Metal Ion and Metal‐to‐Ligand Ratio Regulated Construction of Cu(II) and Co(II) Coordination Polymers as Efficient Catalysts for Ring‐Opening Polymerization of L‐Lactide

Three new coordination polymers (CPs), {[Cu(NDC)(Fbtx)(H2O)] ⋅ 1.5H2O}n (1), {[Co(NDC)(Fbtx)(H2O)2] ⋅ 0.5Fbtx}n (2), and [Co2(NDC)2(Fbtx)]n (3), were synthesized by employing acid‐base mixed ligands of rigid 1,4‐naphthalenedicarboxylic acid (H2NDC) and flexible bis(1,2,4‐triazole‐1‐ylmethyl)‐2,3,5,6...

Full description

Saved in:
Bibliographic Details
Published inZeitschrift für anorganische und allgemeine Chemie (1950) Vol. 650; no. 9-10
Main Authors Tao, Jin‐Xia, Wei, Mei‐Jun, Tian, Feng, Xia, Zhen‐Xiang, Huang, Kun‐Lin, Qian, Jun‐Feng, He, Ming‐Yang, Chen, Sheng‐Chun, Chen, Qun
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 17.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Three new coordination polymers (CPs), {[Cu(NDC)(Fbtx)(H2O)] ⋅ 1.5H2O}n (1), {[Co(NDC)(Fbtx)(H2O)2] ⋅ 0.5Fbtx}n (2), and [Co2(NDC)2(Fbtx)]n (3), were synthesized by employing acid‐base mixed ligands of rigid 1,4‐naphthalenedicarboxylic acid (H2NDC) and flexible bis(1,2,4‐triazole‐1‐ylmethyl)‐2,3,5,6‐tetrafluorobenzene (Fbtx) under both hydrothermal and microwave‐assisted reaction conditions. Single‐crystal structure analysis establishted that both compounds 1 and 2 exhibit two‐dimensional (2D) layered structures, while compound 3 features a three‐dimensional (3D) complicated framework. The geometries of metal ions vary from square pyramidal (in 1 and 3) to distorted octahedral (in 2). Topological strudy showed that compounds 1 and 2 have exposed common 4‐connected 44‐sql net, while compound 3 has made a novel 4,5‐connected net with point symbol of (43 ⋅ 62 ⋅ 7)(43 ⋅ 64 ⋅ 72 ⋅ 8). The catalytic performance of the three complexes for the solvent‐free ring‐opening polymerization of L‐lactide has been investigated. The results indicated that compound 3 with coordinatively unsaturated cobalt(II) sites showed good activity and the molecular weight of the polymer obtained was high. Moreover, the complex 3 catalyst could be recycled up to five times with the retention of both catalytic activity and crystal structure.
AbstractList Three new coordination polymers (CPs), {[Cu(NDC)(Fbtx)(H2O)] ⋅ 1.5H2O}n (1), {[Co(NDC)(Fbtx)(H2O)2] ⋅ 0.5Fbtx}n (2), and [Co2(NDC)2(Fbtx)]n (3), were synthesized by employing acid‐base mixed ligands of rigid 1,4‐naphthalenedicarboxylic acid (H2NDC) and flexible bis(1,2,4‐triazole‐1‐ylmethyl)‐2,3,5,6‐tetrafluorobenzene (Fbtx) under both hydrothermal and microwave‐assisted reaction conditions. Single‐crystal structure analysis establishted that both compounds 1 and 2 exhibit two‐dimensional (2D) layered structures, while compound 3 features a three‐dimensional (3D) complicated framework. The geometries of metal ions vary from square pyramidal (in 1 and 3) to distorted octahedral (in 2). Topological strudy showed that compounds 1 and 2 have exposed common 4‐connected 44‐sql net, while compound 3 has made a novel 4,5‐connected net with point symbol of (43 ⋅ 62 ⋅ 7)(43 ⋅ 64 ⋅ 72 ⋅ 8). The catalytic performance of the three complexes for the solvent‐free ring‐opening polymerization of L‐lactide has been investigated. The results indicated that compound 3 with coordinatively unsaturated cobalt(II) sites showed good activity and the molecular weight of the polymer obtained was high. Moreover, the complex 3 catalyst could be recycled up to five times with the retention of both catalytic activity and crystal structure.
Three new coordination polymers (CPs), {[Cu(NDC)(Fbtx)(H 2 O)] ⋅ 1.5H 2 O} n ( 1 ), {[Co(NDC)(Fbtx)(H 2 O) 2 ] ⋅ 0.5Fbtx} n ( 2 ), and [Co 2 (NDC) 2 (Fbtx)] n ( 3 ), were synthesized by employing acid‐base mixed ligands of rigid 1,4‐naphthalenedicarboxylic acid (H 2 NDC) and flexible bis(1,2,4‐triazole‐1‐ylmethyl)‐2,3,5,6‐tetrafluorobenzene (Fbtx) under both hydrothermal and microwave‐assisted reaction conditions. Single‐crystal structure analysis establishted that both compounds 1 and 2 exhibit two‐dimensional (2D) layered structures, while compound 3 features a three‐dimensional (3D) complicated framework. The geometries of metal ions vary from square pyramidal (in 1 and 3 ) to distorted octahedral (in 2 ). Topological strudy showed that compounds 1 and 2 have exposed common 4‐connected 4 4 ‐ sql net, while compound 3 has made a novel 4,5‐connected net with point symbol of (4 3  ⋅ 6 2  ⋅ 7)(4 3  ⋅ 6 4  ⋅ 7 2  ⋅ 8). The catalytic performance of the three complexes for the solvent‐free ring‐opening polymerization of L ‐lactide has been investigated. The results indicated that compound 3 with coordinatively unsaturated cobalt(II) sites showed good activity and the molecular weight of the polymer obtained was high. Moreover, the complex 3 catalyst could be recycled up to five times with the retention of both catalytic activity and crystal structure.
Author Chen, Qun
Wei, Mei‐Jun
Xia, Zhen‐Xiang
He, Ming‐Yang
Chen, Sheng‐Chun
Tao, Jin‐Xia
Qian, Jun‐Feng
Tian, Feng
Huang, Kun‐Lin
Author_xml – sequence: 1
  givenname: Jin‐Xia
  surname: Tao
  fullname: Tao, Jin‐Xia
  organization: Changzhou University
– sequence: 2
  givenname: Mei‐Jun
  surname: Wei
  fullname: Wei, Mei‐Jun
  organization: Changzhou University
– sequence: 3
  givenname: Feng
  surname: Tian
  fullname: Tian, Feng
  organization: Changzhou University
– sequence: 4
  givenname: Zhen‐Xiang
  surname: Xia
  fullname: Xia, Zhen‐Xiang
  organization: Changzhou University
– sequence: 5
  givenname: Kun‐Lin
  surname: Huang
  fullname: Huang, Kun‐Lin
  email: kunlin@cqnu.edu.cn
  organization: Chongqing Normal University
– sequence: 6
  givenname: Jun‐Feng
  surname: Qian
  fullname: Qian, Jun‐Feng
  organization: Changzhou University
– sequence: 7
  givenname: Ming‐Yang
  surname: He
  fullname: He, Ming‐Yang
  organization: Changzhou University
– sequence: 8
  givenname: Sheng‐Chun
  orcidid: 0000-0002-3608-1581
  surname: Chen
  fullname: Chen, Sheng‐Chun
  email: csc@cczu.edu.cn
  organization: Changzhou University
– sequence: 9
  givenname: Qun
  surname: Chen
  fullname: Chen, Qun
  organization: Changzhou University
BookMark eNqFkc1KAzEUhYMoWKtb1wE3upian0mnsyyDPwOVStGNmyGduSmRManJDNKufARfxVfyScy0VpdCSO69fCcn5ByhfWMNIHRKyYASwi7XUpYDRlhMQkf2UI8KRiOexOk-6hESxxHjlB-iI--fA0KJED30eQeNrHFuDZamwpvu6_2jsWGb6EU3m8lGWzyDRVvLBiqcWeMb15ZharBVOGvP8_xiI8_spsysdZU2ckPc23r1As5j6fGVUrrUYBqcyWC08o3Hyjo802YRDKdLMKHaSfRa7jwm3XNksKzgGB0oWXs4-Tn76PH66iG7jSbTmzwbT6Iy_AGJFAHFKGVqpFTFZSpjASCqJJ6nw7AoBTUfKjpPVcLFfDTkomJKlgJUkiREjHgfnW3vXTr72oJvimfbOhMsC06GLEk4HXXUYEuVznrvQBVLp1-kWxWUFF0sRRdL8RtLEKRbwZuuYfUPXTyNx9mf9htGp5in
Cites_doi 10.1021/cr300263a
10.1039/D1CY02143E
10.1126/science.1230444
10.1002/cssc.201600761
10.1021/ma0019510
10.1021/cr040002s
10.1016/j.ccr.2010.10.038
10.1038/35044040
10.1021/acs.chemrev.5b00221
10.1039/B208679D
10.1021/jacs.5b01352
10.1039/b807080f
10.1039/C9DT01763A
10.1039/D1RA02909F
10.1002/adma.201704303
10.1021/ic0113045
10.1016/j.ccr.2018.09.008
10.1039/C4CS00010B
10.1021/ja003851f
10.1016/j.eurpolymj.2022.111727
10.1021/jacs.9b02294
10.1039/D3CC01343J
10.1016/j.apcata.2018.11.003
10.1021/ja807357r
10.1016/j.mcat.2018.03.011
10.1016/j.cej.2022.139475
10.1039/B815104K
10.1039/C4CS00102H
10.1039/C6CS00930A
10.1039/C6CS00250A
10.1039/D1CS00056J
10.1021/jacs.5b13335
10.1039/C9SC06024C
10.1039/C6CY00695G
10.1016/j.jcat.2018.11.031
10.1039/D0CE00309C
10.1021/acscatal.0c00801
10.1002/anie.201505674
10.1002/anie.202008473
10.1002/anie.201904347
10.1002/anie.201511484
10.1021/acs.chemrev.0c01049
10.1021/acscatal.2c00858
10.1021/ja101208s
10.1016/j.apcatb.2021.120411
10.1039/jr9490001841
10.1021/jacs.8b09606
10.1016/j.ccr.2019.04.013
10.1016/j.mcat.2019.110635
10.1016/j.catcom.2017.02.024
10.1021/ja0359512
10.1016/j.apcata.2017.08.007
10.1002/cctc.202300972
10.1039/C4SC02362E
10.1039/B912806A
10.1039/c3dt52629a
10.1021/ic060969
10.1038/natrevmats.2017.45
10.1039/b925829a
10.1021/acs.jpcc.2c06643
10.1021/acscatal.6b02359
10.1039/b802426j
10.1021/ic0490730
10.1016/j.ccr.2018.02.009
10.1021/acs.chemrev.2c00879
10.1021/acs.inorgchem.9b00963
10.1021/ja407920d
10.1039/C6CS00424E
10.1021/ic801397t
10.1021/acscatal.7b02049
10.1002/ejic.202200494
10.1021/ja012689t
10.1021/jacs.9b07891
10.1021/acs.inorgchem.3c02184
10.1002/tcr.202100148
10.1021/ja4069968
10.1021/ma101263g
10.1002/ange.201309778
10.1016/j.jcat.2020.03.034
10.1039/D1TA09424F
ContentType Journal Article
Copyright 2024 Wiley-VCH GmbH
Copyright_xml – notice: 2024 Wiley-VCH GmbH
DBID AAYXX
CITATION
DOI 10.1002/zaac.202400020
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3749
EndPage n/a
ExternalDocumentID 10_1002_zaac_202400020
ZAAC202400020
Genre article
GrantInformation_xml – fundername: Changzhou University and Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
  funderid: ZZZD201807; BM2012110
– fundername: National Natural Science Foundation of China
  funderid: 21676030
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ACAHQ
ACCFJ
ACCUC
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
QB0
QRW
R.K
RNS
ROL
RWI
RWK
RX1
RYL
SUPJJ
TN5
UB1
V2E
W8V
W99
WBFHL
WBKPD
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
YNT
ZZTAW
~02
~IA
~WT
AAYXX
ACUHS
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
TUS
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c2020-f0ef2112f8ffd3a9a45ee5d74b96b9611efb6f1b9f735b8635d2fac5ef7770583
IEDL.DBID DR2
ISSN 0044-2313
IngestDate Fri Jul 25 12:19:57 EDT 2025
Tue Jul 01 02:16:52 EDT 2025
Wed Jan 22 17:18:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9-10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2020-f0ef2112f8ffd3a9a45ee5d74b96b9611efb6f1b9f735b8635d2fac5ef7770583
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3608-1581
PQID 3062773188
PQPubID 1006443
PageCount 13
ParticipantIDs proquest_journals_3062773188
crossref_primary_10_1002_zaac_202400020
wiley_primary_10_1002_zaac_202400020_ZAAC202400020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 17, 2024
PublicationDateYYYYMMDD 2024-05-17
PublicationDate_xml – month: 05
  year: 2024
  text: May 17, 2024
  day: 17
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Zeitschrift für anorganische und allgemeine Chemie (1950)
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 12
2017; 7
2021; 21
2017; 2
2020; 482
2023; 184
2017; 46
2019; 58
1949; 394
2020; 59
2020; 11
2021; 121
2020; 10
2009; 48
2018; 450
2000; 408
2023; 62
2015; 137
2002; 41
2020; 450
2023; 452
2013; 113
2018; 30
2003; 1
2003; 125
2019; 392
2022; 126
2014; 126
2004; 43
2001; 123
2015; 6
2004; 104
2018; 140
2023; 59
2010; 39
2023; 123
2015; 54
2020; 386
2013; 341
2009; 131
2021; 50
2019; 141
2019; 380
2024; 16
2011; 255
2014; 43
2016; 55
2017; 95
2016; 6
2010; 43
2022; 2022
2021; 11
2015; 115
2006; 45
2002; 124
2019; 48
2010; 132
2022; 12
2013; 135
2019; 378
2016; 138
2022; 10
2020; 22
2021; 297
2019; 570
2001; 34
2019; 370
2009; 38
2016; 9
2017; 546
Li Y.-P. (e_1_2_8_97_2) 2014; 43
e_1_2_8_49_2
e_1_2_8_45_2
e_1_2_8_26_2
e_1_2_8_68_2
e_1_2_8_9_2
e_1_2_8_5_2
e_1_2_8_41_2
e_1_2_8_87_2
e_1_2_8_22_2
e_1_2_8_64_2
e_1_2_8_1_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_38_2
e_1_2_8_19_2
e_1_2_8_34_2
e_1_2_8_15_2
e_1_2_8_57_2
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_30_2
e_1_2_8_76_2
e_1_2_8_11_2
e_1_2_8_53_2
e_1_2_8_101_1
e_1_2_8_72_2
e_1_2_8_29_2
e_1_2_8_25_1
e_1_2_8_48_2
e_1_2_8_67_2
e_1_2_8_2_2
e_1_2_8_6_1
e_1_2_8_21_2
e_1_2_8_63_2
e_1_2_8_86_2
e_1_2_8_44_1
e_1_2_8_40_2
e_1_2_8_82_1
e_1_2_8_18_2
e_1_2_8_14_2
e_1_2_8_79_2
e_1_2_8_37_1
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_98_2
e_1_2_8_56_1
e_1_2_8_10_2
e_1_2_8_33_2
e_1_2_8_52_2
e_1_2_8_75_1
e_1_2_8_102_1
e_1_2_8_71_2
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_2
e_1_2_8_3_2
e_1_2_8_7_2
e_1_2_8_20_1
e_1_2_8_89_1
e_1_2_8_66_2
e_1_2_8_43_2
e_1_2_8_85_1
e_1_2_8_62_2
e_1_2_8_81_2
e_1_2_8_17_2
e_1_2_8_13_2
e_1_2_8_59_2
e_1_2_8_36_2
e_1_2_8_70_1
e_1_2_8_78_1
e_1_2_8_55_2
e_1_2_8_32_2
e_1_2_8_74_2
e_1_2_8_51_2
e_1_2_8_103_1
e_1_2_8_93_1
e_1_2_8_27_2
e_1_2_8_23_2
e_1_2_8_46_2
e_1_2_8_69_1
e_1_2_8_80_2
e_1_2_8_4_2
e_1_2_8_8_2
e_1_2_8_42_2
e_1_2_8_88_2
e_1_2_8_65_1
e_1_2_8_61_2
e_1_2_8_84_1
e_1_2_8_39_2
e_1_2_8_12_2
e_1_2_8_35_2
e_1_2_8_58_2
e_1_2_8_16_1
e_1_2_8_92_1
e_1_2_8_100_1
e_1_2_8_96_2
e_1_2_8_54_2
e_1_2_8_77_2
e_1_2_8_31_1
e_1_2_8_73_2
e_1_2_8_50_1
e_1_2_8_104_1
References_xml – volume: 48
  start-page: 728
  year: 2009
  end-page: 734
  publication-title: Inorg. Chem.
– volume: 58
  start-page: 9253
  year: 2019
  end-page: 9259
  publication-title: Inorg. Chem.
– volume: 570
  start-page: 31
  year: 2019
  end-page: 41
  publication-title: Appl. Catal. A
– volume: 6
  start-page: 1035
  year: 2015
  end-page: 1042
  publication-title: Chem. Sci.
– volume: 10
  start-page: 5077
  year: 2020
  end-page: 5085
  publication-title: ACS Catal.
– volume: 46
  start-page: 126
  year: 2017
  end-page: 157
  publication-title: Chem. Soc. Rev.
– volume: 12
  start-page: 5585
  year: 2022
  end-page: 5594
  publication-title: ACS Catal.
– volume: 46
  start-page: 1842
  year: 2017
  end-page: 1874
  publication-title: Chem. Soc. Rev.
– volume: 123
  start-page: 3229
  year: 2001
  end-page: 3238
  publication-title: J. Am. Chem. Soc.
– volume: 59
  start-page: 21778
  year: 2020
  end-page: 21784
  publication-title: Angew. Chem. Int. Ed.
– volume: 12
  start-page: 996
  year: 2022
  end-page: 1004
  publication-title: Catal. Sci. Technol.
– volume: 62
  start-page: 17678
  year: 2023
  end-page: 17690
  publication-title: Inorg. Chem.
– volume: 54
  start-page: 13669
  year: 2015
  end-page: 13672
  publication-title: Angew. Chem. Int. Ed.
– volume: 9
  start-page: 2824
  year: 2016
  end-page: 2831
  publication-title: ChemSusChem
– volume: 392
  start-page: 83
  year: 2019
  end-page: 145
  publication-title: Coord. Chem. Rev.
– volume: 21
  start-page: 1898
  year: 2021
  end-page: 1911
  publication-title: Chem. Rec.
– volume: 125
  start-page: 11350
  year: 2003
  end-page: 11359
  publication-title: J. Am. Chem. Soc.
– volume: 408
  start-page: 449
  year: 2000
  end-page: 453
  publication-title: Nature
– volume: 46
  start-page: 3242
  year: 2017
  end-page: 3285
  publication-title: Chem. Soc. Rev.
– volume: 50
  start-page: 5086
  year: 2021
  end-page: 5125
  publication-title: Chem. Soc. Rev.
– volume: 255
  start-page: 485
  year: 2011
  end-page: 546
  publication-title: Coord. Chem. Rev.
– volume: 132
  start-page: 14321
  year: 2010
  end-page: 14323
  publication-title: J. Am. Chem. Soc.
– volume: 141
  start-page: 7498
  year: 2019
  end-page: 7508
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 3345
  year: 2020
  end-page: 3354
  publication-title: Chem. Sci.
– volume: 141
  start-page: 14878
  year: 2019
  end-page: 14888
  publication-title: J. Am. Chem. Soc.
– volume: 131
  start-page: 1883
  year: 2009
  end-page: 1888
  publication-title: J. Am. Chem. Soc.
– volume: 184
  year: 2023
  publication-title: Eur. Polym. J.
– volume: 341
  year: 2013
  publication-title: Science
– volume: 394
  start-page: 1841
  year: 1949
  end-page: 1847
  publication-title: J. Chem. Soc.
– volume: 22
  start-page: 3656
  year: 2020
  end-page: 3663
  publication-title: CrystEngComm
– volume: 12
  start-page: 3283
  year: 2010
  end-page: 3290
  publication-title: CrystEngComm
– volume: 11
  start-page: 16326
  year: 2021
  end-page: 16338
  publication-title: RSC Adv.
– volume: 135
  start-page: 13306
  year: 2013
  end-page: 13309
  publication-title: J. Am. Chem. Soc.
– volume: 452
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 450
  start-page: 104
  year: 2020
  end-page: 111
  publication-title: J. Mol. Catal.
– volume: 45
  start-page: 6595
  year: 2006
  end-page: 6597
  publication-title: Inorg. Chem.
– volume: 137
  start-page: 4243
  year: 2015
  end-page: 4248
  publication-title: J. Am. Chem. Soc.
– volume: 41
  start-page: 3477
  year: 2002
  end-page: 3482
  publication-title: Inorg. Chem.
– volume: 386
  start-page: 106
  year: 2020
  end-page: 116
  publication-title: J. Catal.
– volume: 450
  start-page: 104
  year: 2018
  end-page: 111
  publication-title: J. Mol. Catal.
– volume: 16
  year: 2024
  publication-title: ChemCatChem
– volume: 135
  start-page: 16553
  year: 2013
  end-page: 16560
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 7590
  year: 2016
  end-page: 7596
  publication-title: ACS Catal.
– volume: 7
  start-page: 6289
  year: 2017
  end-page: 6301
  publication-title: ACS Catal.
– volume: 43
  start-page: 10948
  year: 2014
  end-page: 10955
  publication-title: Dalton Trans.
– volume: 123
  start-page: 5347
  year: 2023
  end-page: 5420
  publication-title: Chem. Rev.
– volume: 482
  year: 2020
  publication-title: J. Mol. Catal.
– volume: 48
  start-page: 11855
  year: 2019
  end-page: 11861
  publication-title: Dalton Trans.
– volume: 126
  start-page: 2653
  year: 2014
  end-page: 657
  publication-title: Angew. Chem. Int. Ed.
– volume: 113
  start-page: 3766
  year: 2013
  end-page: 3798
  publication-title: Chem. Rev.
– volume: 140
  start-page: 16229
  year: 2018
  end-page: 16236
  publication-title: J. Am. Chem. Soc.
– volume: 124
  start-page: 4384
  year: 2002
  end-page: 4393
  publication-title: J. Am. Chem. Soc.
– volume: 38
  start-page: 1477
  year: 2009
  end-page: 1504
  publication-title: Chem. Soc. Rev.
– volume: 297
  year: 2021
  publication-title: Appl. Catal. B
– volume: 55
  start-page: 5472
  year: 2016
  end-page: 5476
  publication-title: Angew. Chem. Int. Ed.
– volume: 126
  start-page: 20388
  year: 2022
  end-page: 20394
  publication-title: J. Phys. Chem. C
– volume: 378
  start-page: 262
  year: 2019
  end-page: 280
  publication-title: Coord. Chem. Rev.
– volume: 43
  start-page: 6535
  year: 2010
  end-page: 6537
  publication-title: Macromolecules
– volume: 546
  start-page: 15
  year: 2017
  end-page: 21
  publication-title: Appl. Catal. A
– volume: 58
  start-page: 9160
  year: 2019
  end-page: 9165
  publication-title: Angew. Chem. Int. Ed.
– volume: 104
  start-page: 6147
  year: 2004
  end-page: 6176
  publication-title: Chem. Rev.
– volume: 2022
  year: 2022
  publication-title: Eur. J. Inorg. Chem.
– volume: 121
  start-page: 3751
  year: 2021
  end-page: 3891
  publication-title: Chem. Rev.
– volume: 59
  start-page: 8727
  year: 2023
  end-page: 8730
  publication-title: Chem. Commun.
– volume: 43
  start-page: 6717
  year: 2004
  end-page: 6725
  publication-title: Inorg. Chem.
– volume: 2
  start-page: 1
  year: 2017
  end-page: 16
  publication-title: Nat. Rev. Mater.
– volume: 370
  start-page: 11
  year: 2019
  end-page: 20
  publication-title: J. Catal.
– volume: 380
  start-page: 35
  year: 2019
  end-page: 57
  publication-title: Coord. Chem. Rev.
– volume: 6
  start-page: 5238
  year: 2016
  end-page: 5261
  publication-title: Catal. Sci. Technol.
– volume: 138
  start-page: 2142
  year: 2016
  end-page: 2145
  publication-title: J. Am. Chem. Soc.
– volume: 115
  start-page: 6966
  year: 2015
  end-page: 6997
  publication-title: Chem. Rev.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 43
  start-page: 5815
  year: 2014
  end-page: 5840
  publication-title: Chem. Soc. Rev.
– volume: 38
  start-page: 1450
  year: 2009
  end-page: 1459
  publication-title: Chem. Soc. Rev.
– volume: 1
  start-page: 48
  year: 2003
  end-page: 49
  publication-title: Chem. Commun.
– volume: 10
  start-page: 3843
  year: 2022
  end-page: 3868
  publication-title: J. Mater. Chem. A
– volume: 43
  start-page: 6537
  year: 2014
  end-page: 6554
  publication-title: Chem. Soc. Rev.
– volume: 39
  start-page: 1724
  year: 2010
  end-page: 1746
  publication-title: Chem. Soc. Rev.
– volume: 39
  start-page: 486
  year: 2010
  end-page: 494
  publication-title: Chem. Soc. Rev.
– volume: 95
  start-page: 6
  year: 2017
  end-page: 11
  publication-title: Catal. Commun.
– volume: 34
  start-page: 3863
  year: 2001
  end-page: 3868
  publication-title: Macromolecules
– volume: 43
  start-page: 4550
  year: 2014
  end-page: 4564
  publication-title: Dalton Trans.
– ident: e_1_2_8_70_1
– ident: e_1_2_8_37_1
– ident: e_1_2_8_3_2
  doi: 10.1021/cr300263a
– ident: e_1_2_8_85_1
– ident: e_1_2_8_81_2
  doi: 10.1039/D1CY02143E
– ident: e_1_2_8_9_2
  doi: 10.1126/science.1230444
– ident: e_1_2_8_45_2
  doi: 10.1002/cssc.201600761
– ident: e_1_2_8_66_2
  doi: 10.1021/ma0019510
– ident: e_1_2_8_51_2
  doi: 10.1021/cr040002s
– ident: e_1_2_8_86_2
  doi: 10.1016/j.ccr.2010.10.038
– ident: e_1_2_8_2_2
  doi: 10.1038/35044040
– ident: e_1_2_8_39_2
  doi: 10.1021/acs.chemrev.5b00221
– ident: e_1_2_8_67_2
  doi: 10.1039/B208679D
– ident: e_1_2_8_40_2
  doi: 10.1021/jacs.5b01352
– ident: e_1_2_8_7_2
  doi: 10.1039/b807080f
– ident: e_1_2_8_99_1
– ident: e_1_2_8_29_2
  doi: 10.1039/C9DT01763A
– ident: e_1_2_8_101_1
  doi: 10.1039/D1RA02909F
– ident: e_1_2_8_12_2
  doi: 10.1002/adma.201704303
– ident: e_1_2_8_96_2
  doi: 10.1021/ic0113045
– ident: e_1_2_8_54_2
  doi: 10.1016/j.ccr.2018.09.008
– ident: e_1_2_8_10_2
  doi: 10.1039/C4CS00010B
– ident: e_1_2_8_6_1
– ident: e_1_2_8_61_2
  doi: 10.1021/ja003851f
– ident: e_1_2_8_55_2
  doi: 10.1016/j.eurpolymj.2022.111727
– ident: e_1_2_8_43_2
  doi: 10.1021/jacs.9b02294
– ident: e_1_2_8_59_2
  doi: 10.1039/D3CC01343J
– ident: e_1_2_8_25_1
– ident: e_1_2_8_26_2
  doi: 10.1016/j.apcata.2018.11.003
– ident: e_1_2_8_1_1
– ident: e_1_2_8_38_2
  doi: 10.1021/ja807357r
– ident: e_1_2_8_36_2
  doi: 10.1016/j.mcat.2018.03.011
– ident: e_1_2_8_88_2
  doi: 10.1016/j.cej.2022.139475
– ident: e_1_2_8_52_2
  doi: 10.1039/B815104K
– ident: e_1_2_8_4_2
  doi: 10.1039/C4CS00102H
– ident: e_1_2_8_11_2
  doi: 10.1039/C6CS00930A
– ident: e_1_2_8_16_1
– ident: e_1_2_8_60_1
– ident: e_1_2_8_42_2
  doi: 10.1039/C6CS00250A
– ident: e_1_2_8_13_2
  doi: 10.1039/D1CS00056J
– ident: e_1_2_8_18_2
  doi: 10.1021/jacs.5b13335
– ident: e_1_2_8_84_1
  doi: 10.1039/C9SC06024C
– ident: e_1_2_8_89_1
  doi: 10.1039/C6CY00695G
– ident: e_1_2_8_33_2
  doi: 10.1016/j.jcat.2018.11.031
– ident: e_1_2_8_95_1
– ident: e_1_2_8_94_1
  doi: 10.1039/D0CE00309C
– ident: e_1_2_8_35_2
  doi: 10.1021/acscatal.0c00801
– ident: e_1_2_8_76_2
  doi: 10.1002/anie.201505674
– ident: e_1_2_8_73_2
  doi: 10.1002/anie.202008473
– ident: e_1_2_8_92_1
  doi: 10.1016/j.mcat.2018.03.011
– ident: e_1_2_8_31_1
– ident: e_1_2_8_34_2
  doi: 10.1002/anie.201904347
– ident: e_1_2_8_41_2
  doi: 10.1002/anie.201511484
– ident: e_1_2_8_14_2
  doi: 10.1021/acs.chemrev.0c01049
– ident: e_1_2_8_74_2
  doi: 10.1021/acscatal.2c00858
– ident: e_1_2_8_21_2
  doi: 10.1021/ja101208s
– ident: e_1_2_8_47_2
  doi: 10.1016/j.apcatb.2021.120411
– ident: e_1_2_8_90_1
  doi: 10.1039/jr9490001841
– ident: e_1_2_8_22_2
  doi: 10.1021/jacs.8b09606
– ident: e_1_2_8_53_2
  doi: 10.1016/j.ccr.2019.04.013
– ident: e_1_2_8_27_2
  doi: 10.1016/j.mcat.2019.110635
– ident: e_1_2_8_91_1
  doi: 10.1016/j.catcom.2017.02.024
– ident: e_1_2_8_103_1
– ident: e_1_2_8_71_2
  doi: 10.1021/ja0359512
– ident: e_1_2_8_83_1
  doi: 10.1016/j.apcata.2017.08.007
– ident: e_1_2_8_104_1
– ident: e_1_2_8_28_1
– ident: e_1_2_8_44_1
– ident: e_1_2_8_69_1
  doi: 10.1002/cctc.202300972
– volume: 43
  start-page: 10948
  year: 2014
  ident: e_1_2_8_97_2
  publication-title: Dalton Trans.
– ident: e_1_2_8_32_2
  doi: 10.1039/C4SC02362E
– ident: e_1_2_8_57_2
  doi: 10.1039/B912806A
– ident: e_1_2_8_100_1
  doi: 10.1039/c3dt52629a
– ident: e_1_2_8_82_1
  doi: 10.1021/ic060969
– ident: e_1_2_8_19_2
  doi: 10.1038/natrevmats.2017.45
– ident: e_1_2_8_98_2
  doi: 10.1039/b925829a
– ident: e_1_2_8_75_1
– ident: e_1_2_8_49_2
  doi: 10.1021/acs.jpcc.2c06643
– ident: e_1_2_8_46_2
  doi: 10.1021/acscatal.6b02359
– ident: e_1_2_8_8_2
  doi: 10.1039/b802426j
– ident: e_1_2_8_50_1
– ident: e_1_2_8_102_1
– ident: e_1_2_8_68_2
  doi: 10.1021/ic0490730
– ident: e_1_2_8_87_2
  doi: 10.1016/j.ccr.2018.02.009
– ident: e_1_2_8_15_2
  doi: 10.1021/acs.chemrev.2c00879
– ident: e_1_2_8_23_2
  doi: 10.1021/acs.inorgchem.9b00963
– ident: e_1_2_8_80_2
  doi: 10.1021/ja407920d
– ident: e_1_2_8_5_2
  doi: 10.1039/C6CS00424E
– ident: e_1_2_8_20_1
– ident: e_1_2_8_65_1
– ident: e_1_2_8_56_1
– ident: e_1_2_8_78_1
– ident: e_1_2_8_62_2
  doi: 10.1021/ic801397t
– ident: e_1_2_8_77_2
  doi: 10.1021/acscatal.7b02049
– ident: e_1_2_8_64_2
  doi: 10.1002/ejic.202200494
– ident: e_1_2_8_79_2
  doi: 10.1021/ja012689t
– ident: e_1_2_8_24_1
  doi: 10.1021/jacs.9b07891
– ident: e_1_2_8_93_1
  doi: 10.1021/acs.inorgchem.3c02184
– ident: e_1_2_8_58_2
  doi: 10.1002/tcr.202100148
– ident: e_1_2_8_72_2
  doi: 10.1021/ja4069968
– ident: e_1_2_8_63_2
  doi: 10.1021/ma101263g
– ident: e_1_2_8_17_2
  doi: 10.1002/ange.201309778
– ident: e_1_2_8_30_2
  doi: 10.1016/j.jcat.2020.03.034
– ident: e_1_2_8_48_2
  doi: 10.1039/D1TA09424F
SSID ssj0001055
Score 2.365543
Snippet Three new coordination polymers (CPs), {[Cu(NDC)(Fbtx)(H2O)] ⋅ 1.5H2O}n (1), {[Co(NDC)(Fbtx)(H2O)2] ⋅ 0.5Fbtx}n (2), and [Co2(NDC)2(Fbtx)]n (3), were...
Three new coordination polymers (CPs), {[Cu(NDC)(Fbtx)(H 2 O)] ⋅ 1.5H 2 O} n ( 1 ), {[Co(NDC)(Fbtx)(H 2 O) 2 ] ⋅ 0.5Fbtx} n ( 2 ), and [Co 2 (NDC) 2 (Fbtx)] n...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Catalysts
Catalytic activity
Catalytic property
Cobalt compounds
Coordination polymer
Coordination polymers
Crystal structure
Ligands
Metal-to-ligand ratio
Polymerization
Ring opening polymerization
Structural analysis
Title Metal Ion and Metal‐to‐Ligand Ratio Regulated Construction of Cu(II) and Co(II) Coordination Polymers as Efficient Catalysts for Ring‐Opening Polymerization of L‐Lactide
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fzaac.202400020
https://www.proquest.com/docview/3062773188
Volume 650
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSsQwEA6iB734L66ukoOgHqrbNE3b41pdXFGRRUG8lKRNZFFaoevBPfkIvoqv5JM4k2531YugUEpSmCZl8vPNdPINITtChDyUCswSX3CHi1Q6oSsjJ0vBltC-0swy8F1citMbfnbr3345xV_xQ4wdbjgz7HqNE1yq8nBCGjqUEikIMQYSIA8swhiwhaioN-GPwuyP1S9m7gCQ8WrWxhY7_C7-fVeaQM2vgNXuOJ0FIuu-VoEmDwfPA3WQDn_QOP7nYxbJ_AiO0nY1fpbIlM6XyWxcZ4FbIe8XGuA57RY5lXlGbe3j9W1QwO28f4_Peqhc2quS2uuMYg7QmpWWFobGz3vd7r4VjwtbjAswefuVH5JeFY8v6DynsqQnltAC9kEao1vppRyUFFA17cEGCw1i9AuUapHREVJs4xy7g2c0Mr1Kbjon1_GpM0rz4KQMjVfT0gbMUGZCYzJPRpL7WvtZwFUk4HJdbZQwropM4PkqBISUMSNTX5sgCFp-6K2R6bzI9TqhBhSegoFnmGpxL2NKpK5nRMhUpDzO0wbZrdWcPFVsHknF28wSVEEyVkGDNOtRkIxmdZl4yOkcwCoYNgiz6vzlLcldux2Paxt_Edokc1jGgAU3aJJp0J_eAhw0UNtkpn10fNTZtmP-E77bBW4
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTuMwEB6xcIDL8rMguvz5sBLsIdA4jpMcqwjUsi1CFUirvUR2YiPEKlmp5QAnHoFX4ZV4EmacpgUuSKwURbGliR2Nf76ZjL8B-CFlLGKl0SwJpfCEzJUX-yrxihxtCRNqwx0D3-BMdi_F6e-wiSakszA1P8TU4UYzw63XNMHJIX00Yw29V4o4CCkIEjHPF1igtN7OqhrOGKQo_2P9k1l4CGWChrexzY_eyr_dl2Zg8zVkdXvOyTLoprd1qMnN4e1YH-b374gc_-tzVuDrBJGyTj2EVmHOlGuwmDaJ4L7B08AgQme9qmSqLJgrPT88jiu89a-vqG5I-mXDOq-9KRilAW2IaVllWXp70Ov9dOJp5R7TCq3e69oVyc6rv3fkP2dqxI4dpwVuhSwlz9LdaDxiCKzZEPdYbJACYPCpEZmcIqU2-tQdOqZRmHW4PDm-SLveJNODl3OyX23bWLREuY2tLQKVKBEaExaR0InEy_eN1dL6OrFREOoYQVLBrcpDY6MoaodxsAHzZVWaTWAWNZ6jjWe5boug4FrmfmBlzHWiAyHyFuw3es7-1YQeWU3dzDNSQTZVQQu2m2GQTSb2KAuI1jnChTBuAXf6_OAt2Z9OJ52Wvn9GaA8WuxeDftbvnf3agiWqp_gFP9qGedSl2UFYNNa7buC_AMd8CBc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEB7aFNpc-l-yTZrqUGh7cGLLsiwfFydLtt2EsDQQejGSJZXQYgd2c0hOfYS-Sl-pT5IZeb2b5FJowRhLMJbMSJpvxtI3AO-kVEJpg25JJkUkZK0jlegisjX6Ei4zjgcGvsMjeXAiPp1mpzdO8Xf8EMuAG82MsF7TBD-3fndFGnqlNVEQ0h5IhDz34YGQsaJxvTddEUhR-sfuH7OIEMmkPW1jzHdvy982SyuseROxBpMzegK672y30-T7zsXc7NRXd3gc_-drnsLjBR5lw24APYN7rnkOj8o-DdwL-H3oEJ-zcdsw3VgWSn9-_pq3eJucfaO6KWmXTbus9s4ySgLa09Ky1rPy4sN4_DGIl214LFv0ec-6QCQ7bn9cUvSc6RnbD4wWaAhZSXGly9l8xhBWsylaWGyQtr_gUy-yOENKbUyoO3RIw7qXcDLa_1IeRIs8D1HNyXv1sfPoh3KvvLepLrTInMtsLkwh8UoS5430iSl8nmZGIUSy3Os6cz7P8zhT6StYa9rGbQDzqPAaPTzPTSxSy42sk9RLxU1hUiHqAbzv1Vydd3QeVUfczCtSQbVUwQC2-lFQLab1rEqJ1DnHZVANgAd1_uUt1dfhsFyWXv-L0Ft4eLw3qibjo8-bsE7VtHkhybdgDVXp3iAmmpvtMOyvAcvnBs8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal+Ion+and+Metal%E2%80%90to%E2%80%90Ligand+Ratio+Regulated+Construction+of+Cu%28II%29+and+Co%28II%29+Coordination+Polymers+as+Efficient+Catalysts+for+Ring%E2%80%90Opening+Polymerization+of+L%E2%80%90Lactide&rft.jtitle=Zeitschrift+f%C3%BCr+anorganische+und+allgemeine+Chemie+%281950%29&rft.au=Jin%E2%80%90Xia+Tao&rft.au=Mei%E2%80%90Jun+Wei&rft.au=Tian%2C+Feng&rft.au=Zhen%E2%80%90Xiang+Xia&rft.date=2024-05-17&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0044-2313&rft.eissn=1521-3749&rft.volume=650&rft.issue=9-10&rft_id=info:doi/10.1002%2Fzaac.202400020&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-2313&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-2313&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-2313&client=summon