Structural and Electrochemical Investigation of Anode‐Supported Proton‐Conducting Solid Oxide Fuel Cell Fabricated by the Freeze Casting Process
ABSTRACT Hierarchically oriented macroporous NiO–BaZr0.1Ce0.7Y0.2O3−δ (BZCY7) anode‐supporting layer (ASL) was developed using the freeze casting technique. The resulting freeze‐cast structure was analyzed through scanning electron microscopy and X‐ray computed tomography. A thin layer of BZCY7 was...
Saved in:
Published in | Fuel cells (Weinheim an der Bergstrasse, Germany) Vol. 24; no. 4 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
Hierarchically oriented macroporous NiO–BaZr0.1Ce0.7Y0.2O3−δ (BZCY7) anode‐supporting layer (ASL) was developed using the freeze casting technique. The resulting freeze‐cast structure was analyzed through scanning electron microscopy and X‐ray computed tomography. A thin layer of BZCY7 was utilized as a proton‐conducting electrolyte, whereas La1.9Sr0.1Ni0.7Cu0.3O3−δ –gadolinium‐doped ceria 10% Gd (LSNC–GDC10) was employed and evaluated as cathode layer. The performance of the cell was assessed by means of electrochemical impedance spectroscopy and I–V–P curves at various temperatures. Furthermore, as a point of comparison, a cell with an ASL was prepared using the dry pressing method, incorporating 20 wt.% graphite as a pore‐forming agent. The freeze‐cast anode‐supported cell demonstrated a polarization resistance of 1.45 Ω cm2 at 550°C and 0.29 Ω cm2 at 750°C. Maximum achieved power densities were 0.189 and 0.429 W cm−2 at 550 and 750°C, respectively. For the cell fabricated by the dry pressing method, the maximum power densities were 0.158 and 0.397 W cm−2 at 550 and 750°C, respectively. Additionally, the tortuosity factor of the anode layer and the gas diffusion streamline in the direction of solidification were determined by using 3D X‐ray tomography imaging and subsequent image processing. |
---|---|
AbstractList | Hierarchically oriented macroporous NiO–BaZr0.1Ce0.7Y0.2O3−δ (BZCY7) anode‐supporting layer (ASL) was developed using the freeze casting technique. The resulting freeze‐cast structure was analyzed through scanning electron microscopy and X‐ray computed tomography. A thin layer of BZCY7 was utilized as a proton‐conducting electrolyte, whereas La1.9Sr0.1Ni0.7Cu0.3O3−δ –gadolinium‐doped ceria 10% Gd (LSNC–GDC10) was employed and evaluated as cathode layer. The performance of the cell was assessed by means of electrochemical impedance spectroscopy and I–V–P curves at various temperatures. Furthermore, as a point of comparison, a cell with an ASL was prepared using the dry pressing method, incorporating 20 wt.% graphite as a pore‐forming agent. The freeze‐cast anode‐supported cell demonstrated a polarization resistance of 1.45 Ω cm2 at 550°C and 0.29 Ω cm2 at 750°C. Maximum achieved power densities were 0.189 and 0.429 W cm−2 at 550 and 750°C, respectively. For the cell fabricated by the dry pressing method, the maximum power densities were 0.158 and 0.397 W cm−2 at 550 and 750°C, respectively. Additionally, the tortuosity factor of the anode layer and the gas diffusion streamline in the direction of solidification were determined by using 3D X‐ray tomography imaging and subsequent image processing. ABSTRACT Hierarchically oriented macroporous NiO–BaZr0.1Ce0.7Y0.2O3−δ (BZCY7) anode‐supporting layer (ASL) was developed using the freeze casting technique. The resulting freeze‐cast structure was analyzed through scanning electron microscopy and X‐ray computed tomography. A thin layer of BZCY7 was utilized as a proton‐conducting electrolyte, whereas La1.9Sr0.1Ni0.7Cu0.3O3−δ –gadolinium‐doped ceria 10% Gd (LSNC–GDC10) was employed and evaluated as cathode layer. The performance of the cell was assessed by means of electrochemical impedance spectroscopy and I–V–P curves at various temperatures. Furthermore, as a point of comparison, a cell with an ASL was prepared using the dry pressing method, incorporating 20 wt.% graphite as a pore‐forming agent. The freeze‐cast anode‐supported cell demonstrated a polarization resistance of 1.45 Ω cm2 at 550°C and 0.29 Ω cm2 at 750°C. Maximum achieved power densities were 0.189 and 0.429 W cm−2 at 550 and 750°C, respectively. For the cell fabricated by the dry pressing method, the maximum power densities were 0.158 and 0.397 W cm−2 at 550 and 750°C, respectively. Additionally, the tortuosity factor of the anode layer and the gas diffusion streamline in the direction of solidification were determined by using 3D X‐ray tomography imaging and subsequent image processing. ABSTRACT Hierarchically oriented macroporous NiO–BaZr 0.1 Ce 0.7 Y 0.2 O 3− δ (BZCY7) anode‐supporting layer (ASL) was developed using the freeze casting technique. The resulting freeze‐cast structure was analyzed through scanning electron microscopy and X‐ray computed tomography. A thin layer of BZCY7 was utilized as a proton‐conducting electrolyte, whereas La 1.9 Sr 0.1 Ni 0.7 Cu 0.3 O 3− δ –gadolinium‐doped ceria 10% Gd (LSNC–GDC10) was employed and evaluated as cathode layer. The performance of the cell was assessed by means of electrochemical impedance spectroscopy and I–V–P curves at various temperatures. Furthermore, as a point of comparison, a cell with an ASL was prepared using the dry pressing method, incorporating 20 wt.% graphite as a pore‐forming agent. The freeze‐cast anode‐supported cell demonstrated a polarization resistance of 1.45 Ω cm 2 at 550°C and 0.29 Ω cm 2 at 750°C. Maximum achieved power densities were 0.189 and 0.429 W cm −2 at 550 and 750°C, respectively. For the cell fabricated by the dry pressing method, the maximum power densities were 0.158 and 0.397 W cm −2 at 550 and 750°C, respectively. Additionally, the tortuosity factor of the anode layer and the gas diffusion streamline in the direction of solidification were determined by using 3D X‐ray tomography imaging and subsequent image processing. |
Author | Karimi, Ali Aghaei, Hamed Masoumi, Hossein Paydar, Mohammad Hossein |
Author_xml | – sequence: 1 givenname: Ali surname: Karimi fullname: Karimi, Ali organization: Shiraz University – sequence: 2 givenname: Mohammad Hossein orcidid: 0000-0002-8434-8463 surname: Paydar fullname: Paydar, Mohammad Hossein email: paaydar@shirazu.ac.ir organization: Shiraz University – sequence: 3 givenname: Hamed surname: Aghaei fullname: Aghaei, Hamed organization: Shiraz University – sequence: 4 givenname: Hossein surname: Masoumi fullname: Masoumi, Hossein organization: Monash University |
BookMark | eNqFkM9OwkAQxjcGEwG9et7EMzi77fbPkTSgJCSYIOem3U6hpOzibqviyUfw4BP6JC5i8Ohpdma_3zeZr0c6Sisk5JrBkAHw27KVOOTAPdcAnJEuC5gYBJHwO6e3H1yQnrUbABZGkd8ln4vGtLJpTVbTTBV0XKNsjJZr3FbSzabqGW1TrbKm0orqko6ULvDr_WPR7nbaNFjQB6Mbrdwo0apwXpVa0YWuq4LOX6sC6aTFmiZY13SS5ca5HqB8T5u1-zOIb0iTzP5gzkqitZfkvMxqi1e_tU-Wk_Fjcj-Yze-myWg2kO5MGJQMBM95yRFiH3OvFAEPeYQRC0IehBiXMQgmgftCeNITfigKZKzIWSTAD7jXJzdH353RT627M93o1ii3MvUg5l4McRQ41fCokkZba7BMd6baZmafMkgPyaeH5NNT8g6Ij8BLVeP-H3U6WSbjP_YbpDiMDw |
Cites_doi | 10.1021/acs.energyfuels.2c00650 10.1016/j.rser.2015.05.069 10.1002/adma.200601366 10.3390/app6030075 10.1016/j.jpowsour.2009.10.018 10.1016/j.ijhydene.2017.08.105 10.1007/s12598-022-02257-x 10.1016/j.ijhydene.2018.09.008 10.1016/j.ceramint.2019.09.196 10.20517/energymater.2023.54 10.1007/s11665‐023‐08419‐x 10.1016/j.mtla.2018.07.005 10.1016/j.jpowsour.2008.09.120 10.1016/j.jpowsour.2010.10.084 10.1016/j.jpowsour.2017.04.010 10.1016/j.jpowsour.2014.10.190 10.1016/j.ceramint.2015.10.148 10.1016/j.jpowsour.2012.03.109 10.1021/am5003662 10.20517/energymater.2023.70 10.1016/j.jallcom.2022.165406 10.15826/elmattech.2022.1.006 10.1016/j.earscirev.2020.103439 10.1016/j.ijhydene.2015.05.056 10.3390/nano12071059 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH. |
DBID | AAYXX CITATION 7SP 8FD F28 FR3 L7M |
DOI | 10.1002/fuce.202300200 |
DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Electronics & Communications Abstracts |
DatabaseTitleList | Engineering Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1615-6854 |
EndPage | n/a |
ExternalDocumentID | 10_1002_fuce_202300200 FUCE202300200 |
Genre | article |
GrantInformation_xml | – fundername: Shiraz University funderid: ENG‐1397 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HVGLF HZ~ H~9 I-F IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ UB1 W8V W99 WBFHL WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT AAYXX CITATION 7SP 8FD F28 FR3 L7M |
ID | FETCH-LOGICAL-c2020-f1052b2f2e094eb3f562728e8167267e9f9051c024553c35475de11db18504623 |
IEDL.DBID | DR2 |
ISSN | 1615-6846 |
IngestDate | Thu Oct 10 22:18:21 EDT 2024 Wed Aug 14 12:31:12 EDT 2024 Sat Aug 24 00:55:25 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2020-f1052b2f2e094eb3f562728e8167267e9f9051c024553c35475de11db18504623 |
Notes | This research was funded by Shiraz University (Grant No. ENG–1397) and Shiraz University's Central Lab. Funding |
ORCID | 0000-0002-8434-8463 |
PQID | 3092390986 |
PQPubID | 866399 |
PageCount | 8 |
ParticipantIDs | proquest_journals_3092390986 crossref_primary_10_1002_fuce_202300200 wiley_primary_10_1002_fuce_202300200_FUCE202300200 |
PublicationCentury | 2000 |
PublicationDate | August 2024 2024-08-00 20240801 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: August 2024 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Fuel cells (Weinheim an der Bergstrasse, Germany) |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 8 2017; 42 2019; 5 2015; 51 2006; 18 2022; 916 2017; 353 2011; 196 2018; 43 2023; 42 2016; 6 2023 2021; 212 2018; 1 2015; 40 2015; 274 2022; 12 2016; 42 2022; 36 2020; 46 2010; 195 2022; 1 2024; 4 2009; 186 2012; 213 2014; 6 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 Ahmad S. H. (e_1_2_7_14_1) 2019; 5 e_1_2_7_25_1 e_1_2_7_24_1 e_1_2_7_23_1 e_1_2_7_21_1 e_1_2_7_20_1 Shirani‐Faradonbeh H. (e_1_2_7_22_1) 2021; 8 |
References_xml | – volume: 46 start-page: 2128 year: 2020 end-page: 2138 article-title: Investigation on Flash Sintering of BaZr Ce Y O Compound; Using Nickel Wire as Electrode Material publication-title: Ceramics International – volume: 36 start-page: 7219 year: 2022 end-page: 7244 article-title: Factors Constituting Proton Trapping in Factors Constituting Proton Trapping in BaCeO and BaZrO Perovskite Proton Conductors in Fuel Cell Technology: A Review publication-title: Energy & Fuels – volume: 42 start-page: 2907 year: 2016 end-page: 2925 article-title: A Review of Fabrication Strategies and Applications of Porous Ceramics Prepared by Freeze‐Casting Method publication-title: Ceramics International – volume: 196 start-page: 2640 year: 2011 end-page: 2643 article-title: Impact of Pore Microstructure Evolution on Polarization Resistance of Ni‐Yttria‐Stabilized Zirconia Fuel Cell Anodes publication-title: Journal of Power Sources – volume: 5 start-page: 268 year: 2019 end-page: 273 article-title: Pore Former Addition in the Preparation of Highly Porous Anode Using Phase‐Inversion Technique for Solid Oxide Fuel Cell publication-title: Journal of Membrane Science and Research – volume: 42 start-page: 2250 year: 2023 end-page: 2260 article-title: Functional Layer Engineering to Improve Performance of Protonic Ceramic Fuel Cells publication-title: Rare Metals – volume: 42 start-page: 26020 year: 2017 end-page: 26036 article-title: Novel Materials for Solid Oxide Fuel Cell Technologies: A Literature Review publication-title: International Journal of Hydrogen Energy – volume: 1 issue: 1 year: 2022 article-title: Solid Oxide Fuel Cells with a Thin Film Electrolyte: A Review on Manufacturing Technologies and Electrochemical Characteristicses publication-title: Electrochemical Materials and Technologies – volume: 6 start-page: 5130 year: 2014 end-page: 5136 article-title: Hierarchically Oriented Macroporous Anode‐Supported Solid Oxide Fuel Cell with Thin Ceria Electrolyte Film publication-title: ACS Applied Materials & Interfaces – volume: 195 start-page: 1845 year: 2010 end-page: 1848 article-title: High‐Performance Anode‐Supported Solid Oxide Fuel Cells Based on Ba(Zr Ce Y )O (BZCY) Fabricated by a Modified Co‐Pressing Process publication-title: Journal of Power Sources – volume: 213 start-page: 93 year: 2012 end-page: 99 article-title: Novel Functionally Graded Acicular Electrode for Solid Oxide Cells Fabricated by the Freeze‐Tape‐Casting Process publication-title: Journal of Power Sources – volume: 4 year: 2024 article-title: Recent Advancement of Solid Oxide Fuel Cells Towards Semiconductor Membrane Fuel Cells publication-title: Energy Mater – volume: 12 start-page: 1059 year: 2022 article-title: Classification of Solid Oxide Fuel Cells publication-title: Nanomaterials – volume: 40 start-page: 11651 issue: 35 year: 2015 end-page: 11658 article-title: Evaluation of BaZr Ce Y O Electrolyte Prepared by Carbonate Precipitation for a Mixed Ion‐Conducting SOFC publication-title: International Journal of Hydrogen Energy – volume: 43 start-page: 19749 year: 2018 end-page: 19756 article-title: Electrochemical Performance of Nanostructured LNF Infiltrated Onto LNO Cathode for BaZr Ce Y O –Based Solid Oxide Fuel Cell publication-title: International Journal of Hydrogen Energy – volume: 186 start-page: 446 year: 2009 end-page: 449 article-title: In Situ Screen‐Printed BaZr Ce Y O Electrolyte‐Based Protonic Ceramic Membrane Fuel Cells With Layered SmBaCo O Cathode publication-title: Journal of Power Sources – volume: 51 start-page: 1 year: 2015 end-page: 8 article-title: A Review on the Selection of Anode Materials for Solid‐Oxide Fuel Cells publication-title: Renewable and Sustainable Energy Reviews – volume: 18 start-page: 3318 year: 2006 end-page: 3320 article-title: Ba(Zr Ce Y )O as an Electrolyte for Low‐Temperature Solid‐Oxide Fuel Cells publication-title: Advanced Materials – volume: 8 start-page: 69 year: 2021 end-page: 76 article-title: Synthesis and Investigation on Microstructure and Electrical Conductivity of Ruddlesden–Popper Phase, La Sr Ni Cu O (LSNC), as Cathode Material for Intermediate Temperature Solid Oxide Fuel Cells publication-title: Hydrogen, Fuel Cell & Energy Storage – volume: 6 start-page: 75 year: 2016 article-title: A Brief Description of High Temperature Solid Oxide Fuel Cell's Operation, Materials, Design, Fabrication Technologies and Performance publication-title: Applied Sciences – volume: 916 year: 2022 article-title: A High‐Performance Planar Anode‐Supported Solid Oxide Fuel Cell With Hierarchical Porous Structure Through Slurry‐Based Three‐Dimensional Printing publication-title: Journal of Alloys and Compounds – year: 2023 article-title: Investigation on the Mechanical Behavior and Fracture Mode of Ice‐Templated NiO‐YSZ Anode Electrode for Solid Oxide Fuel Cells Application publication-title: Journal of Materials Engineering and Performance – volume: 353 start-page: 254 year: 2017 end-page: 259 article-title: Enhanced Performance of Solid Oxide Fuel Cells Using BaZr Ce Y O Thin Films publication-title: Journal of Power Sources – volume: 274 start-page: 1114 year: 2015 end-page: 1117 article-title: Facile One‐Step Forming of NiO and Yttrium‐Stabilized Zirconia Composite Anodes With Straight Open Pores for Planar Solid Oxide Fuel Cell Using Phase‐Inversion Tape Casting Method publication-title: Journal of Power Sources – volume: 212 year: 2021 article-title: Tortuosity of Porous Media: Image Analysis and Physical Simulation publication-title: Earth‐Science Reviews – volume: 4 year: 2024 article-title: Review on Fe‐Based Double Perovskite Cathode Materials for Solid Oxide Fuel Cells publication-title: Energy Mater – volume: 1 start-page: 198 year: 2018 end-page: 210 article-title: Freeze‐Casting for the Fabrication of Solid Oxide Fuel Cells: A Review publication-title: Materialia – ident: e_1_2_7_6_1 doi: 10.1021/acs.energyfuels.2c00650 – ident: e_1_2_7_2_1 doi: 10.1016/j.rser.2015.05.069 – ident: e_1_2_7_8_1 doi: 10.1002/adma.200601366 – ident: e_1_2_7_10_1 doi: 10.3390/app6030075 – volume: 8 start-page: 69 year: 2021 ident: e_1_2_7_22_1 article-title: Synthesis and Investigation on Microstructure and Electrical Conductivity of Ruddlesden–Popper Phase, La1.9Sr0.1Ni0.7Cu0.3O4 (LSNC), as Cathode Material for Intermediate Temperature Solid Oxide Fuel Cells publication-title: Hydrogen, Fuel Cell & Energy Storage contributor: fullname: Shirani‐Faradonbeh H. – ident: e_1_2_7_26_1 doi: 10.1016/j.jpowsour.2009.10.018 – ident: e_1_2_7_3_1 doi: 10.1016/j.ijhydene.2017.08.105 – ident: e_1_2_7_13_1 doi: 10.1007/s12598-022-02257-x – ident: e_1_2_7_25_1 doi: 10.1016/j.ijhydene.2018.09.008 – ident: e_1_2_7_19_1 doi: 10.1016/j.ceramint.2019.09.196 – ident: e_1_2_7_9_1 doi: 10.20517/energymater.2023.54 – ident: e_1_2_7_20_1 doi: 10.1007/s11665‐023‐08419‐x – ident: e_1_2_7_18_1 doi: 10.1016/j.mtla.2018.07.005 – ident: e_1_2_7_21_1 doi: 10.1016/j.jpowsour.2008.09.120 – ident: e_1_2_7_28_1 doi: 10.1016/j.jpowsour.2010.10.084 – ident: e_1_2_7_7_1 doi: 10.1016/j.jpowsour.2017.04.010 – volume: 5 start-page: 268 year: 2019 ident: e_1_2_7_14_1 article-title: Pore Former Addition in the Preparation of Highly Porous Anode Using Phase‐Inversion Technique for Solid Oxide Fuel Cell publication-title: Journal of Membrane Science and Research contributor: fullname: Ahmad S. H. – ident: e_1_2_7_4_1 doi: 10.1016/j.jpowsour.2014.10.190 – ident: e_1_2_7_17_1 doi: 10.1016/j.ceramint.2015.10.148 – ident: e_1_2_7_15_1 doi: 10.1016/j.jpowsour.2012.03.109 – ident: e_1_2_7_23_1 doi: 10.1021/am5003662 – ident: e_1_2_7_12_1 doi: 10.20517/energymater.2023.70 – ident: e_1_2_7_16_1 doi: 10.1016/j.jallcom.2022.165406 – ident: e_1_2_7_5_1 doi: 10.15826/elmattech.2022.1.006 – ident: e_1_2_7_27_1 doi: 10.1016/j.earscirev.2020.103439 – ident: e_1_2_7_24_1 doi: 10.1016/j.ijhydene.2015.05.056 – ident: e_1_2_7_11_1 doi: 10.3390/nano12071059 |
SSID | ssj0017884 |
Score | 2.4203923 |
Snippet | ABSTRACT
Hierarchically oriented macroporous NiO–BaZr0.1Ce0.7Y0.2O3−δ (BZCY7) anode‐supporting layer (ASL) was developed using the freeze casting technique.... ABSTRACT Hierarchically oriented macroporous NiO–BaZr 0.1 Ce 0.7 Y 0.2 O 3− δ (BZCY7) anode‐supporting layer (ASL) was developed using the freeze casting... Hierarchically oriented macroporous NiO–BaZr0.1Ce0.7Y0.2O3−δ (BZCY7) anode‐supporting layer (ASL) was developed using the freeze casting technique. The... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Anodic polarization Cerium oxides Computed tomography Diffusion layers Electrochemical impedance spectroscopy Electrode polarization freeze casting Gadolinium Gaseous diffusion Image processing Maximum power power density Pressing proton conductor Protons solid oxide fuel cell Solid oxide fuel cells Solidification Tomography Tortuosity |
Title | Structural and Electrochemical Investigation of Anode‐Supported Proton‐Conducting Solid Oxide Fuel Cell Fabricated by the Freeze Casting Process |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffuce.202300200 https://www.proquest.com/docview/3092390986 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwELZQJxj4RxQK8oDElDZ22jgZq9CoYgBEqdQtsmNHqqgS1B8JOvEIDDwhT8LZSdqUBQkyJVHOin3n3Hfx-TuErqTyY6fjgPFKwq12nFCLC2FbsS0ZxCOME2GyfO_c_rB9O-qMKrv4c36I1Q83PTPM91pPcC5mrTVpaAJdb-ri3xrx6KCdOEzndN08rvijCMR3ZlkZ3LblgqctWRtt2toU3_RKa6hZBazG44R7iJfvmieaPDcXc9GMlz9oHP_TmX20W8BR3M3t5wBtqfQQ7VRICo_Q58BQzGp6DsxTiXt54Zy4YBrAFaaOLMVZgrtpJtXX-4cuGKpTeSV-mGYAMeFWkKWaXxbaxYNsMpb4_nUsFQ4XaoIDNZngkAtTtwiExBsGcIrDqVJLhQM-M2LFxoZjNAx7T0HfKmo5WDHVEWoCOI4KmlAF8SQE8AngLkY95RGXUZcpP9FEYbFeCO44YD1t1pGKECkAT-j9s84JqqVZqk4R1pAWHpIQGsUQHRLhEo9x6TnClwyOOroudRm95JQdUU7OTCM9ztFqnOuoUao6KqbuLHJswLy-7XtuHVGjs19aicJh0Ftdnf1F6Bxtw3k7TyxsoBroVV0A2JmLS2PQ36Vi-BY |
link.rule.ids | 315,783,787,1378,27938,27939,46308,46732 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQDMDAG1GeHpCY0iZOmseIQqMCpSDaSmxRHDtSRZWgtkjAxE9g4BfyS7hzkj5YkCBbopwV--7i7-zzd4ScCunFZt0E4xVGpFlxwrSIc12LdeFAPOJEBldZvm272bOuHuplNiGehcn5ISYLbugZ6n-NDo4L0rUpa2gCfa9i9W-EPBC1L4HPm1jE4OJ-wiBlQISnNpZh4tZsmGtL3kad1ebl5-elKdichaxqzgnWCS-_Nk81eaw-j3k1fvtB5Piv7myQtQKR0vPchDbJgky3yOoMT-E2-ewolllk6KBRKmgjr50TF2QDdIasI0tpltDzNBPy6_0Da4ZiNq-gd8MMUCY88rMUKWahXdrJBn1Bb1_6QtLgWQ6oLwcDGkRclS4CIf5KAZ_SYCjlm6R-NFJixdmGHdILGl2_qRXlHLSYYZCaAJRjnCVMQkgJMXwC0MthrnQN22G2I70EucJi3Auum2BAllMX0jAEB0iBR2jNXbKYZqncIxRRLbwkIDqKIUA0uG24TiRck3vCgatCzkplhk85a0eY8zOzEMc5nIxzhRyWug4L7x2Fpg6w19M9164QppT2Syth0PMbk7v9vwidkOVm96YVti7b1wdkBZ5beZ7hIVkEHcsjwD5jfqys-xslZ_ww |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsNAFB2kgujCt1itOgvBVdpkkuaxLGlDfVCLtdBdyGQmUCxJ6QO0Kz_BhV_ol3hn8mjrRtDsEnJDZu6dzDmZO-cidM24E-p1HYKXaYFihBFRAkpVJVSZBXzECjQqs3w7Zrtv3A3qg5Vd_Kk-RPHDTYwM-b0WA3zMotpSNDSCpldF8W-BeIC0bxqmroqkruZTISClAcGT68owbysmTLW5bKNKauv269PSEmuuIlY55Xh7KMhfNs00eanOZ7QaLn7oOP6nNftoN8OjuJEG0AHa4PEh2llRKTxCnz2pMSv0OXAQM9xKK-eEmdQAXpHqSGKcRLgRJ4x_vX-IiqEil5fh7iQBjAmX3CQWArPwXNxLRkOGH1-HjGNvzkfY5aMR9gIqCxeBEX3DgE6xN-F8wbEbTKVZtrPhGPW91rPbVrJiDkpIBEWNAMgRSiLCgVACg48AeFnE5rZmWsS0uBMJpbBQrATXdQgfw6ozrmmMAqAQG2j1E1SKk5ifIiwwLdzEgBuFQA81amq2FTBbpw6z4Cijm9yX_jjV7PBTdWbii372i34uo0ruaj8bu1NfVwH0Oqpjm2VEpM9-eYrv9d1WcXb2F6MrtNVtev7Dbef-HG0D6DPSJMMKKoGL-QUAnxm9lLH9DTL0-t4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+and+Electrochemical+Investigation+of+Anode%E2%80%90Supported+Proton%E2%80%90Conducting+Solid+Oxide+Fuel+Cell+Fabricated+by+the+Freeze+Casting+Process&rft.jtitle=Fuel+cells+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Karimi%2C+Ali&rft.au=Mohammad+Hossein+Paydar&rft.au=Aghaei%2C+Hamed&rft.au=Masoumi%2C+Hossein&rft.date=2024-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1615-6846&rft.eissn=1615-6854&rft.volume=24&rft.issue=4&rft_id=info:doi/10.1002%2Ffuce.202300200&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-6846&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-6846&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-6846&client=summon |