Numerical study of heat transfer process during electroslag welding by two-dimensional particle method
A penetration process in electroslag welding is simulated using a two-dimensional smoothed particle hydrodynamics method to elucidate the heat transfer mechanism. The base metals are melted and penetration forms in the orthogonal direction of the weld line. From the base metal, molten metal flows do...
Saved in:
Published in | QUARTERLY JOURNAL OF THE JAPAN WELDING SOCIETY Vol. 39; no. 4; pp. 363 - 370 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | Japanese |
Published |
Tokyo
JAPAN WELDING SOCIETY
2021
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
ISSN | 0288-4771 2434-8252 |
DOI | 10.2207/qjjws.39.363 |
Cover
Abstract | A penetration process in electroslag welding is simulated using a two-dimensional smoothed particle hydrodynamics method to elucidate the heat transfer mechanism. The base metals are melted and penetration forms in the orthogonal direction of the weld line. From the base metal, molten metal flows downward, and then a molten metal pool forms below a slag bath. The distributions of temperature increasing rates due to heat conduction and Joule heating are also visualized to clarify the dominant factors contributing to the temperature increases of the molten slag and the base metal. Joule heating occurs mainly at the side and bottom of the wire in the slag bath. The temperature of the base metal is increased by the heat conduction from the high temperature slag. The factors of energy transfer in the system are evaluated quantitatively as well. Most of the input electric energy is converted into the thermal energy by Joule heating in the slag bath. Approximately 80% of the generated thermal energy is transported to the base metal, while the other 20% is transported to the molten pool. Compared with the heat transfer in a gas metal arc welding, the thermal energies in the electroslag welding are larger into the base metal and smaller than those in a gas metal arc welding. |
---|---|
AbstractList | A penetration process in electroslag welding is simulated using a two-dimensional smoothed particle hydrodynamics method to elucidate the heat transfer mechanism. The base metals are melted and penetration forms in the orthogonal direction of the weld line. From the base metal, molten metal flows downward, and then a molten metal pool forms below a slag bath. The distributions of temperature increasing rates due to heat conduction and Joule heating are also visualized to clarify the dominant factors contributing to the temperature increases of the molten slag and the base metal. Joule heating occurs mainly at the side and bottom of the wire in the slag bath. The temperature of the base metal is increased by the heat conduction from the high temperature slag. The factors of energy transfer in the system are evaluated quantitatively as well. Most of the input electric energy is converted into the thermal energy by Joule heating in the slag bath. Approximately 80% of the generated thermal energy is transported to the base metal, while the other 20% is transported to the molten pool. Compared with the heat transfer in a gas metal arc welding, the thermal energies in the electroslag welding are larger into the base metal and smaller than those in a gas metal arc welding. |
Author | UENO, Ryo SAITO, Yasuyuki TODA, Ryo SHIGETA, Masaya YAMAZAKI, Kei TANAKA, Manabu |
Author_xml | – sequence: 1 fullname: SHIGETA, Masaya organization: Joining and Welding Research Institute, Osaka Univ, (Present Address: Graduate School of Engineering, Tohoku Univ,) – sequence: 1 fullname: SAITO, Yasuyuki organization: Welding Business, KOBE STEEL, LTD – sequence: 1 fullname: TANAKA, Manabu organization: Joining and Welding Research Institute, Osaka Univ – sequence: 1 fullname: UENO, Ryo organization: Joining and Welding Research Institute, Osaka Univ – sequence: 1 fullname: YAMAZAKI, Kei organization: Welding Business, KOBE STEEL, LTD – sequence: 1 fullname: TODA, Ryo organization: Welding Business, KOBE STEEL, LTD |
BookMark | eNp1kMtKAzEUhoMoWKs7HyDg1qm5zHUlIt5AdKPrcJqctCnTmTbJUPr2prYoCK4Sku8_l--MHHd9h4RccjYRglU368ViEyaymchSHpGRyGWe1aIQx2TERF1neVXxU3IRgpsyVjSM11U9IvZtWKJ3Gloa4mC2tLd0jhBp9NAFi56ufK8xBGoG77oZxRZ19H1oYUY32Jrd23RL46bPjFtiF1zfpWIr8NHpFukS47w35-TEQhvw4nCOyefjw8f9c_b6_vRyf_eaacGEzHhjSl4KhiWAnEqBFQdbG9kwK7XMc8t1bpiZInCbI2PpLlgJjQXkANrKMbna101TrwcMUS36waeBghIlL6qiqIsiUdd7SqdFgkerVt4twW8VZ2onU33LVLJRSWbCxR9cuwgxLZokufa_0O0-tAgRZvjT4eDlF84PiZ8fPQevsJNfyK2VrQ |
CitedBy_id | crossref_primary_10_35848_1347_4065_acd8c2 |
Cites_doi | 10.1007/s40194-020-00969-1 10.1080/13621718.2021.1908746 10.2207/qjjws.35.38s 10.1007/s40194-018-0655-x 10.1016/j.ijheatmasstransfer.2021.121062 10.1007/s40194-016-0336-6 10.2207/qjjws.35.93 10.1016/0045-7930(89)90050-9 10.2207/jjws.86.436 10.1541/ieejjournal.140.350 10.7791/jspmee.10.373 10.1007/BF03266704 10.2207/jjws.84.19 10.1080/09507116.2011.606165 10.2207/qjjws1943.39.7_669 |
ContentType | Journal Article |
Copyright | 2021 by JAPAN WELDING SOCIETY Copyright Japan Science and Technology Agency 2021 |
Copyright_xml | – notice: 2021 by JAPAN WELDING SOCIETY – notice: Copyright Japan Science and Technology Agency 2021 |
DBID | AAYXX CITATION 7TB 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.2207/qjjws.39.363 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2434-8252 |
EndPage | 370 |
ExternalDocumentID | 10_2207_qjjws_39_363 article_qjjws_39_4_39_363_article_char_en |
GroupedDBID | 123 2WC ALMA_UNASSIGNED_HOLDINGS CS3 E3Z JSF KQ8 OK1 RJT AAYXX CITATION 7TB 8BQ 8FD FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c2023-19d61620e6aa3b32e71af8d390f3c344f1c4d0dbea1f4e00d0d206a9fae1aacf3 |
ISSN | 0288-4771 |
IngestDate | Sun Jun 29 13:22:34 EDT 2025 Thu Apr 24 22:54:12 EDT 2025 Tue Jul 01 00:40:02 EDT 2025 Wed Sep 03 06:31:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Language | Japanese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2023-19d61620e6aa3b32e71af8d390f3c344f1c4d0dbea1f4e00d0d206a9fae1aacf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/qjjws/39/4/39_363/_article/-char/en |
PQID | 2615755855 |
PQPubID | 2048480 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2615755855 crossref_primary_10_2207_qjjws_39_363 crossref_citationtrail_10_2207_qjjws_39_363 jstage_primary_article_qjjws_39_4_39_363_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021 2021-00-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021 |
PublicationDecade | 2020 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo |
PublicationTitle | QUARTERLY JOURNAL OF THE JAPAN WELDING SOCIETY |
PublicationYear | 2021 |
Publisher | JAPAN WELDING SOCIETY Japan Science and Technology Agency |
Publisher_xml | – name: JAPAN WELDING SOCIETY – name: Japan Science and Technology Agency |
References | 4) K. Ando and H. Wada: Studies on the Electroslag Welding (Report 1) Penetration Mechanism of Base Metal and Influence of Polarity Effect, Quarterly Journal of the Japan Welding Society, 39-7 (1970), 669-676. (in Japanese 3) Y. Kitani, R. Ikeda, M. Ono and K. Ikeuchi: Improvement of Weld Metal Toughness in High Heat Input Electro-Slag Welding of Low Carbon Steel, Welding in the world, 53 (2009), R57-R63. 5) B.E. Paton, I.I. Lychko, K.A. Yushchenko, S.A. Suprun, S.M. Kozulin and A.A. Klimenko: Melting of electrode and base metal in electroslag welding, The Paton Welding Journal, 7 (2013), 31-38. 8) P. F. Mendez, G. Gott and S. D. Guest: High-speed video of metal transfer in submerged arc welding, Welding Journal, 94-10 (2015), 325s-332s. 2) N.N. Potapov, A.I. Rymkevich and M.B. Roshchin: Special features of metallurgical processes in the electroslag welding of structural steels using fluxes with reduced basicity, Welding International, 26-6 (2012), 476-480. 20) M. Shigeta and M. Tanaka: Diagnostics and Numerical Thermofluid Analysis for Elucidation of Arc Welding Phenomena, The Journal of The Institute of Electrical Engineers of Japan, 140-6, (2020), 350-353. (in Japanese 10) Y. Abe, T. Fujimoto, M. Nakatani, T. Fujimoto, H. Komen, M. Shigeta and M. Tanaka: High speed X-ray observation of digital controlled submerged arc welding phenomena, Science and Technology of Welding and Joining, Vol. 26, No. 4, (2021), 332-340. 13) H. Komen, M. Shigeta, M. Tanaka, M. Nakatani and Y. Abe: Numerical simulation of slag forming process during submerged arc welding using DEM-ISPH hybrid method, Welding in the World, 62, (2018), 1323–1330. 11) H. Komen, S. Matsui, H. Konishi, M. Shigeta, M. Tanaka and T. Kamo: Modeling of Submerged Arc Welding Phenomena and Experimental Study of the Heat Source Characteristics, Quarterly Journal of the Japan Welding Society, 35-2 (2017), 93-101. (in Japanese 14) H. Komen, M. Shigeta, M. Tanaka, Y. Abe, T. Fujimoto, M. Nakatani and A.B. Murphy: Numerical Investigation of Heat Transfer During Submerged Arc Welding Phenomena by Coupled DEM-ISPH Simulation, International Journal of Heat and Mass Transfer, 171, (2021), 121062. 19) M. Shigeta: Particle Simulations of Molten Metal Flows during Arc Welding Processes, Journal of Society of Automotive Engineers of Japan, 72-10, (2018), 42-46. (in Japanese 17) Y. Hirata , M. Tanaka, M. Shigeta, K. Nomura and Y. Ogino: Measurements and Numerical Simulations in Arc Welding Processes, Journal of the Japan Welding Society, 84-1, (2015), 19-24. (in Japanese 7) A. Szuzalec: An analysis of thermal Phenomena in electromagnetic field during electroslag welding, Computers & Fluids, 17-2 (1989), 411-418. 18) M. Shigeta: Particle Simulations of Molten Metal Flows in Arc Welding Processes, Journal of the Japan Welding Society, 86-6, (2017), 14-20. (in Japanese 1) T. Fujita and M. Yuda: The suggestion of the new electroslag welding method that makes performance improvement of weld joint (An experiment on rotary nozzle electroslag weld method), 川田技報, 19 (2010), 1-5. (in Japanese 12) H. Komen, M. Shigeta and M.Tanaka, M. Nakatani and Y. Abe: Simulation of Flux Melting Process during a SAW by DEM-ISPH Hybrid Method, Quarterly Journal of the Japan Welding Society, 35-2 (2017), 38s-41s. 16) H. Komen, T. Sugai, M. Shigeta, M. Tanaka, T. Kato, Y. Kitamura and T. Sato: Dross Formation Process During Gas Cutting Using Three-Dimensional Particle Simulation, Quarterly Journal of the Japan Welding Society, (2021), accepted. (in Japanese 6) Y. Ogino, S. Fukumoto, S. Asai and T. Tsuyama: Direct observation and numerical simulation of molten metal and molten slag behavior in electroslag welding process, Welding in the World, 64 (2020), 1897-1904. 9) U. Reisgen, J. Shäfer and K. Willms: Analysis of the submerged arc in comparison between a pulsed and non-pulsed process, Welding in the World, 60-4 (2016), 703-711. 15) 後藤仁志: 粒子法 -連続体・混相流・粒状体のための計算科学-, 森北出版, (2018). 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 10 |
References_xml | – reference: 19) M. Shigeta: Particle Simulations of Molten Metal Flows during Arc Welding Processes, Journal of Society of Automotive Engineers of Japan, 72-10, (2018), 42-46. (in Japanese) – reference: 3) Y. Kitani, R. Ikeda, M. Ono and K. Ikeuchi: Improvement of Weld Metal Toughness in High Heat Input Electro-Slag Welding of Low Carbon Steel, Welding in the world, 53 (2009), R57-R63. – reference: 9) U. Reisgen, J. Shäfer and K. Willms: Analysis of the submerged arc in comparison between a pulsed and non-pulsed process, Welding in the World, 60-4 (2016), 703-711. – reference: 2) N.N. Potapov, A.I. Rymkevich and M.B. Roshchin: Special features of metallurgical processes in the electroslag welding of structural steels using fluxes with reduced basicity, Welding International, 26-6 (2012), 476-480. – reference: 18) M. Shigeta: Particle Simulations of Molten Metal Flows in Arc Welding Processes, Journal of the Japan Welding Society, 86-6, (2017), 14-20. (in Japanese) – reference: 4) K. Ando and H. Wada: Studies on the Electroslag Welding (Report 1) Penetration Mechanism of Base Metal and Influence of Polarity Effect, Quarterly Journal of the Japan Welding Society, 39-7 (1970), 669-676. (in Japanese) – reference: 14) H. Komen, M. Shigeta, M. Tanaka, Y. Abe, T. Fujimoto, M. Nakatani and A.B. Murphy: Numerical Investigation of Heat Transfer During Submerged Arc Welding Phenomena by Coupled DEM-ISPH Simulation, International Journal of Heat and Mass Transfer, 171, (2021), 121062. – reference: 5) B.E. Paton, I.I. Lychko, K.A. Yushchenko, S.A. Suprun, S.M. Kozulin and A.A. Klimenko: Melting of electrode and base metal in electroslag welding, The Paton Welding Journal, 7 (2013), 31-38. – reference: 8) P. F. Mendez, G. Gott and S. D. Guest: High-speed video of metal transfer in submerged arc welding, Welding Journal, 94-10 (2015), 325s-332s. – reference: 17) Y. Hirata , M. Tanaka, M. Shigeta, K. Nomura and Y. Ogino: Measurements and Numerical Simulations in Arc Welding Processes, Journal of the Japan Welding Society, 84-1, (2015), 19-24. (in Japanese) – reference: 11) H. Komen, S. Matsui, H. Konishi, M. Shigeta, M. Tanaka and T. Kamo: Modeling of Submerged Arc Welding Phenomena and Experimental Study of the Heat Source Characteristics, Quarterly Journal of the Japan Welding Society, 35-2 (2017), 93-101. (in Japanese) – reference: 13) H. Komen, M. Shigeta, M. Tanaka, M. Nakatani and Y. Abe: Numerical simulation of slag forming process during submerged arc welding using DEM-ISPH hybrid method, Welding in the World, 62, (2018), 1323–1330. – reference: 20) M. Shigeta and M. Tanaka: Diagnostics and Numerical Thermofluid Analysis for Elucidation of Arc Welding Phenomena, The Journal of The Institute of Electrical Engineers of Japan, 140-6, (2020), 350-353. (in Japanese) – reference: 6) Y. Ogino, S. Fukumoto, S. Asai and T. Tsuyama: Direct observation and numerical simulation of molten metal and molten slag behavior in electroslag welding process, Welding in the World, 64 (2020), 1897-1904. – reference: 16) H. Komen, T. Sugai, M. Shigeta, M. Tanaka, T. Kato, Y. Kitamura and T. Sato: Dross Formation Process During Gas Cutting Using Three-Dimensional Particle Simulation, Quarterly Journal of the Japan Welding Society, (2021), accepted. (in Japanese) – reference: 12) H. Komen, M. Shigeta and M.Tanaka, M. Nakatani and Y. Abe: Simulation of Flux Melting Process during a SAW by DEM-ISPH Hybrid Method, Quarterly Journal of the Japan Welding Society, 35-2 (2017), 38s-41s. – reference: 1) T. Fujita and M. Yuda: The suggestion of the new electroslag welding method that makes performance improvement of weld joint (An experiment on rotary nozzle electroslag weld method), 川田技報, 19 (2010), 1-5. (in Japanese) – reference: 15) 後藤仁志: 粒子法 -連続体・混相流・粒状体のための計算科学-, 森北出版, (2018). – reference: 7) A. Szuzalec: An analysis of thermal Phenomena in electromagnetic field during electroslag welding, Computers & Fluids, 17-2 (1989), 411-418. – reference: 10) Y. Abe, T. Fujimoto, M. Nakatani, T. Fujimoto, H. Komen, M. Shigeta and M. Tanaka: High speed X-ray observation of digital controlled submerged arc welding phenomena, Science and Technology of Welding and Joining, Vol. 26, No. 4, (2021), 332-340. – ident: 5 – ident: 6 doi: 10.1007/s40194-020-00969-1 – ident: 10 doi: 10.1080/13621718.2021.1908746 – ident: 1 – ident: 12 doi: 10.2207/qjjws.35.38s – ident: 13 doi: 10.1007/s40194-018-0655-x – ident: 14 doi: 10.1016/j.ijheatmasstransfer.2021.121062 – ident: 9 doi: 10.1007/s40194-016-0336-6 – ident: 19 – ident: 15 – ident: 11 doi: 10.2207/qjjws.35.93 – ident: 7 doi: 10.1016/0045-7930(89)90050-9 – ident: 18 doi: 10.2207/jjws.86.436 – ident: 8 – ident: 20 doi: 10.1541/ieejjournal.140.350 – ident: 16 doi: 10.7791/jspmee.10.373 – ident: 3 doi: 10.1007/BF03266704 – ident: 17 doi: 10.2207/jjws.84.19 – ident: 2 doi: 10.1080/09507116.2011.606165 – ident: 4 doi: 10.2207/qjjws1943.39.7_669 |
SSID | ssib005901878 ssib000937286 ssib044765221 ssj0033573 ssib031741155 ssib000961621 ssib023161316 ssib023168149 ssib002224207 ssib029852163 |
Score | 2.1782384 |
Snippet | A penetration process in electroslag welding is simulated using a two-dimensional smoothed particle hydrodynamics method to elucidate the heat transfer... |
SourceID | proquest crossref jstage |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 363 |
SubjectTerms | Arc heating Base metal Conduction heating Conductive heat transfer Electroslag welding Energy transfer Gas metal arc welding Heat transfer High temperature Liquid metals Ohmic dissipation Penetration Resistance heating Slag Smooth particle hydrodynamics Thermal energy Weld lines |
Title | Numerical study of heat transfer process during electroslag welding by two-dimensional particle method |
URI | https://www.jstage.jst.go.jp/article/qjjws/39/4/39_363/_article/-char/en https://www.proquest.com/docview/2615755855 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | QUARTERLY JOURNAL OF THE JAPAN WELDING SOCIETY, 2021, Vol.39(4), pp.363-370 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfK4AAHxKfoGMgHeopSkthJm2O0lRWmdUJqpXGK7NgZdFPaNY2qcuAP4K_mOXZMVoY0uFiRYzsfv5-fnz_eewi9kzHhjBLi5kwSl4a-gD4nqCuDOBJCxDSvYxGcTqLxjH46D887nZ-tU0vVmvez77falfwPqpAHuCor2X9A1jYKGXAN-EIKCEN6J4wnld5vudJeYo3it1ZxH0AblStnqc0AGmNEE_MGWHDhbGS97VSrn5uFK5SXf-2hw1maR5nw0m399UvvMOwNj0q5LivnmF1esm_OalHwqii_qluJ3cGZjSZnNX7bhV3FGX88Hk0TbSJUsq0dEabJJDkx-QXjlc0_O0rabZjVCW3sbMRXMFTrdjrASl_WeQEl1IU56Q35q50ZGZ7RljAlRvTpcZnoACO7Ij8I6lMe1_P5puwDRWyltmftnRHPnkOEGZCqn9a1UxKnUPseuh_AW6vjoSef7Y4UIaE-rdB8lTaiULXft599Q715MAcN_-LPYb7WXaZP0GMz6cCJhvUp6sjiGXrUckX5HOWWS7jmEl7kWHEJN1zChktYcwm3uIQNlzDf4h0u4YZLWHPpBZp9GE0Px66JweFmACdx_VhEfhR4MmKMcBLIgc_yoSCxl5OMUJr7GRWe4JL5OZWeB9eBF7EYur7PWJaTl2ivWBTyFcJZJijzo0HAOaGDDGpEEYcWQIqAosjDLnKaX5dmxkG9ipNyld4GUxf1bOmldszyl3JDjYItZb77dylqito7yuAR5EsXHTS4pabXl2kAU4BBCJPscP-Ob_AaPVQ9Q6_bHaC99aqSb0CTXfO3NcUgPf0x-gWaQKeN |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+study+of+heat+transfer+process+during+electroslag+welding+by+two-dimensional+particle+method&rft.jtitle=Y%C5%8Dsetsu+Gakkai+ronbunsh%C5%AB&rft.au=UENO%2C+Ryo&rft.au=SHIGETA%2C+Masaya&rft.au=TANAKA%2C+Manabu&rft.au=TODA%2C+Ryo&rft.date=2021&rft.issn=0288-4771&rft.eissn=2434-8252&rft.volume=39&rft.issue=4&rft.spage=363&rft.epage=370&rft_id=info:doi/10.2207%2Fqjjws.39.363&rft.externalDBID=n%2Fa&rft.externalDocID=10_2207_qjjws_39_363 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0288-4771&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0288-4771&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0288-4771&client=summon |