Recognition of life-threatening arrhythmias by ECG scalograms
This work is devoted to the automatic classification of six classes of life-threatening arrhythmias using short ECG fragments of 2s-length. This task is extremely important for the detection of life-threatening arrhythmias with continuous monitoring. Especially dangerous are ventricular fibrillation...
Saved in:
Published in | Kompʹûternaâ optika Vol. 48; no. 1; pp. 149 - 156 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Samara National Research University
01.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This work is devoted to the automatic classification of six classes of life-threatening arrhythmias using short ECG fragments of 2s-length. This task is extremely important for the detection of life-threatening arrhythmias with continuous monitoring. Especially dangerous are ventricular fibrillation and high-frequency heartbeat ventricular tachycardia. Timely detection of these dangerous disorders in the clinic allows doctors to effectively use electrical defibrillation, which saves the patient's life. A feature of our approach is the use of a unique technique for converting ECG signals into images (scalograms) using a continuous wavelet transform. For arrhythmia classification, the AlexNet neural network with a well-known deep learning architecture, which is commonly used in image classification tasks, is used. The experiments used data from the PhysioNet database, as well as synthesized ECG data obtained using the SMOTE method. The experimental results show that the proposed approach allows achieving an average accuracy of 98.7% for all classes, which exceeds the maximum accuracy estimates of 93.18% previously obtained by other researchers. |
---|---|
AbstractList | This work is devoted to the automatic classification of six classes of life-threatening arrhythmias using short ECG fragments of 2s-length. This task is extremely important for the detection of life-threatening arrhythmias with continuous monitoring. Especially dangerous are ventricular fibrillation and high-frequency heartbeat ventricular tachycardia. Timely detection of these dangerous disorders in the clinic allows doctors to effectively use electrical defibrillation, which saves the patient's life. A feature of our approach is the use of a unique technique for converting ECG signals into images (scalograms) using a continuous wavelet transform. For arrhythmia classification, the AlexNet neural network with a well-known deep learning architecture, which is commonly used in image classification tasks, is used. The experiments used data from the PhysioNet database, as well as synthesized ECG data obtained using the SMOTE method. The experimental results show that the proposed approach allows achieving an average accuracy of 98.7% for all classes, which exceeds the maximum accuracy estimates of 93.18% previously obtained by other researchers. |
Author | Nemirko, A.P. Manilo, L.A. Ba Mahel, A.S. |
Author_xml | – sequence: 1 givenname: A.P. surname: Nemirko fullname: Nemirko, A.P. – sequence: 2 givenname: A.S. surname: Ba Mahel fullname: Ba Mahel, A.S. – sequence: 3 givenname: L.A. surname: Manilo fullname: Manilo, L.A. |
BookMark | eNp9kM1Kw0AURgepYK19AVd5gdH5TSYLFxJqLRQKouvhzmQmnZJmZJJN396kVRcuhAsfXDgf955bNOti5xC6p-SBKqaKRyYowzktSlztMOVSXKH5726G5oRygZmQ7AYt-_5ACBmpnAo6R09vzsamC0OIXRZ91gbv8LBPDgbXha7JIKX9adgfA_SZOWWrap31FtrYJDj2d-jaQ9u75Xcu0MfL6r16xdvdelM9b7FlhAksuZI896WpWQHcOkMJeOuEkKLkHowSpjBjGuZrQ2yuFOdQKy5JwU1RCr5Am0tvHeGgP1M4QjrpCEGfFzE1GtIQbOu0oTlRde6F4kJ4qZRkZc24y7nhcpyxS126bIp9n5zXNgww_T8kCK2mRJ-t6smgngzqaqcnqyPK_qA_p_wDfQFhRHrZ |
CitedBy_id | crossref_primary_10_1007_s10527_024_10414_y crossref_primary_10_1016_j_bspc_2025_107803 |
ContentType | Journal Article |
CorporateAuthor | LETI Saint Petersburg Electrotechnical University Saint Petersburg Electrotechnical University "LETI" |
CorporateAuthor_xml | – name: Saint Petersburg Electrotechnical University "LETI" – name: Saint Petersburg Electrotechnical University – name: LETI |
DBID | AAYXX CITATION DOA |
DOI | 10.18287/2412-6179-CO-1354 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2412-6179 |
EndPage | 156 |
ExternalDocumentID | oai_doaj_org_article_b1608d6f48344f588529d23e63b35b35 10_18287_2412_6179_CO_1354 |
GroupedDBID | 642 AAFWJ AAYXX ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ |
ID | FETCH-LOGICAL-c2024-538536f9bd27a3ceb10afce445493fab84b7bfabb2fdb0c68833ad835073b7943 |
IEDL.DBID | DOA |
ISSN | 0134-2452 |
IngestDate | Wed Aug 27 01:32:09 EDT 2025 Tue Jul 01 03:11:57 EDT 2025 Thu Apr 24 22:50:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2024-538536f9bd27a3ceb10afce445493fab84b7bfabb2fdb0c68833ad835073b7943 |
OpenAccessLink | https://doaj.org/article/b1608d6f48344f588529d23e63b35b35 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b1608d6f48344f588529d23e63b35b35 crossref_citationtrail_10_18287_2412_6179_CO_1354 crossref_primary_10_18287_2412_6179_CO_1354 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-00 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-00 |
PublicationDecade | 2020 |
PublicationTitle | Kompʹûternaâ optika |
PublicationYear | 2024 |
Publisher | Samara National Research University |
Publisher_xml | – name: Samara National Research University |
SSID | ssj0002876141 |
Score | 2.2809746 |
Snippet | This work is devoted to the automatic classification of six classes of life-threatening arrhythmias using short ECG fragments of 2s-length. This task is... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 149 |
SubjectTerms | data synthesis deep neural networks recognition of arrhythmias scalograms |
Title | Recognition of life-threatening arrhythmias by ECG scalograms |
URI | https://doaj.org/article/b1608d6f48344f588529d23e63b35b35 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJy--xfpiD95kaZJ9JDl40NBaBC2Ihd7CbrJLKzWVJh76751J0lIvehECgbBZwjfZee3sN4TceMrYGOwGi62LmdBIeRtJx1QoJA-FcHndpvP5RQ3H4mkiJ1utvrAmrKEHboDrGV95Ua4cJr2EkzBREOcBt4obLuFC7Qs2byuYeq9TRhCei6YZIRcMtxfbEzNI8N4DsxXg4biYJSPmcyl-WKUt8v7aygwOyF7rHtL75rMOyY4tjsh-6yrSdiGWx-TudV34syjowtH5zFlWTdEDtJjpoHq5nK6q6cdMl9SsaD95pGWma4Lqj_KEjAf9t2TI2k4ILAvAiDLQSpIrF5s8CDXPQL962mVWCIjuuNMmEiY0cDeBy42XKewgrHNwrmABG6SAOyWdYlHYM0J9EA0oQBlZiO2sdpFnvSC3YShhFpXrLvHXSKRZSxOO3SrmKYYLiF6K6KWIXpqMUkSvS24373w2JBm_jn5AgDcjkeC6fgBiT1uxp3-J_fw_JrkguzW8dRH2JelUyy97BT5GZa7r3-kbXYvG5w |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recognition+of+life-threatening+arrhythmias+by+ECG+scalograms&rft.jtitle=Komp%CA%B9%C3%BBterna%C3%A2+optika&rft.au=A.P.+Nemirko&rft.au=A.S.+Ba+Mahel&rft.au=L.A.+Manilo&rft.date=2024-02-01&rft.pub=Samara+National+Research+University&rft.issn=0134-2452&rft.eissn=2412-6179&rft.volume=48&rft.issue=1&rft.spage=149&rft.epage=156&rft_id=info:doi/10.18287%2F2412-6179-CO-1354&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b1608d6f48344f588529d23e63b35b35 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0134-2452&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0134-2452&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0134-2452&client=summon |