Atomically Dispersed Pentacoordinated‐Zirconium Catalyst with Axial Oxygen Ligand for Oxygen Reduction Reaction

Single‐atom catalysts (SACs), as promising alternatives to Pt‐based catalysts, suffer from the limited choice of center metals and low single‐atom loading. Here, we report a pentacoordinated Zr‐based SAC with nontrivial axial O ligands (denoted O−Zr−N−C) for oxygen reduction reaction (ORR). The O li...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie Vol. 134; no. 36
Main Authors Wang, Xia, An, Yun, Liu, Lifeng, Fang, Lingzhe, Liu, Yannan, Zhang, Jiaxu, Qi, Haoyuan, Heine, Thomas, Li, Tao, Kuc, Agnieszka, Yu, Minghao, Feng, Xinliang
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 05.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Single‐atom catalysts (SACs), as promising alternatives to Pt‐based catalysts, suffer from the limited choice of center metals and low single‐atom loading. Here, we report a pentacoordinated Zr‐based SAC with nontrivial axial O ligands (denoted O−Zr−N−C) for oxygen reduction reaction (ORR). The O ligand downshifts the d‐band center of Zr and confers Zr sites with stable local structure and proper adsorption capability for intermediates. Consequently, the ORR performance of O−Zr−N−C prominently surpasses that of commercial Pt/C, achieving a half‐wave potential of 0.91 V vs. reversible hydrogen electrode and outstanding durability (92 % current retention after 130‐hour operation). Moreover, the Zr site shows good resistance towards aggregation, enabling the synthesis of Zr‐based SAC with high loading (9.1 wt%). With the high‐loading catalyst, the zinc‐air battery (ZAB) delivers a record‐high power density of 324 mW cm−2 among those of SAC‐based ZABs. The first Zr‐based single‐atom catalyst with a stable pentacoordinated structure and high single‐atom Zr loading is discovered. With the high‐loading catalyst, the assembled zinc–air battery delivers a record‐high power density among those of single‐atom catalyst‐based zinc–air batteries.
AbstractList Single‐atom catalysts (SACs), as promising alternatives to Pt‐based catalysts, suffer from the limited choice of center metals and low single‐atom loading. Here, we report a pentacoordinated Zr‐based SAC with nontrivial axial O ligands (denoted O−Zr−N−C) for oxygen reduction reaction (ORR). The O ligand downshifts the d‐band center of Zr and confers Zr sites with stable local structure and proper adsorption capability for intermediates. Consequently, the ORR performance of O−Zr−N−C prominently surpasses that of commercial Pt/C, achieving a half‐wave potential of 0.91 V vs. reversible hydrogen electrode and outstanding durability (92 % current retention after 130‐hour operation). Moreover, the Zr site shows good resistance towards aggregation, enabling the synthesis of Zr‐based SAC with high loading (9.1 wt%). With the high‐loading catalyst, the zinc‐air battery (ZAB) delivers a record‐high power density of 324 mW cm−2 among those of SAC‐based ZABs. The first Zr‐based single‐atom catalyst with a stable pentacoordinated structure and high single‐atom Zr loading is discovered. With the high‐loading catalyst, the assembled zinc–air battery delivers a record‐high power density among those of single‐atom catalyst‐based zinc–air batteries.
Abstract Single‐atom catalysts (SACs), as promising alternatives to Pt‐based catalysts, suffer from the limited choice of center metals and low single‐atom loading. Here, we report a pentacoordinated Zr‐based SAC with nontrivial axial O ligands (denoted O−Zr−N−C) for oxygen reduction reaction (ORR). The O ligand downshifts the d‐band center of Zr and confers Zr sites with stable local structure and proper adsorption capability for intermediates. Consequently, the ORR performance of O−Zr−N−C prominently surpasses that of commercial Pt/C, achieving a half‐wave potential of 0.91 V vs. reversible hydrogen electrode and outstanding durability (92 % current retention after 130‐hour operation). Moreover, the Zr site shows good resistance towards aggregation, enabling the synthesis of Zr‐based SAC with high loading (9.1 wt%). With the high‐loading catalyst, the zinc‐air battery (ZAB) delivers a record‐high power density of 324 mW cm −2 among those of SAC‐based ZABs.
Single‐atom catalysts (SACs), as promising alternatives to Pt‐based catalysts, suffer from the limited choice of center metals and low single‐atom loading. Here, we report a pentacoordinated Zr‐based SAC with nontrivial axial O ligands (denoted O−Zr−N−C) for oxygen reduction reaction (ORR). The O ligand downshifts the d‐band center of Zr and confers Zr sites with stable local structure and proper adsorption capability for intermediates. Consequently, the ORR performance of O−Zr−N−C prominently surpasses that of commercial Pt/C, achieving a half‐wave potential of 0.91 V vs. reversible hydrogen electrode and outstanding durability (92 % current retention after 130‐hour operation). Moreover, the Zr site shows good resistance towards aggregation, enabling the synthesis of Zr‐based SAC with high loading (9.1 wt%). With the high‐loading catalyst, the zinc‐air battery (ZAB) delivers a record‐high power density of 324 mW cm−2 among those of SAC‐based ZABs.
Author Heine, Thomas
Kuc, Agnieszka
Liu, Yannan
Qi, Haoyuan
Li, Tao
Feng, Xinliang
An, Yun
Yu, Minghao
Wang, Xia
Fang, Lingzhe
Zhang, Jiaxu
Liu, Lifeng
Author_xml – sequence: 1
  givenname: Xia
  surname: Wang
  fullname: Wang, Xia
  organization: Max-Planck-Institute for Chemical Physics of Solids
– sequence: 2
  givenname: Yun
  surname: An
  fullname: An, Yun
  organization: Helmholtz-Zentrum Dresden-Rossendorf
– sequence: 3
  givenname: Lifeng
  surname: Liu
  fullname: Liu, Lifeng
  organization: International Iberian Nanotechnology Laboratory (INL)
– sequence: 4
  givenname: Lingzhe
  surname: Fang
  fullname: Fang, Lingzhe
  organization: Northern Illinois University
– sequence: 5
  givenname: Yannan
  surname: Liu
  fullname: Liu, Yannan
  organization: Technische Universität Dresden
– sequence: 6
  givenname: Jiaxu
  surname: Zhang
  fullname: Zhang, Jiaxu
  organization: Technische Universität Dresden
– sequence: 7
  givenname: Haoyuan
  surname: Qi
  fullname: Qi, Haoyuan
  organization: University of Ulm
– sequence: 8
  givenname: Thomas
  surname: Heine
  fullname: Heine, Thomas
  organization: Yonsei University
– sequence: 9
  givenname: Tao
  surname: Li
  fullname: Li, Tao
  organization: Argonne National Laboratory
– sequence: 10
  givenname: Agnieszka
  orcidid: 0000-0002-9458-4136
  surname: Kuc
  fullname: Kuc, Agnieszka
  email: a.kuc@hzdr.de
  organization: Helmholtz-Zentrum Dresden-Rossendorf
– sequence: 11
  givenname: Minghao
  orcidid: 0000-0002-0211-0778
  surname: Yu
  fullname: Yu, Minghao
  email: minghao.yu@tu-dresden.de
  organization: Technische Universität Dresden
– sequence: 12
  givenname: Xinliang
  orcidid: 0000-0003-3885-2703
  surname: Feng
  fullname: Feng, Xinliang
  email: xinliang.feng@tu-dresden.de
  organization: Max Planck Institute of Microstructure Physics
BookMark eNqFkLtOwzAUhi1UJEphZY7EnGI7FztjVEpBqihCsLBYru0UV6nd2o7abDwCz8iTkFIuI9P5dfT95_Kfgp6xRgFwgeAQQYivuFmoIYYYw4Kk-RHoowyjOCEZ6YE-hGkaU5wWJ-DU-yWEMMek6INNGexKC17XbXSt_Vo5r2T0oEzgwlonteFByY-39xfthDW6WUUjHnjd-hBtdXiNyp3mdTTbtQtloqlecCOjyrqfzqOSjQja7hX_EmfguOK1V-ffdQCeb8ZPo9t4OpvcjcppLLof8jiTFOGE07TikhYCJggrqlBKJO1OF6LASmYS5UklZD6v6BwmuUIUyhSLQtIsGYDLw9y1s5tG-cCWtnGmW8kwgSSjOUFJRw0PlHDWe6cqtnZ6xV3LEGT7WNk-VvYba2coDoatrlX7D83K-8n4z_sJq7WAdA
CitedBy_id crossref_primary_10_1002_advs_202403865
crossref_primary_10_1016_j_cej_2023_145129
crossref_primary_10_1002_adma_202312117
crossref_primary_10_1039_D3QM00096F
crossref_primary_10_1002_adfm_202409064
Cites_doi 10.1021/jacs.9b09234
10.1021/jacs.9b11852
10.1002/ange.201702473
10.1021/acs.chemrev.5b00462
10.1038/s41467-019-09666-0
10.1002/anie.202012798
10.1002/smll.202001384
10.1016/0039-6028(89)90156-8
10.1038/s41560-019-0402-6
10.1021/jacs.1c09498
10.1002/anie.202105186
10.1021/jacs.8b07294
10.1038/s41560-021-00824-7
10.1039/C8EE02679C
10.1002/anie.201702473
10.1002/ange.201803262
10.1002/ange.202105186
10.1002/ange.201902109
10.1002/adma.201706216
10.1002/anie.202102053
10.1021/jacs.9b09352
10.1016/0169-4332(95)00032-1
10.1002/adma.202008752
10.1002/aenm.202101242
10.1021/ja3030565
10.1126/science.aaf9050
10.1038/s41563-019-0535-9
10.1002/anie.201803262
10.1002/adma.202008151
10.1073/pnas.1006652108
10.1038/376238a0
10.1002/ange.202102053
10.1038/s41467-020-16848-8
10.1038/s41563-020-0717-5
10.1021/jacs.8b13543
10.1038/s41467-019-09394-5
10.1021/cr9003902
10.1038/s41467-017-01100-7
10.1021/jacs.8b11129
10.1002/ange.202012798
10.1002/anie.201902109
10.1038/nmat3087
10.1038/s41557-021-00734-x
ContentType Journal Article
Copyright 2022 The Authors. Angewandte Chemie published by Wiley-VCH GmbH
2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. Angewandte Chemie published by Wiley-VCH GmbH
– notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/ange.202209746
DatabaseName Wiley-Blackwell Open Access Collection
Wiley Free Archive
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley-Blackwell Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3757
EndPage n/a
ExternalDocumentID 10_1002_ange_202209746
ANGE202209746
Genre article
GrantInformation_xml – fundername: Horizon 2020
  funderid: GrapheneCore3 881603
– fundername: Deutsche Forschungsgemeinschaft
  funderid: CRC 1415, 417590517
– fundername: Sächsisches Staatsministerium für Wissenschaft und Kunst
  funderid: Sonderzuweisung zur Unterstützung profilbestimmender Struktureinheiten
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCUC
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RGC
ROL
RWI
RX1
RYL
SUPJJ
TN5
TUS
UB1
UPT
V2E
W8V
W99
WBFHL
WBKPD
WIH
WIK
WIN
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
Y6R
ZZTAW
~IA
~WT
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c2026-5d8123a84fad89c0312e8e147d8062cc92ed5d163fcd6bf8b036e180d42c9d853
IEDL.DBID 24P
ISSN 0044-8249
IngestDate Thu Oct 10 17:35:31 EDT 2024
Fri Aug 23 01:48:53 EDT 2024
Sat Aug 24 00:54:15 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 36
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2026-5d8123a84fad89c0312e8e147d8062cc92ed5d163fcd6bf8b036e180d42c9d853
Notes These authors contributed equally to this work.
ORCID 0000-0002-0211-0778
0000-0003-3885-2703
0000-0002-9458-4136
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fange.202209746
PQID 2707586713
PQPubID 866336
PageCount 8
ParticipantIDs proquest_journals_2707586713
crossref_primary_10_1002_ange_202209746
wiley_primary_10_1002_ange_202209746_ANGE202209746
PublicationCentury 2000
PublicationDate September 5, 2022
PublicationDateYYYYMMDD 2022-09-05
PublicationDate_xml – month: 09
  year: 2022
  text: September 5, 2022
  day: 05
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 8
2021; 6
2019; 4
2018; 140
1989; 218
2012
2020; 142
2019; 10
2019; 12
2020; 16
2011; 10
2020; 11
1995; 376
2021; 143
2017 2017; 56 129
2019; 141
2019 2019; 58 131
2020; 19
2021; 13
2011; 108
2012; 134
2021; 33
2021; 11
2018 2018; 57 130
1995; 89
2010; 110
2016; 354
2021 2021; 60 133
2018; 30
2016; 116
e_1_2_7_5_1
e_1_2_7_3_2
e_1_2_7_9_1
e_1_2_7_7_2
e_1_2_7_19_2
e_1_2_7_17_2
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_41_2
e_1_2_7_11_2
e_1_2_7_43_2
e_1_2_7_45_1
e_1_2_7_45_2
e_1_2_7_47_2
e_1_2_7_26_2
e_1_2_7_28_1
e_1_2_7_49_2
e_1_2_7_25_3
e_1_2_7_25_2
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_31_3
e_1_2_7_33_1
e_1_2_7_21_2
e_1_2_7_37_2
e_1_2_7_39_1
e_1_2_7_4_2
Greenwood N. N. (e_1_2_7_35_1) 2012
e_1_2_7_2_2
e_1_2_7_8_2
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_16_1
e_1_2_7_14_2
e_1_2_7_40_2
e_1_2_7_40_3
e_1_2_7_42_1
e_1_2_7_12_2
e_1_2_7_44_2
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_2
e_1_2_7_27_2
e_1_2_7_27_3
e_1_2_7_29_2
e_1_2_7_29_3
e_1_2_7_30_2
e_1_2_7_24_1
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_2
References_xml – volume: 141
  start-page: 19800
  year: 2019
  end-page: 19806
  publication-title: J. Am. Chem. Soc.
– volume: 110
  start-page: 3767
  year: 2010
  end-page: 3804
  publication-title: Chem. Rev.
– volume: 141
  start-page: 20118
  year: 2019
  end-page: 20126
  publication-title: J. Am. Chem. Soc.
– volume: 58 131
  start-page: 7035 7109
  year: 2019 2019
  end-page: 7039 7113
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 4
  start-page: 512
  year: 2019
  end-page: 518
  publication-title: Nat. Energy
– volume: 8
  start-page: 957
  year: 2017
  publication-title: Nat. Commun.
– volume: 116
  start-page: 3594
  year: 2016
  end-page: 3657
  publication-title: Chem. Rev.
– volume: 142
  start-page: 2404
  year: 2020
  end-page: 2412
  publication-title: J. Am. Chem. Soc.
– volume: 60 133
  start-page: 3212 3249
  year: 2021 2021
  end-page: 3221 3258
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 780
  year: 2011
  end-page: 786
  publication-title: Nat. Mater.
– volume: 134
  start-page: 9082
  year: 2012
  end-page: 9085
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 475
  year: 2021
  end-page: 486
  publication-title: Nat. Energy
– volume: 141
  start-page: 6254
  year: 2019
  end-page: 6262
  publication-title: J. Am. Chem. Soc.
– volume: 19
  start-page: 282
  year: 2020
  end-page: 286
  publication-title: Nat. Mater.
– year: 2012
– volume: 140
  start-page: 11594
  year: 2018
  end-page: 11598
  publication-title: J. Am. Chem. Soc.
– volume: 57 130
  start-page: 8525 8661
  year: 2018 2018
  end-page: 8529 8665
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 89
  start-page: 263
  year: 1995
  end-page: 269
  publication-title: Appl. Surf. Sci.
– volume: 13
  start-page: 887
  year: 2021
  end-page: 894
  publication-title: Nat. Chem.
– volume: 376
  start-page: 238
  year: 1995
  end-page: 240
  publication-title: Nature
– volume: 16
  year: 2020
  publication-title: Small
– volume: 10
  start-page: 1392
  year: 2019
  publication-title: Nat. Commun.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 12
  start-page: 727
  year: 2019
  end-page: 738
  publication-title: Energy Environ. Sci.
– volume: 141
  start-page: 2035
  year: 2019
  end-page: 2045
  publication-title: J. Am. Chem. Soc.
– volume: 60 133
  start-page: 19262 19411
  year: 2021 2021
  end-page: 19271 19420
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 60 133
  start-page: 14005 14124
  year: 2021 2021
  end-page: 14012 14131
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 1711
  year: 2019
  publication-title: Nat. Commun.
– volume: 11
  start-page: 3049
  year: 2020
  publication-title: Nat. Commun.
– volume: 56 129
  start-page: 6937 7041
  year: 2017 2017
  end-page: 6941 7045
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 218
  start-page: 331
  year: 1989
  end-page: 345
  publication-title: Surf. Sci.
– volume: 108
  start-page: 937
  year: 2011
  end-page: 943
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 19
  start-page: 1215
  year: 2020
  end-page: 1223
  publication-title: Nat. Mater.
– volume: 143
  start-page: 18854
  year: 2021
  end-page: 18858
  publication-title: J. Am. Chem. Soc.
– volume: 354
  start-page: 1414
  year: 2016
  end-page: 1419
  publication-title: Science
– ident: e_1_2_7_47_2
  doi: 10.1021/jacs.9b09234
– ident: e_1_2_7_20_1
– ident: e_1_2_7_18_2
  doi: 10.1021/jacs.9b11852
– ident: e_1_2_7_45_2
  doi: 10.1002/ange.201702473
– volume-title: Chemistry of the Elements
  year: 2012
  ident: e_1_2_7_35_1
  contributor:
    fullname: Greenwood N. N.
– ident: e_1_2_7_6_2
  doi: 10.1021/acs.chemrev.5b00462
– ident: e_1_2_7_13_2
  doi: 10.1038/s41467-019-09666-0
– ident: e_1_2_7_40_2
  doi: 10.1002/anie.202012798
– ident: e_1_2_7_22_2
  doi: 10.1002/smll.202001384
– ident: e_1_2_7_39_1
– ident: e_1_2_7_43_2
  doi: 10.1016/0039-6028(89)90156-8
– ident: e_1_2_7_5_1
– ident: e_1_2_7_10_1
– ident: e_1_2_7_14_2
  doi: 10.1038/s41560-019-0402-6
– ident: e_1_2_7_16_1
– ident: e_1_2_7_19_2
  doi: 10.1021/jacs.1c09498
– ident: e_1_2_7_25_2
  doi: 10.1002/anie.202105186
– ident: e_1_2_7_17_2
  doi: 10.1021/jacs.8b07294
– ident: e_1_2_7_34_1
  doi: 10.1038/s41560-021-00824-7
– ident: e_1_2_7_24_1
– ident: e_1_2_7_46_1
– ident: e_1_2_7_37_2
  doi: 10.1039/C8EE02679C
– ident: e_1_2_7_45_1
  doi: 10.1002/anie.201702473
– ident: e_1_2_7_29_3
  doi: 10.1002/ange.201803262
– ident: e_1_2_7_25_3
  doi: 10.1002/ange.202105186
– ident: e_1_2_7_31_3
  doi: 10.1002/ange.201902109
– ident: e_1_2_7_30_2
  doi: 10.1002/adma.201706216
– ident: e_1_2_7_27_2
  doi: 10.1002/anie.202102053
– ident: e_1_2_7_12_2
  doi: 10.1021/jacs.9b09352
– ident: e_1_2_7_44_2
  doi: 10.1016/0169-4332(95)00032-1
– ident: e_1_2_7_4_2
  doi: 10.1002/adma.202008752
– ident: e_1_2_7_26_2
  doi: 10.1002/aenm.202101242
– ident: e_1_2_7_28_1
– ident: e_1_2_7_7_2
  doi: 10.1021/ja3030565
– ident: e_1_2_7_2_2
  doi: 10.1126/science.aaf9050
– ident: e_1_2_7_8_2
  doi: 10.1038/s41563-019-0535-9
– ident: e_1_2_7_1_1
– ident: e_1_2_7_29_2
  doi: 10.1002/anie.201803262
– ident: e_1_2_7_15_1
  doi: 10.1002/adma.202008151
– ident: e_1_2_7_36_1
– ident: e_1_2_7_49_2
  doi: 10.1073/pnas.1006652108
– ident: e_1_2_7_48_2
  doi: 10.1038/376238a0
– ident: e_1_2_7_27_3
  doi: 10.1002/ange.202102053
– ident: e_1_2_7_21_2
  doi: 10.1038/s41467-020-16848-8
– ident: e_1_2_7_41_2
  doi: 10.1038/s41563-020-0717-5
– ident: e_1_2_7_11_2
  doi: 10.1021/jacs.8b13543
– ident: e_1_2_7_23_2
  doi: 10.1038/s41467-019-09394-5
– ident: e_1_2_7_9_1
  doi: 10.1021/cr9003902
– ident: e_1_2_7_32_2
  doi: 10.1038/s41467-017-01100-7
– ident: e_1_2_7_38_2
  doi: 10.1021/jacs.8b11129
– ident: e_1_2_7_42_1
– ident: e_1_2_7_40_3
  doi: 10.1002/ange.202012798
– ident: e_1_2_7_31_2
  doi: 10.1002/anie.201902109
– ident: e_1_2_7_3_2
  doi: 10.1038/nmat3087
– ident: e_1_2_7_33_1
  doi: 10.1038/s41557-021-00734-x
SSID ssj0006279
Score 2.2485273
Snippet Single‐atom catalysts (SACs), as promising alternatives to Pt‐based catalysts, suffer from the limited choice of center metals and low single‐atom loading....
Abstract Single‐atom catalysts (SACs), as promising alternatives to Pt‐based catalysts, suffer from the limited choice of center metals and low single‐atom...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Catalysts
Chemical reduction
Chemistry
Durability
Heavy metals
High Single-Atom Loading
Intermediates
Ligands
Metal air batteries
Oxygen
Oxygen Reduction Reaction
Oxygen reduction reactions
Pentacoordinated Configuration
Single atom catalysts
Zinc-Air Battery
Zinc-oxygen batteries
Zirconium
Title Atomically Dispersed Pentacoordinated‐Zirconium Catalyst with Axial Oxygen Ligand for Oxygen Reduction Reaction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fange.202209746
https://www.proquest.com/docview/2707586713
Volume 134
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSsNAEF60HvQi_mK1yh4ET6HbdZNujqE_FtFaioXiJWx2NxLQVJsU2puP4DP6JM4mTdqeBA8Jm8AGMjuz880w8y1C14IHLoHLUlpTi9GGslwZOpYtCBWBGypBTO_wY9_pjdj92B6vdfHn_BBlws1YRrZfGwMXQVJfkYaa2nuI7yglAImdbbQD2IYbvaZsUO7FDs3Z9ghjFodIo6BtJLS-OX_TLa2w5jpizVxO9wDtL7Ei9vLFPURbOj5Cu63iiLZj9Omlk6zd_22B25Hh_E60wgNTDi4nEFVGMSBJ9fP1_RJNIe6NZu-4ZdI1iyTFJgGLvTmoH36aL0CN8EP0KmKFAcUWb4aG19WsHIzyBogTNOp2nls9a3mGgiXh30DmCjz4reAsFIq7EkyYaq4brKk4CEdKl2plKwBloVROEPIAPJpucKIYla4CX36KKvEk1mcIKwB3jg5ZaPLIAC2EHVItYbNsOrCoDqmim0KE_kdOleHnpMjUN8L2S2FXUa2QsL80mcSnTUAvhm3vtopoJvU_vuJ7_btO-XT-n0kXaM-Ms5oxu4Yq6XSmLwFkpMFVpkdwbw_pL4jozKk
link.rule.ids 315,786,790,1382,11589,27955,27956,46085,46327,46509,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8JAEN0oHvBi_Iwo6h5MPDWUZVvaY4MgKiAxkBgvzXZ3a5poUSgJ3PwJ_kZ_iTMtBTmZeGjSbtImfbuz82Yy85aQS-EErgmXobRmBmdVZbgytA1LmEwEbqiEib3D3Z7dHvK7JyuvJsRemEwfYplwQ8tI92s0cExIV1aqoVh8DwEeYyZwYnuTbHFUg0NxZ95fbsY2y-T2TM4NB0KNXLfRZJX199f90ops_qasqc9p7ZKdBVmkXja7e2RDx_uk2MjPaDsgH14ySvv9X-f0OkLR74lWtI_14HIEYWUUA5VU359fz9EYAt9o-kYbmK-ZTxKKGVjqzWD90YfZHNYR7UQvIlYUaGw-8ojCrjh1cJd1QBySYas5aLSNxSEKhoR_A9AVuPCacHgolONKsGGmHV3ldeUAOFK6TCtLASsLpbKD0AnApemqYyrOpKvAmR-RQjyK9TGhCtidrUMeYiIZuIWwQqYl7JZ1G2bVNkvkKofQf8-0MvxMFZn5CLa_BLtEyjnC_sJmJj6rA31Bub1aibAU9T--4nu9m-by6eQ_L12QYnvQ7fid2979KdnG8bSAzCqTQjKe6jNgHElwnq6pH8WGzyg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46QX0RrzidmgfBp7IuS7P2sezi1DmHOBi-lDYXKWg3tw62N3-Cv9Ff4km7dtuT4EMhDaTQLzk53znkfEHo2rcDx4THEFISg5KKMByumGH5JvEDRwnf1LXDj13W7tP7gTVYqeJP9SHyhJu2jGS_1gY-Eqq8FA3VZ-8hviPEBErMNtEWZUAftLYz7eV7MSOp2p5JqWFDpJHJNpqkvD5-3S0tueYqY01cTmsf7S24InbTyT1AGzI6RDv17Iq2I_TpxsOk3P99jhuh1vyeSIF7-jg4H0JUGUbAJMXP1_drOIa4N5x-4LpO18wnMdYJWOzOYPnhp9kclhHuhG9-JDCw2KznWeu66pmDVloAcYz6reZLvW0s7lAwOPwbYC7Ag1d9mypf2A4HEybSlhVaEzaAw7lDpLAEkDLFBQuUHYBHkxXbFJRwR4AvP0GFaBjJU4QFkDsmFVU6jwzUwrcUkRw2yxqDSWVmEd1kEHqjVCrDS0WRiafB9nKwi6iUIewtTGbikRqwF622Vy0ikqD-x1c8t3vbzN_O_jPoCm33Gi2vc9d9OEe7ujs5PmaVUCEeT-UF8I04uEyW1C-jKM5R
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atomically+Dispersed+Pentacoordinated%E2%80%90Zirconium+Catalyst+with+Axial+Oxygen+Ligand+for+Oxygen+Reduction+Reaction&rft.jtitle=Angewandte+Chemie&rft.au=Wang%2C+Xia&rft.au=An%2C+Yun&rft.au=Liu%2C+Lifeng&rft.au=Fang%2C+Lingzhe&rft.date=2022-09-05&rft.issn=0044-8249&rft.eissn=1521-3757&rft.volume=134&rft.issue=36&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fange.202209746&rft.externalDBID=10.1002%252Fange.202209746&rft.externalDocID=ANGE202209746
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-8249&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-8249&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-8249&client=summon