Enhancing Photocatalytic Hydrogen Production via the Construction of Robust Multivariate Ti‐MOF/COF Composites
Titanium metal–organic frameworks (Ti‐MOFs), as an appealing type of artificial photocatalyst, have shown great potential in the field of solar energy conversion due to their well‐studied photoredox activity (similar to TiO2) and good optical responsiveness of linkers, which serve as the antenna to...
Saved in:
Published in | Angewandte Chemie Vol. 134; no. 3 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
17.01.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0044-8249 1521-3757 |
DOI | 10.1002/ange.202114071 |
Cover
Abstract | Titanium metal–organic frameworks (Ti‐MOFs), as an appealing type of artificial photocatalyst, have shown great potential in the field of solar energy conversion due to their well‐studied photoredox activity (similar to TiO2) and good optical responsiveness of linkers, which serve as the antenna to absorb visible‐light. Although much effort has been dedicated to developing Ti‐MOFs with high photocatalytic activity, their solar energy conversion performances are still poor. Herein, we have implemented a covalent‐integration strategy to construct a series of multivariate Ti‐MOF/COF hybrid materials PdTCPP⊂PCN‐415(NH2)/TpPa (composites 1, 2, and 3), featuring excellent visible‐light utilization, a suitable band gap, and high surface area for photocatalytic H2 production. Notably, the resulting composites demonstrated remarkably enhanced visible‐light‐driven photocatalytic H2 evolution performance, especially for the composite 2 with a maximum H2 evolution rate of 13.98 mmol g−1 h−1 (turnover frequency (TOF)=227 h−1), which is much higher than that of PdTCPP⊂PCN‐415(NH2) (0.21 mmol g−1 h−1) and TpPa (6.51 mmol g−1 h−1). Our work thereby suggests a new approach to highly efficient photocatalysts for H2 evolution and beyond.
A series of covalently connected multivariate Ti‐MOF/COF hybrid materials were constructed demonstrating outstanding photocatalytic H2 evolution performance with a maximum H2 evolution rate of 13.98 mmol g−1 h−1 (TOF=227 h−1), much higher than the prototypical counterparts. |
---|---|
AbstractList | Titanium metal–organic frameworks (Ti‐MOFs), as an appealing type of artificial photocatalyst, have shown great potential in the field of solar energy conversion due to their well‐studied photoredox activity (similar to TiO
2
) and good optical responsiveness of linkers, which serve as the antenna to absorb visible‐light. Although much effort has been dedicated to developing Ti‐MOFs with high photocatalytic activity, their solar energy conversion performances are still poor. Herein, we have implemented a covalent‐integration strategy to construct a series of multivariate Ti‐MOF/COF hybrid materials PdTCPP⊂PCN‐415(NH
2
)/TpPa (composites 1, 2, and 3), featuring excellent visible‐light utilization, a suitable band gap, and high surface area for photocatalytic H
2
production. Notably, the resulting composites demonstrated remarkably enhanced visible‐light‐driven photocatalytic H
2
evolution performance, especially for the composite 2 with a maximum H
2
evolution rate of 13.98 mmol g
−1
h
−1
(turnover frequency (TOF)=227 h
−1
), which is much higher than that of PdTCPP⊂PCN‐415(NH
2
) (0.21 mmol g
−1
h
−1
) and TpPa (6.51 mmol g
−1
h
−1
). Our work thereby suggests a new approach to highly efficient photocatalysts for H
2
evolution and beyond. Titanium metal–organic frameworks (Ti‐MOFs), as an appealing type of artificial photocatalyst, have shown great potential in the field of solar energy conversion due to their well‐studied photoredox activity (similar to TiO2) and good optical responsiveness of linkers, which serve as the antenna to absorb visible‐light. Although much effort has been dedicated to developing Ti‐MOFs with high photocatalytic activity, their solar energy conversion performances are still poor. Herein, we have implemented a covalent‐integration strategy to construct a series of multivariate Ti‐MOF/COF hybrid materials PdTCPP⊂PCN‐415(NH2)/TpPa (composites 1, 2, and 3), featuring excellent visible‐light utilization, a suitable band gap, and high surface area for photocatalytic H2 production. Notably, the resulting composites demonstrated remarkably enhanced visible‐light‐driven photocatalytic H2 evolution performance, especially for the composite 2 with a maximum H2 evolution rate of 13.98 mmol g−1 h−1 (turnover frequency (TOF)=227 h−1), which is much higher than that of PdTCPP⊂PCN‐415(NH2) (0.21 mmol g−1 h−1) and TpPa (6.51 mmol g−1 h−1). Our work thereby suggests a new approach to highly efficient photocatalysts for H2 evolution and beyond. A series of covalently connected multivariate Ti‐MOF/COF hybrid materials were constructed demonstrating outstanding photocatalytic H2 evolution performance with a maximum H2 evolution rate of 13.98 mmol g−1 h−1 (TOF=227 h−1), much higher than the prototypical counterparts. Titanium metal–organic frameworks (Ti‐MOFs), as an appealing type of artificial photocatalyst, have shown great potential in the field of solar energy conversion due to their well‐studied photoredox activity (similar to TiO2) and good optical responsiveness of linkers, which serve as the antenna to absorb visible‐light. Although much effort has been dedicated to developing Ti‐MOFs with high photocatalytic activity, their solar energy conversion performances are still poor. Herein, we have implemented a covalent‐integration strategy to construct a series of multivariate Ti‐MOF/COF hybrid materials PdTCPP⊂PCN‐415(NH2)/TpPa (composites 1, 2, and 3), featuring excellent visible‐light utilization, a suitable band gap, and high surface area for photocatalytic H2 production. Notably, the resulting composites demonstrated remarkably enhanced visible‐light‐driven photocatalytic H2 evolution performance, especially for the composite 2 with a maximum H2 evolution rate of 13.98 mmol g−1 h−1 (turnover frequency (TOF)=227 h−1), which is much higher than that of PdTCPP⊂PCN‐415(NH2) (0.21 mmol g−1 h−1) and TpPa (6.51 mmol g−1 h−1). Our work thereby suggests a new approach to highly efficient photocatalysts for H2 evolution and beyond. |
Author | Chen, Cheng‐Xia Sirajuddin Lan, Pui Ching Zhong, Xin Su, Pei‐Yang Wei, Zhang‐Wen Pan, Hongjun Song, Yujie Nafady, Ayman Chen, Yi‐Fan Xiong, Yang‐Yang Ma, Shengqian |
Author_xml | – sequence: 1 givenname: Cheng‐Xia surname: Chen fullname: Chen, Cheng‐Xia organization: University of North Texas – sequence: 2 givenname: Yang‐Yang surname: Xiong fullname: Xiong, Yang‐Yang organization: Sun Yat-sen University – sequence: 3 givenname: Xin surname: Zhong fullname: Zhong, Xin organization: Hainan University – sequence: 4 givenname: Pui Ching surname: Lan fullname: Lan, Pui Ching organization: University of North Texas – sequence: 5 givenname: Zhang‐Wen surname: Wei fullname: Wei, Zhang‐Wen organization: Sun Yat-sen University – sequence: 6 givenname: Hongjun surname: Pan fullname: Pan, Hongjun organization: University of North Texas – sequence: 7 givenname: Pei‐Yang surname: Su fullname: Su, Pei‐Yang organization: Guangzhou University – sequence: 8 givenname: Yujie surname: Song fullname: Song, Yujie organization: Hainan University – sequence: 9 givenname: Yi‐Fan surname: Chen fullname: Chen, Yi‐Fan email: chenyifan@hainanu.edu.cn organization: Hainan University – sequence: 10 givenname: Ayman surname: Nafady fullname: Nafady, Ayman organization: King Saud University – sequence: 11 surname: Sirajuddin fullname: Sirajuddin organization: University of Karachi – sequence: 12 givenname: Shengqian orcidid: 0000-0002-1897-7069 surname: Ma fullname: Ma, Shengqian email: shengqian.ma@unt.edu organization: University of North Texas |
BookMark | eNqFkE1LAzEQhoNUsK1ePQc8bztJ0_04ltIPobUiel7SJNtGtsmaZCu9-RP8jf4St1QUBPE0MPM8M8zbQS1jjULomkCPANA-NxvVo0AJYZCQM9QmQ0qiQTJMWqgNwFiUUpZdoI73zwAQ0yRro2pittwIbTb4fmuDFTzw8hC0wPODdHajDL53VtYiaGvwXnMctgqPrfHBfTVtgR_suvYBL-sy6D13mgeFH_XH2_tyNe2PV9NG2FXW66D8JToveOnV1Vftoqfp5HE8jxar2e14tIjE8YVI8ESmQ8FjxeK1KqhUMWcpywSksYQBTWQCnJAByRSsoWANCLIZS0lFJmI26KKb097K2Zda-ZA_29qZ5mROY5KSYZam0FDsRAlnvXeqyIUO_PhWcFyXOYH8mG1-zDb_zrbRer-0yukdd4e_hewkvOpSHf6h89HdbPLjfgKAJZEI |
CitedBy_id | crossref_primary_10_1016_j_checat_2022_06_006 crossref_primary_10_1021_acssuschemeng_2c04943 crossref_primary_10_1039_D2QI00715K crossref_primary_10_1002_aoc_6995 crossref_primary_10_1002_chem_202500100 crossref_primary_10_1007_s10853_023_09284_8 crossref_primary_10_1002_cssc_202300872 crossref_primary_10_1002_ange_202217897 crossref_primary_10_1002_anie_202212243 crossref_primary_10_1039_D2TA07315C crossref_primary_10_1002_ange_202212243 crossref_primary_10_1016_j_microc_2023_109307 crossref_primary_10_1021_acs_energyfuels_3c00162 crossref_primary_10_1002_anie_202217897 crossref_primary_10_1021_acsaem_2c03897 |
Cites_doi | 10.1002/ange.201904058 10.1039/C5TA09323F 10.1039/C6TC01762B 10.1021/acs.chemrev.6b00396 10.1016/j.apcatb.2018.02.055 10.1002/anie.202104870 10.1002/adma.201102752 10.1002/adfm.201707110 10.1021/ja308278w 10.1126/science.1062965 10.1016/j.ijhydene.2021.02.176 10.1021/acssuschemeng.8b05352 10.1002/chem.201403800 10.1038/s41929-019-0242-6 10.1002/ange.201611137 10.1021/ja4030963 10.1002/anie.201806862 10.1039/C4CS00180J 10.1039/C4NR07224C 10.1021/cr050193e 10.1021/acscatal.6b01293 10.1002/anie.202000158 10.1016/j.apcatb.2017.01.040 10.1002/anie.201603990 10.1021/jacsau.0c00082 10.1016/j.ccr.2014.12.005 10.1021/jo051580r 10.1002/anie.202008408 10.1002/ange.201602274 10.1039/C5CS00448A 10.1007/s00897990360a 10.1039/C2CS35072F 10.1002/adma.201705666 10.1038/s41557-018-0141-5 10.1002/ange.201603990 10.1002/adma.201705112 10.1016/j.apsusc.2019.03.171 10.1002/ange.201600431 10.1002/aenm.201702142 10.1002/ange.201904766 10.1021/cr500008u 10.1002/ange.201800817 10.1016/j.cej.2020.125080 10.1002/anie.202007193 10.1002/ange.201806077 10.1038/s41467-021-21527-3 10.1039/C4TA02873B 10.1002/anie.201711725 10.1073/pnas.0603395103 10.1039/C6CS00436A 10.1002/ange.202000158 10.1002/anie.201806077 10.1039/C5SC00916B 10.1002/anie.202014408 10.1002/anie.201602274 10.1021/acs.chemmater.6b01894 10.1002/ange.202008408 10.1039/C8CS00443A 10.1002/anie.201904058 10.1021/acsami.1021c04880 10.1002/anie.201600431 10.1021/acscentsci.7b00497 10.1002/ange.202007193 10.1002/ange.202014408 10.1002/anie.201800817 10.1002/aenm.202003303 10.1002/anie.201611137 10.1021/acs.inorgchem.1c00041 10.1002/ange.201806862 10.1039/C8CS00978C 10.1039/C7CS00511C 10.1039/C9TA01942A 10.1039/C7TA00437K 10.1002/ange.201711725 10.2147/NSA.S9040 10.1039/C9SC01866B 10.1080/14686996.2017.1375376 10.1021/jacs.0c00054 10.1002/ange.202104870 10.1016/j.apcatb.2016.05.074 10.1002/anie.201904766 10.1021/ja405350u 10.1039/C9SC06500H 10.1039/D0TA03749D 10.1021/ja903726m |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/ange.202114071 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3757 |
EndPage | n/a |
ExternalDocumentID | 10_1002_ange_202114071 ANGE202114071 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22001271, 21806027 – fundername: International Postdoctoral Exchange Fellowship Program funderid: 20180055 – fundername: Chinese Postdoctoral Science Foundation funderid: 2017M622866 – fundername: Division of Electrical, Communications and Cyber Systems funderid: ECCS-2029800 – fundername: King Saud University funderid: RSP-2021/79 – fundername: Welch Foundation funderid: B-0027 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCUC ACCZN ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D Q.N Q11 QB0 QRW R.K RGC ROL RWI RX1 RYL SUPJJ TN5 TUS UB1 UPT V2E W8V W99 WBFHL WBKPD WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 Y6R ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c2021-ca7d85ca6e46bef2de6a4849c086d0327d70a11319e0b0f4a6e0d49cdd2c9c643 |
IEDL.DBID | DR2 |
ISSN | 0044-8249 |
IngestDate | Fri Jul 25 10:41:28 EDT 2025 Tue Jul 01 02:42:09 EDT 2025 Thu Apr 24 22:58:31 EDT 2025 Wed Jan 22 16:26:19 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2021-ca7d85ca6e46bef2de6a4849c086d0327d70a11319e0b0f4a6e0d49cdd2c9c643 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1897-7069 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ange.202114071 |
PQID | 2618159880 |
PQPubID | 866336 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2618159880 crossref_citationtrail_10_1002_ange_202114071 crossref_primary_10_1002_ange_202114071 wiley_primary_10_1002_ange_202114071_ANGE202114071 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 17, 2022 |
PublicationDateYYYYMMDD | 2022-01-17 |
PublicationDate_xml | – month: 01 year: 2022 text: January 17, 2022 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2007; 107 2000; 5 2019; 10 2017; 46 2020 2020; 59 132 2020; 11 2019; 481 2018; 47 2017; 117 2014; 20 2020; 8 2018; 8 2001; 293 2012; 134 2018; 4 2018 2018; 57 130 2016; 198 2018; 30 2005; 70 2012; 24 2016; 45 2017; 206 2019; 7 2021; 46 2018; 28 2015; 6 2015; 3 2019; 2 2020; 142 2015; 287 2013; 42 2017 2017; 56 129 2009; 131 2011; 4 2021; 1 2015; 7 2014; 114 2019 2019; 58 131 2014; 43 2016; 4 2016; 6 2018; 231 2016 2016; 55 128 2021; 12 2021; 11 2021 2020; 395 2019; 48 2021 2021; 60 133 2013; 135 2017; 18 2016; 28 2021; 60 2018; 10 2006; 103 e_1_2_6_72_2 e_1_2_6_53_2 e_1_2_6_30_3 e_1_2_6_30_2 e_1_2_6_19_2 e_1_2_6_34_1 e_1_2_6_11_2 e_1_2_6_53_3 e_1_2_6_38_2 e_1_2_6_76_2 e_1_2_6_15_2 e_1_2_6_57_2 e_1_2_6_83_2 e_1_2_6_64_2 e_1_2_6_41_3 e_1_2_6_41_2 e_1_2_6_60_2 e_1_2_6_9_1 e_1_2_6_5_2 e_1_2_6_1_1 e_1_2_6_22_2 e_1_2_6_49_2 e_1_2_6_45_2 e_1_2_6_68_2 e_1_2_6_26_1 e_1_2_6_73_2 e_1_2_6_31_2 e_1_2_6_50_1 e_1_2_6_35_2 e_1_2_6_58_2 e_1_2_6_12_1 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_54_2 e_1_2_6_77_2 e_1_2_6_54_3 e_1_2_6_77_1 e_1_2_6_61_2 e_1_2_6_84_2 e_1_2_6_61_3 e_1_2_6_84_1 e_1_2_6_42_2 e_1_2_6_80_2 e_1_2_6_6_1 e_1_2_6_46_3 e_1_2_6_23_2 e_1_2_6_69_2 e_1_2_6_2_2 e_1_2_6_65_2 e_1_2_6_27_2 e_1_2_6_65_3 e_1_2_6_46_2 e_1_2_6_51_2 e_1_2_6_74_2 e_1_2_6_70_3 e_1_2_6_70_2 e_1_2_6_59_1 e_1_2_6_13_2 e_1_2_6_32_2 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_55_2 e_1_2_6_36_2 e_1_2_6_85_1 e_1_2_6_62_2 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_81_3 e_1_2_6_81_2 e_1_2_6_7_2 e_1_2_6_3_2 e_1_2_6_24_2 e_1_2_6_28_2 e_1_2_6_66_1 e_1_2_6_47_1 e_1_2_6_71_3 e_1_2_6_52_2 e_1_2_6_75_2 e_1_2_6_52_3 e_1_2_6_71_2 e_1_2_6_18_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_56_1 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_79_2 e_1_2_6_63_2 e_1_2_6_86_1 e_1_2_6_40_2 e_1_2_6_82_2 e_1_2_6_8_2 e_1_2_6_4_2 e_1_2_6_25_1 e_1_2_6_48_2 e_1_2_6_48_3 e_1_2_6_21_2 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_2 |
References_xml | – volume: 58 131 start-page: 10198 10304 year: 2019 2019 end-page: 10203 10309 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 55 128 start-page: 6411 6521 year: 2016 2016 end-page: 6416 6526 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 287 start-page: 1 year: 2015 end-page: 14 publication-title: Coord. Chem. Rev. – volume: 45 start-page: 3701 year: 2016 end-page: 3730 publication-title: Chem. Soc. Rev. – volume: 4 start-page: 6772 year: 2016 end-page: 6801 publication-title: J. Mater. Chem. A – volume: 60 start-page: 3988 year: 2021 end-page: 3995 publication-title: Inorg. Chem. – volume: 198 start-page: 286 year: 2016 end-page: 294 publication-title: Appl. Catal. B – volume: 42 start-page: 548 year: 2013 end-page: 568 publication-title: Chem. Soc. Rev. – volume: 60 133 start-page: 1869 1897 year: 2021 2021 end-page: 1874 1902 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 114 start-page: 9987 year: 2014 end-page: 10043 publication-title: Chem. Rev. – volume: 7 start-page: 11928 year: 2019 end-page: 11933 publication-title: J. Mater. Chem. A – volume: 59 132 start-page: 19602 19770 year: 2020 2020 end-page: 19609 19777 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 134 start-page: 19524 year: 2012 end-page: 19527 publication-title: J. Am. Chem. Soc. – volume: 70 start-page: 9562 year: 2005 end-page: 9572 publication-title: J. Org. Chem. – volume: 10 start-page: 10577 year: 2019 end-page: 10585 publication-title: Chem. Sci. – volume: 142 start-page: 4862 year: 2020 end-page: 4871 publication-title: J. Am. Chem. Soc. – volume: 293 start-page: 1639 year: 2001 end-page: 1641 publication-title: Science – volume: 43 start-page: 6920 year: 2014 end-page: 6937 publication-title: Chem. Soc. Rev. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 56 129 start-page: 816 834 year: 2017 2017 end-page: 820 838 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 start-page: 15245 year: 2020 end-page: 15270 publication-title: J. Mater. Chem. A – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 5 start-page: 11854 year: 2017 end-page: 11863 publication-title: J. Mater. Chem. A – volume: 60 133 start-page: 19797 19950 year: 2021 2021 end-page: 19803 19956 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 4 start-page: 35 year: 2011 end-page: 65 publication-title: Nanotechnol. Sci. Appl. – volume: 55 128 start-page: 6471 6581 year: 2016 2016 end-page: 6475 6585 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 5 start-page: 49 year: 2000 end-page: 53 publication-title: Chem. Educ. – volume: 46 start-page: 603 year: 2017 end-page: 631 publication-title: Chem. Soc. Rev. – volume: 206 start-page: 426 year: 2017 end-page: 433 publication-title: Appl. Catal. B – volume: 7 start-page: 4868 year: 2019 end-page: 4877 publication-title: ACS Sustainable Chem. Eng. – volume: 47 start-page: 404 year: 2018 end-page: 421 publication-title: Chem. Soc. Rev. – volume: 47 start-page: 8203 year: 2018 end-page: 8237 publication-title: Chem. Soc. Rev. – volume: 395 year: 2020 publication-title: Chem. Eng. J. – volume: 55 128 start-page: 9389 9535 year: 2016 2016 end-page: 9393 9539 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 58 131 start-page: 9512 9612 year: 2019 2019 end-page: 9516 9616 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 57 130 start-page: 3493 3551 year: 2018 2018 end-page: 3498 3556 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 1 start-page: 212 year: 2021 end-page: 220 publication-title: JACS Au – volume: 46 start-page: 17666 year: 2021 end-page: 17676 publication-title: Int. J. Hydrogen Energy – volume: 24 start-page: 229 year: 2012 end-page: 251 publication-title: Adv. Mater. – volume: 135 start-page: 10942 year: 2013 end-page: 10945 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 5191 year: 2016 end-page: 5204 publication-title: Chem. Mater. – volume: 6 start-page: 5359 year: 2016 end-page: 5365 publication-title: ACS Catal. – volume: 18 start-page: 705 year: 2017 end-page: 723 publication-title: Sci. Technol. Adv. Mater. – volume: 28 start-page: 1707110 year: 2018 end-page: 1707116 publication-title: Adv. Funct. Mater. – volume: 10 start-page: 1180 year: 2018 end-page: 1189 publication-title: Nat. Chem. – volume: 30 start-page: 1705112 year: 2018 end-page: 1705118 publication-title: Adv. Mater. – volume: 59 132 start-page: 13468 13570 year: 2020 2020 end-page: 13472 13574 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 59 132 start-page: 21591 21775 year: 2020 2020 end-page: 21596 21780 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 48 start-page: 3903 year: 2019 end-page: 3945 publication-title: Chem. Soc. Rev. – volume: 135 start-page: 10206 year: 2013 end-page: 10209 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 3748 year: 2015 end-page: 3756 publication-title: J. Mater. Chem. A – volume: 107 start-page: 4022 year: 2007 end-page: 4047 publication-title: Chem. Rev. – volume: 481 start-page: 669 year: 2019 end-page: 677 publication-title: Appl. Surf. Sci. – volume: 103 start-page: 15729 year: 2006 end-page: 15735 publication-title: Proc. Natl. Acad. Sci. USA – volume: 57 130 start-page: 12106 12282 year: 2018 2018 end-page: 12110 12286 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 387 year: 2019 end-page: 399 publication-title: Nat. Catal. – volume: 131 start-page: 10857 year: 2009 end-page: 10859 publication-title: J. Am. Chem. Soc. – volume: 57 130 start-page: 9864 10012 year: 2018 2018 end-page: 9869 10017 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 12 start-page: 1354 year: 2021 publication-title: Nat. Commun. – volume: 11 start-page: 3978 year: 2020 end-page: 3985 publication-title: Chem. Sci. – volume: 57 130 start-page: 1103 1115 year: 2018 2018 end-page: 1107 1119 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 117 start-page: 1445 year: 2017 end-page: 1514 publication-title: Chem. Rev. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 4 start-page: 105 year: 2018 end-page: 111 publication-title: ACS Cent. Sci. – volume: 4 start-page: 9581 year: 2016 end-page: 9587 publication-title: J. Mater. Chem. C – volume: 6 start-page: 3926 year: 2015 end-page: 3930 publication-title: Chem. Sci. – volume: 7 start-page: 8187 year: 2015 end-page: 8208 publication-title: Nanoscale – volume: 231 start-page: 173 year: 2018 end-page: 181 publication-title: Appl. Catal. B – volume: 20 start-page: 15961 year: 2014 end-page: 15965 publication-title: Chem. Eur. J. – ident: e_1_2_6_61_3 doi: 10.1002/ange.201904058 – ident: e_1_2_6_23_2 doi: 10.1039/C5TA09323F – ident: e_1_2_6_62_2 doi: 10.1039/C6TC01762B – ident: e_1_2_6_8_2 doi: 10.1021/acs.chemrev.6b00396 – ident: e_1_2_6_29_1 – ident: e_1_2_6_60_2 doi: 10.1016/j.apcatb.2018.02.055 – ident: e_1_2_6_70_2 doi: 10.1002/anie.202104870 – ident: e_1_2_6_59_1 – ident: e_1_2_6_13_2 doi: 10.1002/adma.201102752 – ident: e_1_2_6_51_2 doi: 10.1002/adfm.201707110 – ident: e_1_2_6_76_2 doi: 10.1021/ja308278w – ident: e_1_2_6_11_2 doi: 10.1126/science.1062965 – ident: e_1_2_6_44_1 – ident: e_1_2_6_82_2 doi: 10.1016/j.ijhydene.2021.02.176 – ident: e_1_2_6_35_2 doi: 10.1021/acssuschemeng.8b05352 – ident: e_1_2_6_74_2 doi: 10.1002/chem.201403800 – ident: e_1_2_6_47_1 – ident: e_1_2_6_2_2 doi: 10.1038/s41929-019-0242-6 – ident: e_1_2_6_30_3 doi: 10.1002/ange.201611137 – ident: e_1_2_6_14_2 doi: 10.1021/ja4030963 – ident: e_1_2_6_52_2 doi: 10.1002/anie.201806862 – ident: e_1_2_6_24_2 doi: 10.1039/C4CS00180J – ident: e_1_2_6_50_1 – ident: e_1_2_6_9_1 – ident: e_1_2_6_85_1 doi: 10.1039/C4NR07224C – ident: e_1_2_6_10_2 doi: 10.1021/cr050193e – ident: e_1_2_6_18_2 doi: 10.1021/acscatal.6b01293 – ident: e_1_2_6_41_2 doi: 10.1002/anie.202000158 – ident: e_1_2_6_58_2 doi: 10.1016/j.apcatb.2017.01.040 – ident: e_1_2_6_84_1 doi: 10.1002/anie.201603990 – ident: e_1_2_6_12_1 – ident: e_1_2_6_80_2 doi: 10.1021/jacsau.0c00082 – ident: e_1_2_6_19_2 doi: 10.1016/j.ccr.2014.12.005 – ident: e_1_2_6_63_2 doi: 10.1021/jo051580r – ident: e_1_2_6_34_1 – ident: e_1_2_6_54_2 doi: 10.1002/anie.202008408 – ident: e_1_2_6_77_2 doi: 10.1002/ange.201602274 – ident: e_1_2_6_33_2 doi: 10.1039/C5CS00448A – ident: e_1_2_6_86_1 doi: 10.1007/s00897990360a – ident: e_1_2_6_67_2 doi: 10.1039/C2CS35072F – ident: e_1_2_6_21_2 doi: 10.1002/adma.201705666 – ident: e_1_2_6_69_2 doi: 10.1038/s41557-018-0141-5 – ident: e_1_2_6_84_2 doi: 10.1002/ange.201603990 – ident: e_1_2_6_56_1 – ident: e_1_2_6_64_2 doi: 10.1002/adma.201705112 – ident: e_1_2_6_16_2 doi: 10.1016/j.apsusc.2019.03.171 – ident: e_1_2_6_81_3 doi: 10.1002/ange.201600431 – ident: e_1_2_6_78_1 – ident: e_1_2_6_17_1 – ident: e_1_2_6_31_2 doi: 10.1002/aenm.201702142 – ident: e_1_2_6_53_3 doi: 10.1002/ange.201904766 – ident: e_1_2_6_22_2 doi: 10.1021/cr500008u – ident: e_1_2_6_65_3 doi: 10.1002/ange.201800817 – ident: e_1_2_6_42_2 doi: 10.1016/j.cej.2020.125080 – ident: e_1_2_6_48_2 doi: 10.1002/anie.202007193 – ident: e_1_2_6_46_3 doi: 10.1002/ange.201806077 – ident: e_1_2_6_72_2 doi: 10.1038/s41467-021-21527-3 – ident: e_1_2_6_28_2 doi: 10.1039/C4TA02873B – ident: e_1_2_6_55_1 doi: 10.1002/anie.201711725 – ident: e_1_2_6_3_2 doi: 10.1073/pnas.0603395103 – ident: e_1_2_6_7_2 doi: 10.1039/C6CS00436A – ident: e_1_2_6_41_3 doi: 10.1002/ange.202000158 – ident: e_1_2_6_46_2 doi: 10.1002/anie.201806077 – ident: e_1_2_6_49_2 doi: 10.1039/C5SC00916B – ident: e_1_2_6_71_2 doi: 10.1002/anie.202014408 – ident: e_1_2_6_77_1 doi: 10.1002/anie.201602274 – ident: e_1_2_6_15_2 doi: 10.1021/acs.chemmater.6b01894 – ident: e_1_2_6_54_3 doi: 10.1002/ange.202008408 – ident: e_1_2_6_66_1 – ident: e_1_2_6_4_2 doi: 10.1039/C8CS00443A – ident: e_1_2_6_61_2 doi: 10.1002/anie.201904058 – ident: e_1_2_6_73_2 doi: 10.1021/acsami.1021c04880 – ident: e_1_2_6_81_2 doi: 10.1002/anie.201600431 – ident: e_1_2_6_6_1 – ident: e_1_2_6_36_2 doi: 10.1021/acscentsci.7b00497 – ident: e_1_2_6_20_1 – ident: e_1_2_6_26_1 – ident: e_1_2_6_48_3 doi: 10.1002/ange.202007193 – ident: e_1_2_6_71_3 doi: 10.1002/ange.202014408 – ident: e_1_2_6_1_1 – ident: e_1_2_6_65_2 doi: 10.1002/anie.201800817 – ident: e_1_2_6_5_2 doi: 10.1002/aenm.202003303 – ident: e_1_2_6_30_2 doi: 10.1002/anie.201611137 – ident: e_1_2_6_83_2 doi: 10.1021/acs.inorgchem.1c00041 – ident: e_1_2_6_52_3 doi: 10.1002/ange.201806862 – ident: e_1_2_6_68_2 doi: 10.1039/C8CS00978C – ident: e_1_2_6_43_1 doi: 10.1039/C7CS00511C – ident: e_1_2_6_40_2 doi: 10.1039/C9TA01942A – ident: e_1_2_6_57_2 doi: 10.1039/C7TA00437K – ident: e_1_2_6_55_2 doi: 10.1002/ange.201711725 – ident: e_1_2_6_25_1 doi: 10.2147/NSA.S9040 – ident: e_1_2_6_79_2 doi: 10.1039/C9SC01866B – ident: e_1_2_6_27_2 doi: 10.1080/14686996.2017.1375376 – ident: e_1_2_6_75_2 doi: 10.1021/jacs.0c00054 – ident: e_1_2_6_70_3 doi: 10.1002/ange.202104870 – ident: e_1_2_6_32_2 doi: 10.1016/j.apcatb.2016.05.074 – ident: e_1_2_6_53_2 doi: 10.1002/anie.201904766 – ident: e_1_2_6_45_2 doi: 10.1021/ja405350u – ident: e_1_2_6_39_2 doi: 10.1039/C9SC06500H – ident: e_1_2_6_38_2 doi: 10.1039/D0TA03749D – ident: e_1_2_6_37_2 doi: 10.1021/ja903726m |
SSID | ssj0006279 |
Score | 2.1708748 |
Snippet | Titanium metal–organic frameworks (Ti‐MOFs), as an appealing type of artificial photocatalyst, have shown great potential in the field of solar energy... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Catalytic activity Chemistry Composite materials covalent connecting junctions covalent organic frameworks Energy conversion Evolution hybrid materials Hydrogen evolution Hydrogen production Metal-organic frameworks Multivariate analysis multivariate Ti-MOFs Photocatalysis Photocatalysts Photovoltaic cells Solar energy Solar energy conversion Titanium Titanium dioxide |
Title | Enhancing Photocatalytic Hydrogen Production via the Construction of Robust Multivariate Ti‐MOF/COF Composites |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fange.202114071 https://www.proquest.com/docview/2618159880 |
Volume | 134 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6iD_riXZzOkQfBp2xZjGn7uFsdghdkg72V3KqitMNtgj75E_yN_hJP2nVTQQR9LD0pac4l3wk530Ho0AaeBNwKjmS8mHDFKfF9y4gxVCrhwY4gXXHy-YXo9vnZ4GTwqYo_54eYHbg5z8jitXNwqUa1OWmou3sP-R0kMC4ngSBcPxaOPL99PeePEiwn26OcEx8SjYK1kbLa1-Ffd6U51PwMWLMdJ1xDsphrftHkvjoZq6p--Ubj-J-fWUerUziKG7n9bKAFm2yi5VbRBW4LDTvJraPkSG7w1W06TrPjnmeQxt1n85iC-eGrnDQWFIyf7iQGRIldG9CCmBanMb5O1WQ0xlm17xNk5wBwce_u_fXt_DKstS5D7MKSuz5mR9uoH3Z6rS6Zdmkg2k2YaOkZ_0RLYblQNmbGCsl9HmhIlgw9Zp7xKJgDuLqlisYcBKmB18YwHWgARDtoMUkTu4uwF2gVWO4LCDzcKGdfSsVSSKG1bxUvIVJoKdJTCnPXSeMhysmXWeTWMZqtYwkdzeSHOXnHj5LlQunR1IlHESSXPqA9iHAlxDLt_fKVqHFx2pk97f1l0D5aYa7AgtZJ3SujRdCVPQDYM1YVtNRotpthJTPxD62X_dA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB619EAvPEorwqPsoVJPS5btsraPKCRNKQkIBYmbtS8XBLIRCUhw4ifwG_klzNhxUpBQpXK0vGutdx77zWrmG4BvIYkM4lY0JB9lXFkleBwHyb0XxuoITwRDxcm9vu4eq72T7TqbkGphKn6IyYUbWUbpr8nA6UK6OWUNpeR7DPAwgqGg5D18UIg2KP7aPZoySGlZ0e0JpXiMoUbN2yhk8_n85-fSFGz-DVnLM6czD7ZebZVqcr55PbKb7u4FkeObfmcB5saIlO1UKrQI70L-CWZbdSO4Jbhs56fEypH_YYenxagob3xucTTr3vqrAjWQHVa8sShjdnNmGIJKRp1Aa25aVmTsqLDXwxErC35vMEBHjMsGZ4_3D72DTrN10GHkmSiDLAw_w3GnPWh1-bhRA3e0YO5M5ONtZ3RQ2oZM-qCNilXiMF7y4oeMfCRQI9Dag7AiUzhQeHztvXSJQ0z0BWbyIg_LwKLE2SSoWKPvUd6SilmbGW20c3GwqgG8FlPqxizm1EzjIq34l2VK-5hO9rEB3yfjLyv-jldHrtVST8d2PEwxvowR8KGTa4AsxfePr6Q7_Z_tydPK_0zagNnuoLef7v_q_16Fj5LqLcQW34rWYAblFtYRBY3s11LPnwCRDQCM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB6VIAGX8qxIG2APSJyWLNtlbR-jNCblESIEEjdrXwbUyo6agJSe-hP6G_tLOmvHCSAhJDhanrXWO4_9ZrXzDcCuiwKFuBUdyQYpFVowGoaOU2uZ0jLAHUH54uSznuxeiePrw-tHVfwlP8T0wM17RhGvvYMPbNqckYb6u_eY32EC43OSOZgXEuGEh0UXMwIpyUu2PSYEDTHTqGgbGW8-Hf90W5phzceItdhy4mVQ1WTLmyY_9u9Het_8fsbj-J6_WYGPEzxKWqUBrcIHl63BYrtqA7cOg0526zk5shvSv81HeXHeM0Zp0h3bXznaH-mXrLGoYfJwpwhCSuL7gFbMtCRPyUWu74cjUpT7PmB6jgiXXN79-_P37Dxuts9j4uOSvz_mhhtwFXcu2106adNAjZ8wNSqw4aFR0gmpXcqtk0qEIjKYLVn2lQc2YGgP6OuOaZYKFGQWX1vLTWQQEX2CWpZnbhNIEBkdORFKjDzCam9gWqdKKmlM6LSoA620lJgJh7lvpfEzKdmXeeLXMZmuYx32pvKDkr3jRclGpfRk4sXDBLPLEOEehrg68EJ7r3wlafWOOtOnz28ZtAML_W9xcvq9d_IFlrgvtmAH9CBoQA3V5rYQAo30dmHl_wGRaf8s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Photocatalytic+Hydrogen+Production+via+the+Construction+of+Robust+Multivariate+Ti%E2%80%90MOF%2FCOF+Composites&rft.jtitle=Angewandte+Chemie&rft.au=Cheng%E2%80%90Xia+Chen&rft.au=Yang%E2%80%90Yang+Xiong&rft.au=Zhong%2C+Xin&rft.au=Lan%2C+Pui+Ching&rft.date=2022-01-17&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0044-8249&rft.eissn=1521-3757&rft.volume=134&rft.issue=3&rft_id=info:doi/10.1002%2Fange.202114071&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-8249&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-8249&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-8249&client=summon |