Recognition of life-threatening arrhythmias by ECG scalograms

This work is devoted to the automatic classification of six classes of life-threatening arrhythmias using short ECG fragments of 2s-length. This task is extremely important for the detection of life-threatening arrhythmias with continuous monitoring. Especially dangerous are ventricular fibrillation...

Full description

Saved in:
Bibliographic Details
Published inKompʹûternaâ optika Vol. 48; no. 1; pp. 149 - 156
Main Authors Nemirko, A.P., Ba Mahel, A.S., Manilo, L.A.
Format Journal Article
LanguageEnglish
Published Samara National Research University 01.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This work is devoted to the automatic classification of six classes of life-threatening arrhythmias using short ECG fragments of 2s-length. This task is extremely important for the detection of life-threatening arrhythmias with continuous monitoring. Especially dangerous are ventricular fibrillation and high-frequency heartbeat ventricular tachycardia. Timely detection of these dangerous disorders in the clinic allows doctors to effectively use electrical defibrillation, which saves the patient's life. A feature of our approach is the use of a unique technique for converting ECG signals into images (scalograms) using a continuous wavelet transform. For arrhythmia classification, the AlexNet neural network with a well-known deep learning architecture, which is commonly used in image classification tasks, is used. The experiments used data from the PhysioNet database, as well as synthesized ECG data obtained using the SMOTE method. The experimental results show that the proposed approach allows achieving an average accuracy of 98.7% for all classes, which exceeds the maximum accuracy estimates of 93.18% previously obtained by other researchers.
AbstractList This work is devoted to the automatic classification of six classes of life-threatening arrhythmias using short ECG fragments of 2s-length. This task is extremely important for the detection of life-threatening arrhythmias with continuous monitoring. Especially dangerous are ventricular fibrillation and high-frequency heartbeat ventricular tachycardia. Timely detection of these dangerous disorders in the clinic allows doctors to effectively use electrical defibrillation, which saves the patient's life. A feature of our approach is the use of a unique technique for converting ECG signals into images (scalograms) using a continuous wavelet transform. For arrhythmia classification, the AlexNet neural network with a well-known deep learning architecture, which is commonly used in image classification tasks, is used. The experiments used data from the PhysioNet database, as well as synthesized ECG data obtained using the SMOTE method. The experimental results show that the proposed approach allows achieving an average accuracy of 98.7% for all classes, which exceeds the maximum accuracy estimates of 93.18% previously obtained by other researchers.
Author Nemirko, A.P.
Manilo, L.A.
Ba Mahel, A.S.
Author_xml – sequence: 1
  givenname: A.P.
  surname: Nemirko
  fullname: Nemirko, A.P.
– sequence: 2
  givenname: A.S.
  surname: Ba Mahel
  fullname: Ba Mahel, A.S.
– sequence: 3
  givenname: L.A.
  surname: Manilo
  fullname: Manilo, L.A.
BookMark eNp9kM1Kw0AURgepYK19AVd5gdH5TSYLFxJqLRQKouvhzmQmnZJmZJJN396kVRcuhAsfXDgf955bNOti5xC6p-SBKqaKRyYowzktSlztMOVSXKH5726G5oRygZmQ7AYt-_5ACBmpnAo6R09vzsamC0OIXRZ91gbv8LBPDgbXha7JIKX9adgfA_SZOWWrap31FtrYJDj2d-jaQ9u75Xcu0MfL6r16xdvdelM9b7FlhAksuZI896WpWQHcOkMJeOuEkKLkHowSpjBjGuZrQ2yuFOdQKy5JwU1RCr5Am0tvHeGgP1M4QjrpCEGfFzE1GtIQbOu0oTlRde6F4kJ4qZRkZc24y7nhcpyxS126bIp9n5zXNgww_T8kCK2mRJ-t6smgngzqaqcnqyPK_qA_p_wDfQFhRHrZ
CitedBy_id crossref_primary_10_1007_s10527_024_10414_y
crossref_primary_10_1016_j_bspc_2025_107803
ContentType Journal Article
CorporateAuthor LETI
Saint Petersburg Electrotechnical University
Saint Petersburg Electrotechnical University "LETI"
CorporateAuthor_xml – name: Saint Petersburg Electrotechnical University "LETI"
– name: Saint Petersburg Electrotechnical University
– name: LETI
DBID AAYXX
CITATION
DOA
DOI 10.18287/2412-6179-CO-1354
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2412-6179
EndPage 156
ExternalDocumentID oai_doaj_org_article_b1608d6f48344f588529d23e63b35b35
10_18287_2412_6179_CO_1354
GroupedDBID 642
AAFWJ
AAYXX
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
ID FETCH-LOGICAL-c2024-538536f9bd27a3ceb10afce445493fab84b7bfabb2fdb0c68833ad835073b7943
IEDL.DBID DOA
ISSN 0134-2452
IngestDate Wed Aug 27 01:32:09 EDT 2025
Tue Jul 01 03:11:57 EDT 2025
Thu Apr 24 22:50:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2024-538536f9bd27a3ceb10afce445493fab84b7bfabb2fdb0c68833ad835073b7943
OpenAccessLink https://doaj.org/article/b1608d6f48344f588529d23e63b35b35
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_b1608d6f48344f588529d23e63b35b35
crossref_citationtrail_10_18287_2412_6179_CO_1354
crossref_primary_10_18287_2412_6179_CO_1354
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-00
2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-00
PublicationDecade 2020
PublicationTitle Kompʹûternaâ optika
PublicationYear 2024
Publisher Samara National Research University
Publisher_xml – name: Samara National Research University
SSID ssj0002876141
Score 2.2809746
Snippet This work is devoted to the automatic classification of six classes of life-threatening arrhythmias using short ECG fragments of 2s-length. This task is...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 149
SubjectTerms data synthesis
deep neural networks
recognition of arrhythmias
scalograms
Title Recognition of life-threatening arrhythmias by ECG scalograms
URI https://doaj.org/article/b1608d6f48344f588529d23e63b35b35
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJy--xfpiD95kaZJ9JDl40NBaBC2Ihd7CbrJLKzWVJh76751J0lIvehECgbBZwjfZee3sN4TceMrYGOwGi62LmdBIeRtJx1QoJA-FcHndpvP5RQ3H4mkiJ1utvrAmrKEHboDrGV95Ua4cJr2EkzBREOcBt4obLuFC7Qs2byuYeq9TRhCei6YZIRcMtxfbEzNI8N4DsxXg4biYJSPmcyl-WKUt8v7aygwOyF7rHtL75rMOyY4tjsh-6yrSdiGWx-TudV34syjowtH5zFlWTdEDtJjpoHq5nK6q6cdMl9SsaD95pGWma4Lqj_KEjAf9t2TI2k4ILAvAiDLQSpIrF5s8CDXPQL962mVWCIjuuNMmEiY0cDeBy42XKewgrHNwrmABG6SAOyWdYlHYM0J9EA0oQBlZiO2sdpFnvSC3YShhFpXrLvHXSKRZSxOO3SrmKYYLiF6K6KWIXpqMUkSvS24373w2JBm_jn5AgDcjkeC6fgBiT1uxp3-J_fw_JrkguzW8dRH2JelUyy97BT5GZa7r3-kbXYvG5w
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recognition+of+life-threatening+arrhythmias+by+ECG+scalograms&rft.jtitle=Komp%CA%B9%C3%BBterna%C3%A2+optika&rft.au=A.P.+Nemirko&rft.au=A.S.+Ba+Mahel&rft.au=L.A.+Manilo&rft.date=2024-02-01&rft.pub=Samara+National+Research+University&rft.issn=0134-2452&rft.eissn=2412-6179&rft.volume=48&rft.issue=1&rft.spage=149&rft.epage=156&rft_id=info:doi/10.18287%2F2412-6179-CO-1354&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b1608d6f48344f588529d23e63b35b35
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0134-2452&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0134-2452&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0134-2452&client=summon