Numerical study of heat transfer process during electroslag welding by two-dimensional particle method

A penetration process in electroslag welding is simulated using a two-dimensional smoothed particle hydrodynamics method to elucidate the heat transfer mechanism. The base metals are melted and penetration forms in the orthogonal direction of the weld line. From the base metal, molten metal flows do...

Full description

Saved in:
Bibliographic Details
Published inQUARTERLY JOURNAL OF THE JAPAN WELDING SOCIETY Vol. 39; no. 4; pp. 363 - 370
Main Authors SHIGETA, Masaya, SAITO, Yasuyuki, TANAKA, Manabu, UENO, Ryo, YAMAZAKI, Kei, TODA, Ryo
Format Journal Article
LanguageJapanese
Published Tokyo JAPAN WELDING SOCIETY 2021
Japan Science and Technology Agency
Subjects
Online AccessGet full text
ISSN0288-4771
2434-8252
DOI10.2207/qjjws.39.363

Cover

Abstract A penetration process in electroslag welding is simulated using a two-dimensional smoothed particle hydrodynamics method to elucidate the heat transfer mechanism. The base metals are melted and penetration forms in the orthogonal direction of the weld line. From the base metal, molten metal flows downward, and then a molten metal pool forms below a slag bath. The distributions of temperature increasing rates due to heat conduction and Joule heating are also visualized to clarify the dominant factors contributing to the temperature increases of the molten slag and the base metal. Joule heating occurs mainly at the side and bottom of the wire in the slag bath. The temperature of the base metal is increased by the heat conduction from the high temperature slag. The factors of energy transfer in the system are evaluated quantitatively as well. Most of the input electric energy is converted into the thermal energy by Joule heating in the slag bath. Approximately 80% of the generated thermal energy is transported to the base metal, while the other 20% is transported to the molten pool. Compared with the heat transfer in a gas metal arc welding, the thermal energies in the electroslag welding are larger into the base metal and smaller than those in a gas metal arc welding.
AbstractList A penetration process in electroslag welding is simulated using a two-dimensional smoothed particle hydrodynamics method to elucidate the heat transfer mechanism. The base metals are melted and penetration forms in the orthogonal direction of the weld line. From the base metal, molten metal flows downward, and then a molten metal pool forms below a slag bath. The distributions of temperature increasing rates due to heat conduction and Joule heating are also visualized to clarify the dominant factors contributing to the temperature increases of the molten slag and the base metal. Joule heating occurs mainly at the side and bottom of the wire in the slag bath. The temperature of the base metal is increased by the heat conduction from the high temperature slag. The factors of energy transfer in the system are evaluated quantitatively as well. Most of the input electric energy is converted into the thermal energy by Joule heating in the slag bath. Approximately 80% of the generated thermal energy is transported to the base metal, while the other 20% is transported to the molten pool. Compared with the heat transfer in a gas metal arc welding, the thermal energies in the electroslag welding are larger into the base metal and smaller than those in a gas metal arc welding.
Author UENO, Ryo
SAITO, Yasuyuki
TODA, Ryo
SHIGETA, Masaya
YAMAZAKI, Kei
TANAKA, Manabu
Author_xml – sequence: 1
  fullname: SHIGETA, Masaya
  organization: Joining and Welding Research Institute, Osaka Univ, (Present Address: Graduate School of Engineering, Tohoku Univ,)
– sequence: 1
  fullname: SAITO, Yasuyuki
  organization: Welding Business, KOBE STEEL, LTD
– sequence: 1
  fullname: TANAKA, Manabu
  organization: Joining and Welding Research Institute, Osaka Univ
– sequence: 1
  fullname: UENO, Ryo
  organization: Joining and Welding Research Institute, Osaka Univ
– sequence: 1
  fullname: YAMAZAKI, Kei
  organization: Welding Business, KOBE STEEL, LTD
– sequence: 1
  fullname: TODA, Ryo
  organization: Welding Business, KOBE STEEL, LTD
BookMark eNp1kMtKAzEUhoMoWKs7HyDg1qm5zHUlIt5AdKPrcJqctCnTmTbJUPr2prYoCK4Sku8_l--MHHd9h4RccjYRglU368ViEyaymchSHpGRyGWe1aIQx2TERF1neVXxU3IRgpsyVjSM11U9IvZtWKJ3Gloa4mC2tLd0jhBp9NAFi56ufK8xBGoG77oZxRZ19H1oYUY32Jrd23RL46bPjFtiF1zfpWIr8NHpFukS47w35-TEQhvw4nCOyefjw8f9c_b6_vRyf_eaacGEzHhjSl4KhiWAnEqBFQdbG9kwK7XMc8t1bpiZInCbI2PpLlgJjQXkANrKMbna101TrwcMUS36waeBghIlL6qiqIsiUdd7SqdFgkerVt4twW8VZ2onU33LVLJRSWbCxR9cuwgxLZokufa_0O0-tAgRZvjT4eDlF84PiZ8fPQevsJNfyK2VrQ
CitedBy_id crossref_primary_10_35848_1347_4065_acd8c2
Cites_doi 10.1007/s40194-020-00969-1
10.1080/13621718.2021.1908746
10.2207/qjjws.35.38s
10.1007/s40194-018-0655-x
10.1016/j.ijheatmasstransfer.2021.121062
10.1007/s40194-016-0336-6
10.2207/qjjws.35.93
10.1016/0045-7930(89)90050-9
10.2207/jjws.86.436
10.1541/ieejjournal.140.350
10.7791/jspmee.10.373
10.1007/BF03266704
10.2207/jjws.84.19
10.1080/09507116.2011.606165
10.2207/qjjws1943.39.7_669
ContentType Journal Article
Copyright 2021 by JAPAN WELDING SOCIETY
Copyright Japan Science and Technology Agency 2021
Copyright_xml – notice: 2021 by JAPAN WELDING SOCIETY
– notice: Copyright Japan Science and Technology Agency 2021
DBID AAYXX
CITATION
7TB
8BQ
8FD
FR3
JG9
KR7
DOI 10.2207/qjjws.39.363
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2434-8252
EndPage 370
ExternalDocumentID 10_2207_qjjws_39_363
article_qjjws_39_4_39_363_article_char_en
GroupedDBID 123
2WC
ALMA_UNASSIGNED_HOLDINGS
CS3
E3Z
JSF
KQ8
OK1
RJT
AAYXX
CITATION
7TB
8BQ
8FD
FR3
JG9
KR7
ID FETCH-LOGICAL-c2023-19d61620e6aa3b32e71af8d390f3c344f1c4d0dbea1f4e00d0d206a9fae1aacf3
ISSN 0288-4771
IngestDate Sun Jun 29 13:22:34 EDT 2025
Thu Apr 24 22:54:12 EDT 2025
Tue Jul 01 00:40:02 EDT 2025
Wed Sep 03 06:31:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 4
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2023-19d61620e6aa3b32e71af8d390f3c344f1c4d0dbea1f4e00d0d206a9fae1aacf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.jstage.jst.go.jp/article/qjjws/39/4/39_363/_article/-char/en
PQID 2615755855
PQPubID 2048480
PageCount 8
ParticipantIDs proquest_journals_2615755855
crossref_primary_10_2207_qjjws_39_363
crossref_citationtrail_10_2207_qjjws_39_363
jstage_primary_article_qjjws_39_4_39_363_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021
2021-00-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle QUARTERLY JOURNAL OF THE JAPAN WELDING SOCIETY
PublicationYear 2021
Publisher JAPAN WELDING SOCIETY
Japan Science and Technology Agency
Publisher_xml – name: JAPAN WELDING SOCIETY
– name: Japan Science and Technology Agency
References 4) K. Ando and H. Wada: Studies on the Electroslag Welding (Report 1) Penetration Mechanism of Base Metal and Influence of Polarity Effect, Quarterly Journal of the Japan Welding Society, 39-7 (1970), 669-676. (in Japanese
3) Y. Kitani, R. Ikeda, M. Ono and K. Ikeuchi: Improvement of Weld Metal Toughness in High Heat Input Electro-Slag Welding of Low Carbon Steel, Welding in the world, 53 (2009), R57-R63.
5) B.E. Paton, I.I. Lychko, K.A. Yushchenko, S.A. Suprun, S.M. Kozulin and A.A. Klimenko: Melting of electrode and base metal in electroslag welding, The Paton Welding Journal, 7 (2013), 31-38.
8) P. F. Mendez, G. Gott and S. D. Guest: High-speed video of metal transfer in submerged arc welding, Welding Journal, 94-10 (2015), 325s-332s.
2) N.N. Potapov, A.I. Rymkevich and M.B. Roshchin: Special features of metallurgical processes in the electroslag welding of structural steels using fluxes with reduced basicity, Welding International, 26-6 (2012), 476-480.
20) M. Shigeta and M. Tanaka: Diagnostics and Numerical Thermofluid Analysis for Elucidation of Arc Welding Phenomena, The Journal of The Institute of Electrical Engineers of Japan, 140-6, (2020), 350-353. (in Japanese
10) Y. Abe, T. Fujimoto, M. Nakatani, T. Fujimoto, H. Komen, M. Shigeta and M. Tanaka: High speed X-ray observation of digital controlled submerged arc welding phenomena, Science and Technology of Welding and Joining, Vol. 26, No. 4, (2021), 332-340.
13) H. Komen, M. Shigeta, M. Tanaka, M. Nakatani and Y. Abe: Numerical simulation of slag forming process during submerged arc welding using DEM-ISPH hybrid method, Welding in the World, 62, (2018), 1323–1330.
11) H. Komen, S. Matsui, H. Konishi, M. Shigeta, M. Tanaka and T. Kamo: Modeling of Submerged Arc Welding Phenomena and Experimental Study of the Heat Source Characteristics, Quarterly Journal of the Japan Welding Society, 35-2 (2017), 93-101. (in Japanese
14) H. Komen, M. Shigeta, M. Tanaka, Y. Abe, T. Fujimoto, M. Nakatani and A.B. Murphy: Numerical Investigation of Heat Transfer During Submerged Arc Welding Phenomena by Coupled DEM-ISPH Simulation, International Journal of Heat and Mass Transfer, 171, (2021), 121062.
19) M. Shigeta: Particle Simulations of Molten Metal Flows during Arc Welding Processes, Journal of Society of Automotive Engineers of Japan, 72-10, (2018), 42-46. (in Japanese
17) Y. Hirata , M. Tanaka, M. Shigeta, K. Nomura and Y. Ogino: Measurements and Numerical Simulations in Arc Welding Processes, Journal of the Japan Welding Society, 84-1, (2015), 19-24. (in Japanese
7) A. Szuzalec: An analysis of thermal Phenomena in electromagnetic field during electroslag welding, Computers & Fluids, 17-2 (1989), 411-418.
18) M. Shigeta: Particle Simulations of Molten Metal Flows in Arc Welding Processes, Journal of the Japan Welding Society, 86-6, (2017), 14-20. (in Japanese
1) T. Fujita and M. Yuda: The suggestion of the new electroslag welding method that makes performance improvement of weld joint (An experiment on rotary nozzle electroslag weld method), 川田技報, 19 (2010), 1-5. (in Japanese
12) H. Komen, M. Shigeta and M.Tanaka, M. Nakatani and Y. Abe: Simulation of Flux Melting Process during a SAW by DEM-ISPH Hybrid Method, Quarterly Journal of the Japan Welding Society, 35-2 (2017), 38s-41s.
16) H. Komen, T. Sugai, M. Shigeta, M. Tanaka, T. Kato, Y. Kitamura and T. Sato: Dross Formation Process During Gas Cutting Using Three-Dimensional Particle Simulation, Quarterly Journal of the Japan Welding Society, (2021), accepted. (in Japanese
6) Y. Ogino, S. Fukumoto, S. Asai and T. Tsuyama: Direct observation and numerical simulation of molten metal and molten slag behavior in electroslag welding process, Welding in the World, 64 (2020), 1897-1904.
9) U. Reisgen, J. Shäfer and K. Willms: Analysis of the submerged arc in comparison between a pulsed and non-pulsed process, Welding in the World, 60-4 (2016), 703-711.
15) 後藤仁志: 粒子法 -連続体・混相流・粒状体のための計算科学-, 森北出版, (2018).
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
10
References_xml – reference: 19) M. Shigeta: Particle Simulations of Molten Metal Flows during Arc Welding Processes, Journal of Society of Automotive Engineers of Japan, 72-10, (2018), 42-46. (in Japanese)
– reference: 3) Y. Kitani, R. Ikeda, M. Ono and K. Ikeuchi: Improvement of Weld Metal Toughness in High Heat Input Electro-Slag Welding of Low Carbon Steel, Welding in the world, 53 (2009), R57-R63.
– reference: 9) U. Reisgen, J. Shäfer and K. Willms: Analysis of the submerged arc in comparison between a pulsed and non-pulsed process, Welding in the World, 60-4 (2016), 703-711.
– reference: 2) N.N. Potapov, A.I. Rymkevich and M.B. Roshchin: Special features of metallurgical processes in the electroslag welding of structural steels using fluxes with reduced basicity, Welding International, 26-6 (2012), 476-480.
– reference: 18) M. Shigeta: Particle Simulations of Molten Metal Flows in Arc Welding Processes, Journal of the Japan Welding Society, 86-6, (2017), 14-20. (in Japanese)
– reference: 4) K. Ando and H. Wada: Studies on the Electroslag Welding (Report 1) Penetration Mechanism of Base Metal and Influence of Polarity Effect, Quarterly Journal of the Japan Welding Society, 39-7 (1970), 669-676. (in Japanese)
– reference: 14) H. Komen, M. Shigeta, M. Tanaka, Y. Abe, T. Fujimoto, M. Nakatani and A.B. Murphy: Numerical Investigation of Heat Transfer During Submerged Arc Welding Phenomena by Coupled DEM-ISPH Simulation, International Journal of Heat and Mass Transfer, 171, (2021), 121062.
– reference: 5) B.E. Paton, I.I. Lychko, K.A. Yushchenko, S.A. Suprun, S.M. Kozulin and A.A. Klimenko: Melting of electrode and base metal in electroslag welding, The Paton Welding Journal, 7 (2013), 31-38.
– reference: 8) P. F. Mendez, G. Gott and S. D. Guest: High-speed video of metal transfer in submerged arc welding, Welding Journal, 94-10 (2015), 325s-332s.
– reference: 17) Y. Hirata , M. Tanaka, M. Shigeta, K. Nomura and Y. Ogino: Measurements and Numerical Simulations in Arc Welding Processes, Journal of the Japan Welding Society, 84-1, (2015), 19-24. (in Japanese)
– reference: 11) H. Komen, S. Matsui, H. Konishi, M. Shigeta, M. Tanaka and T. Kamo: Modeling of Submerged Arc Welding Phenomena and Experimental Study of the Heat Source Characteristics, Quarterly Journal of the Japan Welding Society, 35-2 (2017), 93-101. (in Japanese)
– reference: 13) H. Komen, M. Shigeta, M. Tanaka, M. Nakatani and Y. Abe: Numerical simulation of slag forming process during submerged arc welding using DEM-ISPH hybrid method, Welding in the World, 62, (2018), 1323–1330.
– reference: 20) M. Shigeta and M. Tanaka: Diagnostics and Numerical Thermofluid Analysis for Elucidation of Arc Welding Phenomena, The Journal of The Institute of Electrical Engineers of Japan, 140-6, (2020), 350-353. (in Japanese)
– reference: 6) Y. Ogino, S. Fukumoto, S. Asai and T. Tsuyama: Direct observation and numerical simulation of molten metal and molten slag behavior in electroslag welding process, Welding in the World, 64 (2020), 1897-1904.
– reference: 16) H. Komen, T. Sugai, M. Shigeta, M. Tanaka, T. Kato, Y. Kitamura and T. Sato: Dross Formation Process During Gas Cutting Using Three-Dimensional Particle Simulation, Quarterly Journal of the Japan Welding Society, (2021), accepted. (in Japanese)
– reference: 12) H. Komen, M. Shigeta and M.Tanaka, M. Nakatani and Y. Abe: Simulation of Flux Melting Process during a SAW by DEM-ISPH Hybrid Method, Quarterly Journal of the Japan Welding Society, 35-2 (2017), 38s-41s.
– reference: 1) T. Fujita and M. Yuda: The suggestion of the new electroslag welding method that makes performance improvement of weld joint (An experiment on rotary nozzle electroslag weld method), 川田技報, 19 (2010), 1-5. (in Japanese)
– reference: 15) 後藤仁志: 粒子法 -連続体・混相流・粒状体のための計算科学-, 森北出版, (2018).
– reference: 7) A. Szuzalec: An analysis of thermal Phenomena in electromagnetic field during electroslag welding, Computers & Fluids, 17-2 (1989), 411-418.
– reference: 10) Y. Abe, T. Fujimoto, M. Nakatani, T. Fujimoto, H. Komen, M. Shigeta and M. Tanaka: High speed X-ray observation of digital controlled submerged arc welding phenomena, Science and Technology of Welding and Joining, Vol. 26, No. 4, (2021), 332-340.
– ident: 5
– ident: 6
  doi: 10.1007/s40194-020-00969-1
– ident: 10
  doi: 10.1080/13621718.2021.1908746
– ident: 1
– ident: 12
  doi: 10.2207/qjjws.35.38s
– ident: 13
  doi: 10.1007/s40194-018-0655-x
– ident: 14
  doi: 10.1016/j.ijheatmasstransfer.2021.121062
– ident: 9
  doi: 10.1007/s40194-016-0336-6
– ident: 19
– ident: 15
– ident: 11
  doi: 10.2207/qjjws.35.93
– ident: 7
  doi: 10.1016/0045-7930(89)90050-9
– ident: 18
  doi: 10.2207/jjws.86.436
– ident: 8
– ident: 20
  doi: 10.1541/ieejjournal.140.350
– ident: 16
  doi: 10.7791/jspmee.10.373
– ident: 3
  doi: 10.1007/BF03266704
– ident: 17
  doi: 10.2207/jjws.84.19
– ident: 2
  doi: 10.1080/09507116.2011.606165
– ident: 4
  doi: 10.2207/qjjws1943.39.7_669
SSID ssib005901878
ssib000937286
ssib044765221
ssj0033573
ssib031741155
ssib000961621
ssib023161316
ssib023168149
ssib002224207
ssib029852163
Score 2.1782384
Snippet A penetration process in electroslag welding is simulated using a two-dimensional smoothed particle hydrodynamics method to elucidate the heat transfer...
SourceID proquest
crossref
jstage
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 363
SubjectTerms Arc heating
Base metal
Conduction heating
Conductive heat transfer
Electroslag welding
Energy transfer
Gas metal arc welding
Heat transfer
High temperature
Liquid metals
Ohmic dissipation
Penetration
Resistance heating
Slag
Smooth particle hydrodynamics
Thermal energy
Weld lines
Title Numerical study of heat transfer process during electroslag welding by two-dimensional particle method
URI https://www.jstage.jst.go.jp/article/qjjws/39/4/39_363/_article/-char/en
https://www.proquest.com/docview/2615755855
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX QUARTERLY JOURNAL OF THE JAPAN WELDING SOCIETY, 2021, Vol.39(4), pp.363-370
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfK4AAHxKfoGMgHeopSkthJm2O0lRWmdUJqpXGK7NgZdFPaNY2qcuAP4K_mOXZMVoY0uFiRYzsfv5-fnz_eewi9kzHhjBLi5kwSl4a-gD4nqCuDOBJCxDSvYxGcTqLxjH46D887nZ-tU0vVmvez77falfwPqpAHuCor2X9A1jYKGXAN-EIKCEN6J4wnld5vudJeYo3it1ZxH0AblStnqc0AGmNEE_MGWHDhbGS97VSrn5uFK5SXf-2hw1maR5nw0m399UvvMOwNj0q5LivnmF1esm_OalHwqii_qluJ3cGZjSZnNX7bhV3FGX88Hk0TbSJUsq0dEabJJDkx-QXjlc0_O0rabZjVCW3sbMRXMFTrdjrASl_WeQEl1IU56Q35q50ZGZ7RljAlRvTpcZnoACO7Ij8I6lMe1_P5puwDRWyltmftnRHPnkOEGZCqn9a1UxKnUPseuh_AW6vjoSef7Y4UIaE-rdB8lTaiULXft599Q715MAcN_-LPYb7WXaZP0GMz6cCJhvUp6sjiGXrUckX5HOWWS7jmEl7kWHEJN1zChktYcwm3uIQNlzDf4h0u4YZLWHPpBZp9GE0Px66JweFmACdx_VhEfhR4MmKMcBLIgc_yoSCxl5OMUJr7GRWe4JL5OZWeB9eBF7EYur7PWJaTl2ivWBTyFcJZJijzo0HAOaGDDGpEEYcWQIqAosjDLnKaX5dmxkG9ipNyld4GUxf1bOmldszyl3JDjYItZb77dylqito7yuAR5EsXHTS4pabXl2kAU4BBCJPscP-Ob_AaPVQ9Q6_bHaC99aqSb0CTXfO3NcUgPf0x-gWaQKeN
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+study+of+heat+transfer+process+during+electroslag+welding+by+two-dimensional+particle+method&rft.jtitle=Y%C5%8Dsetsu+Gakkai+ronbunsh%C5%AB&rft.au=UENO%2C+Ryo&rft.au=SHIGETA%2C+Masaya&rft.au=TANAKA%2C+Manabu&rft.au=TODA%2C+Ryo&rft.date=2021&rft.issn=0288-4771&rft.eissn=2434-8252&rft.volume=39&rft.issue=4&rft.spage=363&rft.epage=370&rft_id=info:doi/10.2207%2Fqjjws.39.363&rft.externalDBID=n%2Fa&rft.externalDocID=10_2207_qjjws_39_363
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0288-4771&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0288-4771&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0288-4771&client=summon