Structural and Electrochemical Investigation of Anode‐Supported Proton‐Conducting Solid Oxide Fuel Cell Fabricated by the Freeze Casting Process

ABSTRACT Hierarchically oriented macroporous NiO–BaZr0.1Ce0.7Y0.2O3−δ (BZCY7) anode‐supporting layer (ASL) was developed using the freeze casting technique. The resulting freeze‐cast structure was analyzed through scanning electron microscopy and X‐ray computed tomography. A thin layer of BZCY7 was...

Full description

Saved in:
Bibliographic Details
Published inFuel cells (Weinheim an der Bergstrasse, Germany) Vol. 24; no. 4
Main Authors Karimi, Ali, Paydar, Mohammad Hossein, Aghaei, Hamed, Masoumi, Hossein
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT Hierarchically oriented macroporous NiO–BaZr0.1Ce0.7Y0.2O3−δ (BZCY7) anode‐supporting layer (ASL) was developed using the freeze casting technique. The resulting freeze‐cast structure was analyzed through scanning electron microscopy and X‐ray computed tomography. A thin layer of BZCY7 was utilized as a proton‐conducting electrolyte, whereas La1.9Sr0.1Ni0.7Cu0.3O3−δ –gadolinium‐doped ceria 10% Gd (LSNC–GDC10) was employed and evaluated as cathode layer. The performance of the cell was assessed by means of electrochemical impedance spectroscopy and I–V–P curves at various temperatures. Furthermore, as a point of comparison, a cell with an ASL was prepared using the dry pressing method, incorporating 20 wt.% graphite as a pore‐forming agent. The freeze‐cast anode‐supported cell demonstrated a polarization resistance of 1.45 Ω cm2 at 550°C and 0.29 Ω cm2 at 750°C. Maximum achieved power densities were 0.189 and 0.429 W cm−2 at 550 and 750°C, respectively. For the cell fabricated by the dry pressing method, the maximum power densities were 0.158 and 0.397 W cm−2 at 550 and 750°C, respectively. Additionally, the tortuosity factor of the anode layer and the gas diffusion streamline in the direction of solidification were determined by using 3D X‐ray tomography imaging and subsequent image processing.
AbstractList Hierarchically oriented macroporous NiO–BaZr0.1Ce0.7Y0.2O3−δ (BZCY7) anode‐supporting layer (ASL) was developed using the freeze casting technique. The resulting freeze‐cast structure was analyzed through scanning electron microscopy and X‐ray computed tomography. A thin layer of BZCY7 was utilized as a proton‐conducting electrolyte, whereas La1.9Sr0.1Ni0.7Cu0.3O3−δ –gadolinium‐doped ceria 10% Gd (LSNC–GDC10) was employed and evaluated as cathode layer. The performance of the cell was assessed by means of electrochemical impedance spectroscopy and I–V–P curves at various temperatures. Furthermore, as a point of comparison, a cell with an ASL was prepared using the dry pressing method, incorporating 20 wt.% graphite as a pore‐forming agent. The freeze‐cast anode‐supported cell demonstrated a polarization resistance of 1.45 Ω cm2 at 550°C and 0.29 Ω cm2 at 750°C. Maximum achieved power densities were 0.189 and 0.429 W cm−2 at 550 and 750°C, respectively. For the cell fabricated by the dry pressing method, the maximum power densities were 0.158 and 0.397 W cm−2 at 550 and 750°C, respectively. Additionally, the tortuosity factor of the anode layer and the gas diffusion streamline in the direction of solidification were determined by using 3D X‐ray tomography imaging and subsequent image processing.
ABSTRACT Hierarchically oriented macroporous NiO–BaZr0.1Ce0.7Y0.2O3−δ (BZCY7) anode‐supporting layer (ASL) was developed using the freeze casting technique. The resulting freeze‐cast structure was analyzed through scanning electron microscopy and X‐ray computed tomography. A thin layer of BZCY7 was utilized as a proton‐conducting electrolyte, whereas La1.9Sr0.1Ni0.7Cu0.3O3−δ –gadolinium‐doped ceria 10% Gd (LSNC–GDC10) was employed and evaluated as cathode layer. The performance of the cell was assessed by means of electrochemical impedance spectroscopy and I–V–P curves at various temperatures. Furthermore, as a point of comparison, a cell with an ASL was prepared using the dry pressing method, incorporating 20 wt.% graphite as a pore‐forming agent. The freeze‐cast anode‐supported cell demonstrated a polarization resistance of 1.45 Ω cm2 at 550°C and 0.29 Ω cm2 at 750°C. Maximum achieved power densities were 0.189 and 0.429 W cm−2 at 550 and 750°C, respectively. For the cell fabricated by the dry pressing method, the maximum power densities were 0.158 and 0.397 W cm−2 at 550 and 750°C, respectively. Additionally, the tortuosity factor of the anode layer and the gas diffusion streamline in the direction of solidification were determined by using 3D X‐ray tomography imaging and subsequent image processing.
ABSTRACT Hierarchically oriented macroporous NiO–BaZr 0.1 Ce 0.7 Y 0.2 O 3− δ (BZCY7) anode‐supporting layer (ASL) was developed using the freeze casting technique. The resulting freeze‐cast structure was analyzed through scanning electron microscopy and X‐ray computed tomography. A thin layer of BZCY7 was utilized as a proton‐conducting electrolyte, whereas La 1.9 Sr 0.1 Ni 0.7 Cu 0.3 O 3− δ –gadolinium‐doped ceria 10% Gd (LSNC–GDC10) was employed and evaluated as cathode layer. The performance of the cell was assessed by means of electrochemical impedance spectroscopy and I–V–P curves at various temperatures. Furthermore, as a point of comparison, a cell with an ASL was prepared using the dry pressing method, incorporating 20 wt.% graphite as a pore‐forming agent. The freeze‐cast anode‐supported cell demonstrated a polarization resistance of 1.45 Ω cm 2 at 550°C and 0.29 Ω cm 2 at 750°C. Maximum achieved power densities were 0.189 and 0.429 W cm −2 at 550 and 750°C, respectively. For the cell fabricated by the dry pressing method, the maximum power densities were 0.158 and 0.397 W cm −2 at 550 and 750°C, respectively. Additionally, the tortuosity factor of the anode layer and the gas diffusion streamline in the direction of solidification were determined by using 3D X‐ray tomography imaging and subsequent image processing.
Author Karimi, Ali
Aghaei, Hamed
Masoumi, Hossein
Paydar, Mohammad Hossein
Author_xml – sequence: 1
  givenname: Ali
  surname: Karimi
  fullname: Karimi, Ali
  organization: Shiraz University
– sequence: 2
  givenname: Mohammad Hossein
  orcidid: 0000-0002-8434-8463
  surname: Paydar
  fullname: Paydar, Mohammad Hossein
  email: paaydar@shirazu.ac.ir
  organization: Shiraz University
– sequence: 3
  givenname: Hamed
  surname: Aghaei
  fullname: Aghaei, Hamed
  organization: Shiraz University
– sequence: 4
  givenname: Hossein
  surname: Masoumi
  fullname: Masoumi, Hossein
  organization: Monash University
BookMark eNqFkM9OwkAQxjcGEwG9et7EMzi77fbPkTSgJCSYIOem3U6hpOzibqviyUfw4BP6JC5i8Ohpdma_3zeZr0c6Sisk5JrBkAHw27KVOOTAPdcAnJEuC5gYBJHwO6e3H1yQnrUbABZGkd8ln4vGtLJpTVbTTBV0XKNsjJZr3FbSzabqGW1TrbKm0orqko6ULvDr_WPR7nbaNFjQB6Mbrdwo0apwXpVa0YWuq4LOX6sC6aTFmiZY13SS5ca5HqB8T5u1-zOIb0iTzP5gzkqitZfkvMxqi1e_tU-Wk_Fjcj-Yze-myWg2kO5MGJQMBM95yRFiH3OvFAEPeYQRC0IehBiXMQgmgftCeNITfigKZKzIWSTAD7jXJzdH353RT627M93o1ii3MvUg5l4McRQ41fCokkZba7BMd6baZmafMkgPyaeH5NNT8g6Ij8BLVeP-H3U6WSbjP_YbpDiMDw
Cites_doi 10.1021/acs.energyfuels.2c00650
10.1016/j.rser.2015.05.069
10.1002/adma.200601366
10.3390/app6030075
10.1016/j.jpowsour.2009.10.018
10.1016/j.ijhydene.2017.08.105
10.1007/s12598-022-02257-x
10.1016/j.ijhydene.2018.09.008
10.1016/j.ceramint.2019.09.196
10.20517/energymater.2023.54
10.1007/s11665‐023‐08419‐x
10.1016/j.mtla.2018.07.005
10.1016/j.jpowsour.2008.09.120
10.1016/j.jpowsour.2010.10.084
10.1016/j.jpowsour.2017.04.010
10.1016/j.jpowsour.2014.10.190
10.1016/j.ceramint.2015.10.148
10.1016/j.jpowsour.2012.03.109
10.1021/am5003662
10.20517/energymater.2023.70
10.1016/j.jallcom.2022.165406
10.15826/elmattech.2022.1.006
10.1016/j.earscirev.2020.103439
10.1016/j.ijhydene.2015.05.056
10.3390/nano12071059
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH.
DBID AAYXX
CITATION
7SP
8FD
F28
FR3
L7M
DOI 10.1002/fuce.202300200
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Electronics & Communications Abstracts
DatabaseTitleList Engineering Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1615-6854
EndPage n/a
ExternalDocumentID 10_1002_fuce_202300200
FUCE202300200
Genre article
GrantInformation_xml – fundername: Shiraz University
  funderid: ENG‐1397
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HVGLF
HZ~
H~9
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
UB1
W8V
W99
WBFHL
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAYXX
CITATION
7SP
8FD
F28
FR3
L7M
ID FETCH-LOGICAL-c2020-f1052b2f2e094eb3f562728e8167267e9f9051c024553c35475de11db18504623
IEDL.DBID DR2
ISSN 1615-6846
IngestDate Thu Oct 10 22:18:21 EDT 2024
Wed Aug 14 12:31:12 EDT 2024
Sat Aug 24 00:55:25 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2020-f1052b2f2e094eb3f562728e8167267e9f9051c024553c35475de11db18504623
Notes This research was funded by Shiraz University (Grant No. ENG–1397) and Shiraz University's Central Lab.
Funding
ORCID 0000-0002-8434-8463
PQID 3092390986
PQPubID 866399
PageCount 8
ParticipantIDs proquest_journals_3092390986
crossref_primary_10_1002_fuce_202300200
wiley_primary_10_1002_fuce_202300200_FUCE202300200
PublicationCentury 2000
PublicationDate August 2024
2024-08-00
20240801
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: August 2024
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Fuel cells (Weinheim an der Bergstrasse, Germany)
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 8
2017; 42
2019; 5
2015; 51
2006; 18
2022; 916
2017; 353
2011; 196
2018; 43
2023; 42
2016; 6
2023
2021; 212
2018; 1
2015; 40
2015; 274
2022; 12
2016; 42
2022; 36
2020; 46
2010; 195
2022; 1
2024; 4
2009; 186
2012; 213
2014; 6
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
Ahmad S. H. (e_1_2_7_14_1) 2019; 5
e_1_2_7_25_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_21_1
e_1_2_7_20_1
Shirani‐Faradonbeh H. (e_1_2_7_22_1) 2021; 8
References_xml – volume: 46
  start-page: 2128
  year: 2020
  end-page: 2138
  article-title: Investigation on Flash Sintering of BaZr Ce Y O Compound; Using Nickel Wire as Electrode Material
  publication-title: Ceramics International
– volume: 36
  start-page: 7219
  year: 2022
  end-page: 7244
  article-title: Factors Constituting Proton Trapping in Factors Constituting Proton Trapping in BaCeO and BaZrO Perovskite Proton Conductors in Fuel Cell Technology: A Review
  publication-title: Energy & Fuels
– volume: 42
  start-page: 2907
  year: 2016
  end-page: 2925
  article-title: A Review of Fabrication Strategies and Applications of Porous Ceramics Prepared by Freeze‐Casting Method
  publication-title: Ceramics International
– volume: 196
  start-page: 2640
  year: 2011
  end-page: 2643
  article-title: Impact of Pore Microstructure Evolution on Polarization Resistance of Ni‐Yttria‐Stabilized Zirconia Fuel Cell Anodes
  publication-title: Journal of Power Sources
– volume: 5
  start-page: 268
  year: 2019
  end-page: 273
  article-title: Pore Former Addition in the Preparation of Highly Porous Anode Using Phase‐Inversion Technique for Solid Oxide Fuel Cell
  publication-title: Journal of Membrane Science and Research
– volume: 42
  start-page: 2250
  year: 2023
  end-page: 2260
  article-title: Functional Layer Engineering to Improve Performance of Protonic Ceramic Fuel Cells
  publication-title: Rare Metals
– volume: 42
  start-page: 26020
  year: 2017
  end-page: 26036
  article-title: Novel Materials for Solid Oxide Fuel Cell Technologies: A Literature Review
  publication-title: International Journal of Hydrogen Energy
– volume: 1
  issue: 1
  year: 2022
  article-title: Solid Oxide Fuel Cells with a Thin Film Electrolyte: A Review on Manufacturing Technologies and Electrochemical Characteristicses
  publication-title: Electrochemical Materials and Technologies
– volume: 6
  start-page: 5130
  year: 2014
  end-page: 5136
  article-title: Hierarchically Oriented Macroporous Anode‐Supported Solid Oxide Fuel Cell with Thin Ceria Electrolyte Film
  publication-title: ACS Applied Materials & Interfaces
– volume: 195
  start-page: 1845
  year: 2010
  end-page: 1848
  article-title: High‐Performance Anode‐Supported Solid Oxide Fuel Cells Based on Ba(Zr Ce Y )O (BZCY) Fabricated by a Modified Co‐Pressing Process
  publication-title: Journal of Power Sources
– volume: 213
  start-page: 93
  year: 2012
  end-page: 99
  article-title: Novel Functionally Graded Acicular Electrode for Solid Oxide Cells Fabricated by the Freeze‐Tape‐Casting Process
  publication-title: Journal of Power Sources
– volume: 4
  year: 2024
  article-title: Recent Advancement of Solid Oxide Fuel Cells Towards Semiconductor Membrane Fuel Cells
  publication-title: Energy Mater
– volume: 12
  start-page: 1059
  year: 2022
  article-title: Classification of Solid Oxide Fuel Cells
  publication-title: Nanomaterials
– volume: 40
  start-page: 11651
  issue: 35
  year: 2015
  end-page: 11658
  article-title: Evaluation of BaZr Ce Y O Electrolyte Prepared by Carbonate Precipitation for a Mixed Ion‐Conducting SOFC
  publication-title: International Journal of Hydrogen Energy
– volume: 43
  start-page: 19749
  year: 2018
  end-page: 19756
  article-title: Electrochemical Performance of Nanostructured LNF Infiltrated Onto LNO Cathode for BaZr Ce Y O –Based Solid Oxide Fuel Cell
  publication-title: International Journal of Hydrogen Energy
– volume: 186
  start-page: 446
  year: 2009
  end-page: 449
  article-title: In Situ Screen‐Printed BaZr Ce Y O Electrolyte‐Based Protonic Ceramic Membrane Fuel Cells With Layered SmBaCo O Cathode
  publication-title: Journal of Power Sources
– volume: 51
  start-page: 1
  year: 2015
  end-page: 8
  article-title: A Review on the Selection of Anode Materials for Solid‐Oxide Fuel Cells
  publication-title: Renewable and Sustainable Energy Reviews
– volume: 18
  start-page: 3318
  year: 2006
  end-page: 3320
  article-title: Ba(Zr Ce Y )O as an Electrolyte for Low‐Temperature Solid‐Oxide Fuel Cells
  publication-title: Advanced Materials
– volume: 8
  start-page: 69
  year: 2021
  end-page: 76
  article-title: Synthesis and Investigation on Microstructure and Electrical Conductivity of Ruddlesden–Popper Phase, La Sr Ni Cu O (LSNC), as Cathode Material for Intermediate Temperature Solid Oxide Fuel Cells
  publication-title: Hydrogen, Fuel Cell & Energy Storage
– volume: 6
  start-page: 75
  year: 2016
  article-title: A Brief Description of High Temperature Solid Oxide Fuel Cell's Operation, Materials, Design, Fabrication Technologies and Performance
  publication-title: Applied Sciences
– volume: 916
  year: 2022
  article-title: A High‐Performance Planar Anode‐Supported Solid Oxide Fuel Cell With Hierarchical Porous Structure Through Slurry‐Based Three‐Dimensional Printing
  publication-title: Journal of Alloys and Compounds
– year: 2023
  article-title: Investigation on the Mechanical Behavior and Fracture Mode of Ice‐Templated NiO‐YSZ Anode Electrode for Solid Oxide Fuel Cells Application
  publication-title: Journal of Materials Engineering and Performance
– volume: 353
  start-page: 254
  year: 2017
  end-page: 259
  article-title: Enhanced Performance of Solid Oxide Fuel Cells Using BaZr Ce Y O Thin Films
  publication-title: Journal of Power Sources
– volume: 274
  start-page: 1114
  year: 2015
  end-page: 1117
  article-title: Facile One‐Step Forming of NiO and Yttrium‐Stabilized Zirconia Composite Anodes With Straight Open Pores for Planar Solid Oxide Fuel Cell Using Phase‐Inversion Tape Casting Method
  publication-title: Journal of Power Sources
– volume: 212
  year: 2021
  article-title: Tortuosity of Porous Media: Image Analysis and Physical Simulation
  publication-title: Earth‐Science Reviews
– volume: 4
  year: 2024
  article-title: Review on Fe‐Based Double Perovskite Cathode Materials for Solid Oxide Fuel Cells
  publication-title: Energy Mater
– volume: 1
  start-page: 198
  year: 2018
  end-page: 210
  article-title: Freeze‐Casting for the Fabrication of Solid Oxide Fuel Cells: A Review
  publication-title: Materialia
– ident: e_1_2_7_6_1
  doi: 10.1021/acs.energyfuels.2c00650
– ident: e_1_2_7_2_1
  doi: 10.1016/j.rser.2015.05.069
– ident: e_1_2_7_8_1
  doi: 10.1002/adma.200601366
– ident: e_1_2_7_10_1
  doi: 10.3390/app6030075
– volume: 8
  start-page: 69
  year: 2021
  ident: e_1_2_7_22_1
  article-title: Synthesis and Investigation on Microstructure and Electrical Conductivity of Ruddlesden–Popper Phase, La1.9Sr0.1Ni0.7Cu0.3O4 (LSNC), as Cathode Material for Intermediate Temperature Solid Oxide Fuel Cells
  publication-title: Hydrogen, Fuel Cell & Energy Storage
  contributor:
    fullname: Shirani‐Faradonbeh H.
– ident: e_1_2_7_26_1
  doi: 10.1016/j.jpowsour.2009.10.018
– ident: e_1_2_7_3_1
  doi: 10.1016/j.ijhydene.2017.08.105
– ident: e_1_2_7_13_1
  doi: 10.1007/s12598-022-02257-x
– ident: e_1_2_7_25_1
  doi: 10.1016/j.ijhydene.2018.09.008
– ident: e_1_2_7_19_1
  doi: 10.1016/j.ceramint.2019.09.196
– ident: e_1_2_7_9_1
  doi: 10.20517/energymater.2023.54
– ident: e_1_2_7_20_1
  doi: 10.1007/s11665‐023‐08419‐x
– ident: e_1_2_7_18_1
  doi: 10.1016/j.mtla.2018.07.005
– ident: e_1_2_7_21_1
  doi: 10.1016/j.jpowsour.2008.09.120
– ident: e_1_2_7_28_1
  doi: 10.1016/j.jpowsour.2010.10.084
– ident: e_1_2_7_7_1
  doi: 10.1016/j.jpowsour.2017.04.010
– volume: 5
  start-page: 268
  year: 2019
  ident: e_1_2_7_14_1
  article-title: Pore Former Addition in the Preparation of Highly Porous Anode Using Phase‐Inversion Technique for Solid Oxide Fuel Cell
  publication-title: Journal of Membrane Science and Research
  contributor:
    fullname: Ahmad S. H.
– ident: e_1_2_7_4_1
  doi: 10.1016/j.jpowsour.2014.10.190
– ident: e_1_2_7_17_1
  doi: 10.1016/j.ceramint.2015.10.148
– ident: e_1_2_7_15_1
  doi: 10.1016/j.jpowsour.2012.03.109
– ident: e_1_2_7_23_1
  doi: 10.1021/am5003662
– ident: e_1_2_7_12_1
  doi: 10.20517/energymater.2023.70
– ident: e_1_2_7_16_1
  doi: 10.1016/j.jallcom.2022.165406
– ident: e_1_2_7_5_1
  doi: 10.15826/elmattech.2022.1.006
– ident: e_1_2_7_27_1
  doi: 10.1016/j.earscirev.2020.103439
– ident: e_1_2_7_24_1
  doi: 10.1016/j.ijhydene.2015.05.056
– ident: e_1_2_7_11_1
  doi: 10.3390/nano12071059
SSID ssj0017884
Score 2.4203923
Snippet ABSTRACT Hierarchically oriented macroporous NiO–BaZr0.1Ce0.7Y0.2O3−δ (BZCY7) anode‐supporting layer (ASL) was developed using the freeze casting technique....
ABSTRACT Hierarchically oriented macroporous NiO–BaZr 0.1 Ce 0.7 Y 0.2 O 3− δ (BZCY7) anode‐supporting layer (ASL) was developed using the freeze casting...
Hierarchically oriented macroporous NiO–BaZr0.1Ce0.7Y0.2O3−δ (BZCY7) anode‐supporting layer (ASL) was developed using the freeze casting technique. The...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Anodic polarization
Cerium oxides
Computed tomography
Diffusion layers
Electrochemical impedance spectroscopy
Electrode polarization
freeze casting
Gadolinium
Gaseous diffusion
Image processing
Maximum power
power density
Pressing
proton conductor
Protons
solid oxide fuel cell
Solid oxide fuel cells
Solidification
Tomography
Tortuosity
Title Structural and Electrochemical Investigation of Anode‐Supported Proton‐Conducting Solid Oxide Fuel Cell Fabricated by the Freeze Casting Process
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffuce.202300200
https://www.proquest.com/docview/3092390986
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwELZQJxj4RxQK8oDElDZ22jgZq9CoYgBEqdQtsmNHqqgS1B8JOvEIDDwhT8LZSdqUBQkyJVHOin3n3Hfx-TuErqTyY6fjgPFKwq12nFCLC2FbsS0ZxCOME2GyfO_c_rB9O-qMKrv4c36I1Q83PTPM91pPcC5mrTVpaAJdb-ri3xrx6KCdOEzndN08rvijCMR3ZlkZ3LblgqctWRtt2toU3_RKa6hZBazG44R7iJfvmieaPDcXc9GMlz9oHP_TmX20W8BR3M3t5wBtqfQQ7VRICo_Q58BQzGp6DsxTiXt54Zy4YBrAFaaOLMVZgrtpJtXX-4cuGKpTeSV-mGYAMeFWkKWaXxbaxYNsMpb4_nUsFQ4XaoIDNZngkAtTtwiExBsGcIrDqVJLhQM-M2LFxoZjNAx7T0HfKmo5WDHVEWoCOI4KmlAF8SQE8AngLkY95RGXUZcpP9FEYbFeCO44YD1t1pGKECkAT-j9s84JqqVZqk4R1pAWHpIQGsUQHRLhEo9x6TnClwyOOroudRm95JQdUU7OTCM9ztFqnOuoUao6KqbuLHJswLy-7XtuHVGjs19aicJh0Ftdnf1F6Bxtw3k7TyxsoBroVV0A2JmLS2PQ36Vi-BY
link.rule.ids 315,783,787,1378,27938,27939,46308,46732
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQDMDAG1GeHpCY0iZOmseIQqMCpSDaSmxRHDtSRZWgtkjAxE9g4BfyS7hzkj5YkCBbopwV--7i7-zzd4ScCunFZt0E4xVGpFlxwrSIc12LdeFAPOJEBldZvm272bOuHuplNiGehcn5ISYLbugZ6n-NDo4L0rUpa2gCfa9i9W-EPBC1L4HPm1jE4OJ-wiBlQISnNpZh4tZsmGtL3kad1ebl5-elKdichaxqzgnWCS-_Nk81eaw-j3k1fvtB5Piv7myQtQKR0vPchDbJgky3yOoMT-E2-ewolllk6KBRKmgjr50TF2QDdIasI0tpltDzNBPy6_0Da4ZiNq-gd8MMUCY88rMUKWahXdrJBn1Bb1_6QtLgWQ6oLwcDGkRclS4CIf5KAZ_SYCjlm6R-NFJixdmGHdILGl2_qRXlHLSYYZCaAJRjnCVMQkgJMXwC0MthrnQN22G2I70EucJi3Auum2BAllMX0jAEB0iBR2jNXbKYZqncIxRRLbwkIDqKIUA0uG24TiRck3vCgatCzkplhk85a0eY8zOzEMc5nIxzhRyWug4L7x2Fpg6w19M9164QppT2Syth0PMbk7v9vwidkOVm96YVti7b1wdkBZ5beZ7hIVkEHcsjwD5jfqys-xslZ_ww
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsNAFB2kgujCt1itOgvBVdpkkuaxLGlDfVCLtdBdyGQmUCxJ6QO0Kz_BhV_ol3hn8mjrRtDsEnJDZu6dzDmZO-cidM24E-p1HYKXaYFihBFRAkpVJVSZBXzECjQqs3w7Zrtv3A3qg5Vd_Kk-RPHDTYwM-b0WA3zMotpSNDSCpldF8W-BeIC0bxqmroqkruZTISClAcGT68owbysmTLW5bKNKauv269PSEmuuIlY55Xh7KMhfNs00eanOZ7QaLn7oOP6nNftoN8OjuJEG0AHa4PEh2llRKTxCnz2pMSv0OXAQM9xKK-eEmdQAXpHqSGKcRLgRJ4x_vX-IiqEil5fh7iQBjAmX3CQWArPwXNxLRkOGH1-HjGNvzkfY5aMR9gIqCxeBEX3DgE6xN-F8wbEbTKVZtrPhGPW91rPbVrJiDkpIBEWNAMgRSiLCgVACg48AeFnE5rZmWsS0uBMJpbBQrATXdQgfw6ozrmmMAqAQG2j1E1SKk5ifIiwwLdzEgBuFQA81amq2FTBbpw6z4Cijm9yX_jjV7PBTdWbii372i34uo0ruaj8bu1NfVwH0Oqpjm2VEpM9-eYrv9d1WcXb2F6MrtNVtev7Dbef-HG0D6DPSJMMKKoGL-QUAnxm9lLH9DTL0-t4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+and+Electrochemical+Investigation+of+Anode%E2%80%90Supported+Proton%E2%80%90Conducting+Solid+Oxide+Fuel+Cell+Fabricated+by+the+Freeze+Casting+Process&rft.jtitle=Fuel+cells+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Karimi%2C+Ali&rft.au=Mohammad+Hossein+Paydar&rft.au=Aghaei%2C+Hamed&rft.au=Masoumi%2C+Hossein&rft.date=2024-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1615-6846&rft.eissn=1615-6854&rft.volume=24&rft.issue=4&rft_id=info:doi/10.1002%2Ffuce.202300200&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-6846&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-6846&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-6846&client=summon