug 27 01:09:17 EDT 2025
Tue Jul 01 04:44:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-sa/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2033-3ab1dc982e40cb9fede2c03b9a0d133f9e57b3c3ab7d8eaed24ea4bdfa8e32de3
OpenAccessLink https://doaj.org/article/0f116d2311394b978f8c5f27b2475dca
ParticipantIDs doaj_primary_oai_doaj_org_article_0f116d2311394b978f8c5f27b2475dca
crossref_primary_10_4108_ew_4983
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-22
PublicationDateYYYYMMDD 2025-04-22
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-22
  day: 22
PublicationDecade 2020
PublicationTitle EAI endorsed transactions on energy web
PublicationYear 2025
Publisher European Alliance for Innovation (EAI)
Publisher_xml – name: European Alliance for Innovation (EAI)
References 153560
153571
153561
153572
153562
153573
153563
153574
153564
153575
153565
153576
153566
153577
153556
153567
153557
153568
153558
153569
153559
153570
References_xml – ident: 153556
  doi: 10.1587/transele.2022ECP5057
– ident: 153558
  doi: 10.1049/gtd2.12661
– ident: 153568
  doi: 10.1016/j.epsr.2021.107305
– ident: 153572
  doi: 10.3390/app12126177
– ident: 153563
  doi: 10.1016/j.epsr.2022.107898
– ident: 153573
  doi: 10.1007/s00500-022-06767-9
– ident: 153565
  doi: 10.1109/JSYST.2021.3121682
– ident: 153576
  doi: 10.1016/j.eswa.2022.116696
– ident: 153559
  doi: 10.1049/iet-gtd.2019.0702
– ident: 153575
  doi: 10.47852/bonviewJDSIS32021078
– ident: 153566
  doi: 10.1049/gtd2.12140
– ident: 153562
  doi: 10.1016/j.ijepes.2020.106362
– ident: 153577
  doi: 10.1007/s11047-022-09907-0
– ident: 153564
  doi: 10.1541/ieejias.141.330
– ident: 153560
  doi: 10.3390/en14113239
– ident: 153569
  doi: 10.1142/S0218488521400018
– ident: 153561
  doi: 10.32604/cmc.2022.021575
– ident: 153557
  doi: 10.1109/ICJECE.2021.3099402
– ident: 153567
  doi: 10.1049/smt2.12023
– ident: 153570
  doi: 10.1049/gtd2.12172
– ident: 153571
  doi: 10.1088/1361-6501/ab6b51
– ident: 153574
  doi: 10.1002/int.22274
SSID ssj0001753423
Score 2.291443
Snippet INTRODUCTION: In modern power systems, the optimization of intelligent equipment scheduling for transmission lines is a key task. OBJECTIVES: To improve the...
SourceID doaj
crossref
SourceType Open Website
Index Database
SubjectTerms background foraging optimization
intelligent equipment
power system
scheduling optimization model
transmission lines
Title Intelligent Equipment Scheduling Optimization Model for Transmission Lines Based on Improved BFO Algorithm
URI https://doaj.org/article/0f116d2311394b978f8c5f27b2475dca
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sAaSGynccYWtSoI6ACVukWx71yK-oAqVf8-5yRUZWJhy0uJdBf7vjvdfR9jN7T_gaS8JDAOIl-6gSA1EoIoQe208HwsflD4-aXVH6rHUTzakvryPWEVPXBluLvQRVELCIUQVFGGch6nbexEYoRKYrAlNKKYt5VMldUVQuEEFKopWeWlbnB9q1Itf4WfLZb-Mpz0Dth-jQN5u_r-IdvB-RHb22IHPGYfDxu6zIJ3v1aTsrWHv5KZwfePj_mA1vusHqTkXtVsygmD8jL-kP98IYw_-b523qFgBZxOqyICHXd6A96ejhfLSfE-O2HDXvftvh_U0giBFV59TeYmAptqgSq0JnUIKGwoTZqHQFmnSzFOjLT0WAIacwShMFcGXK5RCkB5yhrzxRzPGA-BlmFuQpujURL8rpPELsHUJrQdaGgy_mOx7LNiwMgoc_BGzXCdeaM2WcdbcnPbU1aXF8iRWe3I7C9Hnv_HSy7YrvACvaEKhLhkjWK5witCDYW5Ln-Qb3UfwrM
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+Equipment+Scheduling+Optimization+Model+for+Transmission+Lines+Based+on+Improved+BFO+Algorithm&rft.jtitle=EAI+endorsed+transactions+on+energy+web&rft.au=Wulue+Zheng&rft.au=Xin+Zhang&rft.au=Fuchun+Zhang&rft.au=Ning+Wang&rft.date=2025-04-22&rft.pub=European+Alliance+for+Innovation+%28EAI%29&rft.eissn=2032-944X&rft.volume=12&rft_id=info:doi/10.4108%2Few.4983&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0f116d2311394b978f8c5f27b2475dca
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2032-944X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2032-944X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2032-944X&client=summon