Metal Ion and Metal‐to‐Ligand Ratio Regulated Construction of Cu(II) and Co(II) Coordination Polymers as Efficient Catalysts for Ring‐Opening Polymerization of L‐Lactide
Three new coordination polymers (CPs), {[Cu(NDC)(Fbtx)(H2O)] ⋅ 1.5H2O}n (1), {[Co(NDC)(Fbtx)(H2O)2] ⋅ 0.5Fbtx}n (2), and [Co2(NDC)2(Fbtx)]n (3), were synthesized by employing acid‐base mixed ligands of rigid 1,4‐naphthalenedicarboxylic acid (H2NDC) and flexible bis(1,2,4‐triazole‐1‐ylmethyl)‐2,3,5,6...
Saved in:
Published in | Zeitschrift für anorganische und allgemeine Chemie (1950) Vol. 650; no. 9-10 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
17.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Three new coordination polymers (CPs), {[Cu(NDC)(Fbtx)(H2O)] ⋅ 1.5H2O}n (1), {[Co(NDC)(Fbtx)(H2O)2] ⋅ 0.5Fbtx}n (2), and [Co2(NDC)2(Fbtx)]n (3), were synthesized by employing acid‐base mixed ligands of rigid 1,4‐naphthalenedicarboxylic acid (H2NDC) and flexible bis(1,2,4‐triazole‐1‐ylmethyl)‐2,3,5,6‐tetrafluorobenzene (Fbtx) under both hydrothermal and microwave‐assisted reaction conditions. Single‐crystal structure analysis establishted that both compounds 1 and 2 exhibit two‐dimensional (2D) layered structures, while compound 3 features a three‐dimensional (3D) complicated framework. The geometries of metal ions vary from square pyramidal (in 1 and 3) to distorted octahedral (in 2). Topological strudy showed that compounds 1 and 2 have exposed common 4‐connected 44‐sql net, while compound 3 has made a novel 4,5‐connected net with point symbol of (43 ⋅ 62 ⋅ 7)(43 ⋅ 64 ⋅ 72 ⋅ 8). The catalytic performance of the three complexes for the solvent‐free ring‐opening polymerization of L‐lactide has been investigated. The results indicated that compound 3 with coordinatively unsaturated cobalt(II) sites showed good activity and the molecular weight of the polymer obtained was high. Moreover, the complex 3 catalyst could be recycled up to five times with the retention of both catalytic activity and crystal structure. |
---|---|
AbstractList | Three new coordination polymers (CPs), {[Cu(NDC)(Fbtx)(H2O)] ⋅ 1.5H2O}n (1), {[Co(NDC)(Fbtx)(H2O)2] ⋅ 0.5Fbtx}n (2), and [Co2(NDC)2(Fbtx)]n (3), were synthesized by employing acid‐base mixed ligands of rigid 1,4‐naphthalenedicarboxylic acid (H2NDC) and flexible bis(1,2,4‐triazole‐1‐ylmethyl)‐2,3,5,6‐tetrafluorobenzene (Fbtx) under both hydrothermal and microwave‐assisted reaction conditions. Single‐crystal structure analysis establishted that both compounds 1 and 2 exhibit two‐dimensional (2D) layered structures, while compound 3 features a three‐dimensional (3D) complicated framework. The geometries of metal ions vary from square pyramidal (in 1 and 3) to distorted octahedral (in 2). Topological strudy showed that compounds 1 and 2 have exposed common 4‐connected 44‐sql net, while compound 3 has made a novel 4,5‐connected net with point symbol of (43 ⋅ 62 ⋅ 7)(43 ⋅ 64 ⋅ 72 ⋅ 8). The catalytic performance of the three complexes for the solvent‐free ring‐opening polymerization of L‐lactide has been investigated. The results indicated that compound 3 with coordinatively unsaturated cobalt(II) sites showed good activity and the molecular weight of the polymer obtained was high. Moreover, the complex 3 catalyst could be recycled up to five times with the retention of both catalytic activity and crystal structure. Three new coordination polymers (CPs), {[Cu(NDC)(Fbtx)(H 2 O)] ⋅ 1.5H 2 O} n ( 1 ), {[Co(NDC)(Fbtx)(H 2 O) 2 ] ⋅ 0.5Fbtx} n ( 2 ), and [Co 2 (NDC) 2 (Fbtx)] n ( 3 ), were synthesized by employing acid‐base mixed ligands of rigid 1,4‐naphthalenedicarboxylic acid (H 2 NDC) and flexible bis(1,2,4‐triazole‐1‐ylmethyl)‐2,3,5,6‐tetrafluorobenzene (Fbtx) under both hydrothermal and microwave‐assisted reaction conditions. Single‐crystal structure analysis establishted that both compounds 1 and 2 exhibit two‐dimensional (2D) layered structures, while compound 3 features a three‐dimensional (3D) complicated framework. The geometries of metal ions vary from square pyramidal (in 1 and 3 ) to distorted octahedral (in 2 ). Topological strudy showed that compounds 1 and 2 have exposed common 4‐connected 4 4 ‐ sql net, while compound 3 has made a novel 4,5‐connected net with point symbol of (4 3 ⋅ 6 2 ⋅ 7)(4 3 ⋅ 6 4 ⋅ 7 2 ⋅ 8). The catalytic performance of the three complexes for the solvent‐free ring‐opening polymerization of L ‐lactide has been investigated. The results indicated that compound 3 with coordinatively unsaturated cobalt(II) sites showed good activity and the molecular weight of the polymer obtained was high. Moreover, the complex 3 catalyst could be recycled up to five times with the retention of both catalytic activity and crystal structure. |
Author | Chen, Qun Wei, Mei‐Jun Xia, Zhen‐Xiang He, Ming‐Yang Chen, Sheng‐Chun Tao, Jin‐Xia Qian, Jun‐Feng Tian, Feng Huang, Kun‐Lin |
Author_xml | – sequence: 1 givenname: Jin‐Xia surname: Tao fullname: Tao, Jin‐Xia organization: Changzhou University – sequence: 2 givenname: Mei‐Jun surname: Wei fullname: Wei, Mei‐Jun organization: Changzhou University – sequence: 3 givenname: Feng surname: Tian fullname: Tian, Feng organization: Changzhou University – sequence: 4 givenname: Zhen‐Xiang surname: Xia fullname: Xia, Zhen‐Xiang organization: Changzhou University – sequence: 5 givenname: Kun‐Lin surname: Huang fullname: Huang, Kun‐Lin email: kunlin@cqnu.edu.cn organization: Chongqing Normal University – sequence: 6 givenname: Jun‐Feng surname: Qian fullname: Qian, Jun‐Feng organization: Changzhou University – sequence: 7 givenname: Ming‐Yang surname: He fullname: He, Ming‐Yang organization: Changzhou University – sequence: 8 givenname: Sheng‐Chun orcidid: 0000-0002-3608-1581 surname: Chen fullname: Chen, Sheng‐Chun email: csc@cczu.edu.cn organization: Changzhou University – sequence: 9 givenname: Qun surname: Chen fullname: Chen, Qun organization: Changzhou University |
BookMark | eNqFkc1KAzEUhYMoWKtb1wE3upian0mnsyyDPwOVStGNmyGduSmRManJDNKufARfxVfyScy0VpdCSO69fCcn5ByhfWMNIHRKyYASwi7XUpYDRlhMQkf2UI8KRiOexOk-6hESxxHjlB-iI--fA0KJED30eQeNrHFuDZamwpvu6_2jsWGb6EU3m8lGWzyDRVvLBiqcWeMb15ZharBVOGvP8_xiI8_spsysdZU2ckPc23r1As5j6fGVUrrUYBqcyWC08o3Hyjo802YRDKdLMKHaSfRa7jwm3XNksKzgGB0oWXs4-Tn76PH66iG7jSbTmzwbT6Iy_AGJFAHFKGVqpFTFZSpjASCqJJ6nw7AoBTUfKjpPVcLFfDTkomJKlgJUkiREjHgfnW3vXTr72oJvimfbOhMsC06GLEk4HXXUYEuVznrvQBVLp1-kWxWUFF0sRRdL8RtLEKRbwZuuYfUPXTyNx9mf9htGp5in |
Cites_doi | 10.1021/cr300263a 10.1039/D1CY02143E 10.1126/science.1230444 10.1002/cssc.201600761 10.1021/ma0019510 10.1021/cr040002s 10.1016/j.ccr.2010.10.038 10.1038/35044040 10.1021/acs.chemrev.5b00221 10.1039/B208679D 10.1021/jacs.5b01352 10.1039/b807080f 10.1039/C9DT01763A 10.1039/D1RA02909F 10.1002/adma.201704303 10.1021/ic0113045 10.1016/j.ccr.2018.09.008 10.1039/C4CS00010B 10.1021/ja003851f 10.1016/j.eurpolymj.2022.111727 10.1021/jacs.9b02294 10.1039/D3CC01343J 10.1016/j.apcata.2018.11.003 10.1021/ja807357r 10.1016/j.mcat.2018.03.011 10.1016/j.cej.2022.139475 10.1039/B815104K 10.1039/C4CS00102H 10.1039/C6CS00930A 10.1039/C6CS00250A 10.1039/D1CS00056J 10.1021/jacs.5b13335 10.1039/C9SC06024C 10.1039/C6CY00695G 10.1016/j.jcat.2018.11.031 10.1039/D0CE00309C 10.1021/acscatal.0c00801 10.1002/anie.201505674 10.1002/anie.202008473 10.1002/anie.201904347 10.1002/anie.201511484 10.1021/acs.chemrev.0c01049 10.1021/acscatal.2c00858 10.1021/ja101208s 10.1016/j.apcatb.2021.120411 10.1039/jr9490001841 10.1021/jacs.8b09606 10.1016/j.ccr.2019.04.013 10.1016/j.mcat.2019.110635 10.1016/j.catcom.2017.02.024 10.1021/ja0359512 10.1016/j.apcata.2017.08.007 10.1002/cctc.202300972 10.1039/C4SC02362E 10.1039/B912806A 10.1039/c3dt52629a 10.1021/ic060969 10.1038/natrevmats.2017.45 10.1039/b925829a 10.1021/acs.jpcc.2c06643 10.1021/acscatal.6b02359 10.1039/b802426j 10.1021/ic0490730 10.1016/j.ccr.2018.02.009 10.1021/acs.chemrev.2c00879 10.1021/acs.inorgchem.9b00963 10.1021/ja407920d 10.1039/C6CS00424E 10.1021/ic801397t 10.1021/acscatal.7b02049 10.1002/ejic.202200494 10.1021/ja012689t 10.1021/jacs.9b07891 10.1021/acs.inorgchem.3c02184 10.1002/tcr.202100148 10.1021/ja4069968 10.1021/ma101263g 10.1002/ange.201309778 10.1016/j.jcat.2020.03.034 10.1039/D1TA09424F |
ContentType | Journal Article |
Copyright | 2024 Wiley-VCH GmbH |
Copyright_xml | – notice: 2024 Wiley-VCH GmbH |
DBID | AAYXX CITATION |
DOI | 10.1002/zaac.202400020 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3749 |
EndPage | n/a |
ExternalDocumentID | 10_1002_zaac_202400020 ZAAC202400020 |
Genre | article |
GrantInformation_xml | – fundername: Changzhou University and Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology funderid: ZZZD201807; BM2012110 – fundername: National Natural Science Foundation of China funderid: 21676030 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ACAHQ ACCFJ ACCUC ACCZN ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N QB0 QRW R.K RNS ROL RWI RWK RX1 RYL SUPJJ TN5 UB1 V2E W8V W99 WBFHL WBKPD WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 YNT ZZTAW ~02 ~IA ~WT AAYXX ACUHS ADMLS AEYWJ AGHNM AGYGG CITATION TUS AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c2020-f0ef2112f8ffd3a9a45ee5d74b96b9611efb6f1b9f735b8635d2fac5ef7770583 |
IEDL.DBID | DR2 |
ISSN | 0044-2313 |
IngestDate | Fri Jul 25 12:19:57 EDT 2025 Tue Jul 01 02:16:52 EDT 2025 Wed Jan 22 17:18:40 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9-10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2020-f0ef2112f8ffd3a9a45ee5d74b96b9611efb6f1b9f735b8635d2fac5ef7770583 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3608-1581 |
PQID | 3062773188 |
PQPubID | 1006443 |
PageCount | 13 |
ParticipantIDs | proquest_journals_3062773188 crossref_primary_10_1002_zaac_202400020 wiley_primary_10_1002_zaac_202400020_ZAAC202400020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 17, 2024 |
PublicationDateYYYYMMDD | 2024-05-17 |
PublicationDate_xml | – month: 05 year: 2024 text: May 17, 2024 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Zeitschrift für anorganische und allgemeine Chemie (1950) |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 12 2017; 7 2021; 21 2017; 2 2020; 482 2023; 184 2017; 46 2019; 58 1949; 394 2020; 59 2020; 11 2021; 121 2020; 10 2009; 48 2018; 450 2000; 408 2023; 62 2015; 137 2002; 41 2020; 450 2023; 452 2013; 113 2018; 30 2003; 1 2003; 125 2019; 392 2022; 126 2014; 126 2004; 43 2001; 123 2015; 6 2004; 104 2018; 140 2023; 59 2010; 39 2023; 123 2015; 54 2020; 386 2013; 341 2009; 131 2021; 50 2019; 141 2019; 380 2024; 16 2011; 255 2014; 43 2016; 55 2017; 95 2016; 6 2010; 43 2022; 2022 2021; 11 2015; 115 2006; 45 2002; 124 2019; 48 2010; 132 2022; 12 2013; 135 2019; 378 2016; 138 2022; 10 2020; 22 2021; 297 2019; 570 2001; 34 2019; 370 2009; 38 2016; 9 2017; 546 Li Y.-P. (e_1_2_8_97_2) 2014; 43 e_1_2_8_49_2 e_1_2_8_45_2 e_1_2_8_26_2 e_1_2_8_68_2 e_1_2_8_9_2 e_1_2_8_5_2 e_1_2_8_41_2 e_1_2_8_87_2 e_1_2_8_22_2 e_1_2_8_64_2 e_1_2_8_1_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_38_2 e_1_2_8_19_2 e_1_2_8_34_2 e_1_2_8_15_2 e_1_2_8_57_2 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_99_1 e_1_2_8_30_2 e_1_2_8_76_2 e_1_2_8_11_2 e_1_2_8_53_2 e_1_2_8_101_1 e_1_2_8_72_2 e_1_2_8_29_2 e_1_2_8_25_1 e_1_2_8_48_2 e_1_2_8_67_2 e_1_2_8_2_2 e_1_2_8_6_1 e_1_2_8_21_2 e_1_2_8_63_2 e_1_2_8_86_2 e_1_2_8_44_1 e_1_2_8_40_2 e_1_2_8_82_1 e_1_2_8_18_2 e_1_2_8_14_2 e_1_2_8_79_2 e_1_2_8_37_1 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_98_2 e_1_2_8_56_1 e_1_2_8_10_2 e_1_2_8_33_2 e_1_2_8_52_2 e_1_2_8_75_1 e_1_2_8_102_1 e_1_2_8_71_2 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_2 e_1_2_8_3_2 e_1_2_8_7_2 e_1_2_8_20_1 e_1_2_8_89_1 e_1_2_8_66_2 e_1_2_8_43_2 e_1_2_8_85_1 e_1_2_8_62_2 e_1_2_8_81_2 e_1_2_8_17_2 e_1_2_8_13_2 e_1_2_8_59_2 e_1_2_8_36_2 e_1_2_8_70_1 e_1_2_8_78_1 e_1_2_8_55_2 e_1_2_8_32_2 e_1_2_8_74_2 e_1_2_8_51_2 e_1_2_8_103_1 e_1_2_8_93_1 e_1_2_8_27_2 e_1_2_8_23_2 e_1_2_8_46_2 e_1_2_8_69_1 e_1_2_8_80_2 e_1_2_8_4_2 e_1_2_8_8_2 e_1_2_8_42_2 e_1_2_8_88_2 e_1_2_8_65_1 e_1_2_8_61_2 e_1_2_8_84_1 e_1_2_8_39_2 e_1_2_8_12_2 e_1_2_8_35_2 e_1_2_8_58_2 e_1_2_8_16_1 e_1_2_8_92_1 e_1_2_8_100_1 e_1_2_8_96_2 e_1_2_8_54_2 e_1_2_8_77_2 e_1_2_8_31_1 e_1_2_8_73_2 e_1_2_8_50_1 e_1_2_8_104_1 |
References_xml | – volume: 48 start-page: 728 year: 2009 end-page: 734 publication-title: Inorg. Chem. – volume: 58 start-page: 9253 year: 2019 end-page: 9259 publication-title: Inorg. Chem. – volume: 570 start-page: 31 year: 2019 end-page: 41 publication-title: Appl. Catal. A – volume: 6 start-page: 1035 year: 2015 end-page: 1042 publication-title: Chem. Sci. – volume: 10 start-page: 5077 year: 2020 end-page: 5085 publication-title: ACS Catal. – volume: 46 start-page: 126 year: 2017 end-page: 157 publication-title: Chem. Soc. Rev. – volume: 12 start-page: 5585 year: 2022 end-page: 5594 publication-title: ACS Catal. – volume: 46 start-page: 1842 year: 2017 end-page: 1874 publication-title: Chem. Soc. Rev. – volume: 123 start-page: 3229 year: 2001 end-page: 3238 publication-title: J. Am. Chem. Soc. – volume: 59 start-page: 21778 year: 2020 end-page: 21784 publication-title: Angew. Chem. Int. Ed. – volume: 12 start-page: 996 year: 2022 end-page: 1004 publication-title: Catal. Sci. Technol. – volume: 62 start-page: 17678 year: 2023 end-page: 17690 publication-title: Inorg. Chem. – volume: 54 start-page: 13669 year: 2015 end-page: 13672 publication-title: Angew. Chem. Int. Ed. – volume: 9 start-page: 2824 year: 2016 end-page: 2831 publication-title: ChemSusChem – volume: 392 start-page: 83 year: 2019 end-page: 145 publication-title: Coord. Chem. Rev. – volume: 21 start-page: 1898 year: 2021 end-page: 1911 publication-title: Chem. Rec. – volume: 125 start-page: 11350 year: 2003 end-page: 11359 publication-title: J. Am. Chem. Soc. – volume: 408 start-page: 449 year: 2000 end-page: 453 publication-title: Nature – volume: 46 start-page: 3242 year: 2017 end-page: 3285 publication-title: Chem. Soc. Rev. – volume: 50 start-page: 5086 year: 2021 end-page: 5125 publication-title: Chem. Soc. Rev. – volume: 255 start-page: 485 year: 2011 end-page: 546 publication-title: Coord. Chem. Rev. – volume: 132 start-page: 14321 year: 2010 end-page: 14323 publication-title: J. Am. Chem. Soc. – volume: 141 start-page: 7498 year: 2019 end-page: 7508 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 3345 year: 2020 end-page: 3354 publication-title: Chem. Sci. – volume: 141 start-page: 14878 year: 2019 end-page: 14888 publication-title: J. Am. Chem. Soc. – volume: 131 start-page: 1883 year: 2009 end-page: 1888 publication-title: J. Am. Chem. Soc. – volume: 184 year: 2023 publication-title: Eur. Polym. J. – volume: 341 year: 2013 publication-title: Science – volume: 394 start-page: 1841 year: 1949 end-page: 1847 publication-title: J. Chem. Soc. – volume: 22 start-page: 3656 year: 2020 end-page: 3663 publication-title: CrystEngComm – volume: 12 start-page: 3283 year: 2010 end-page: 3290 publication-title: CrystEngComm – volume: 11 start-page: 16326 year: 2021 end-page: 16338 publication-title: RSC Adv. – volume: 135 start-page: 13306 year: 2013 end-page: 13309 publication-title: J. Am. Chem. Soc. – volume: 452 year: 2023 publication-title: Chem. Eng. J. – volume: 450 start-page: 104 year: 2020 end-page: 111 publication-title: J. Mol. Catal. – volume: 45 start-page: 6595 year: 2006 end-page: 6597 publication-title: Inorg. Chem. – volume: 137 start-page: 4243 year: 2015 end-page: 4248 publication-title: J. Am. Chem. Soc. – volume: 41 start-page: 3477 year: 2002 end-page: 3482 publication-title: Inorg. Chem. – volume: 386 start-page: 106 year: 2020 end-page: 116 publication-title: J. Catal. – volume: 450 start-page: 104 year: 2018 end-page: 111 publication-title: J. Mol. Catal. – volume: 16 year: 2024 publication-title: ChemCatChem – volume: 135 start-page: 16553 year: 2013 end-page: 16560 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 7590 year: 2016 end-page: 7596 publication-title: ACS Catal. – volume: 7 start-page: 6289 year: 2017 end-page: 6301 publication-title: ACS Catal. – volume: 43 start-page: 10948 year: 2014 end-page: 10955 publication-title: Dalton Trans. – volume: 123 start-page: 5347 year: 2023 end-page: 5420 publication-title: Chem. Rev. – volume: 482 year: 2020 publication-title: J. Mol. Catal. – volume: 48 start-page: 11855 year: 2019 end-page: 11861 publication-title: Dalton Trans. – volume: 126 start-page: 2653 year: 2014 end-page: 657 publication-title: Angew. Chem. Int. Ed. – volume: 113 start-page: 3766 year: 2013 end-page: 3798 publication-title: Chem. Rev. – volume: 140 start-page: 16229 year: 2018 end-page: 16236 publication-title: J. Am. Chem. Soc. – volume: 124 start-page: 4384 year: 2002 end-page: 4393 publication-title: J. Am. Chem. Soc. – volume: 38 start-page: 1477 year: 2009 end-page: 1504 publication-title: Chem. Soc. Rev. – volume: 297 year: 2021 publication-title: Appl. Catal. B – volume: 55 start-page: 5472 year: 2016 end-page: 5476 publication-title: Angew. Chem. Int. Ed. – volume: 126 start-page: 20388 year: 2022 end-page: 20394 publication-title: J. Phys. Chem. C – volume: 378 start-page: 262 year: 2019 end-page: 280 publication-title: Coord. Chem. Rev. – volume: 43 start-page: 6535 year: 2010 end-page: 6537 publication-title: Macromolecules – volume: 546 start-page: 15 year: 2017 end-page: 21 publication-title: Appl. Catal. A – volume: 58 start-page: 9160 year: 2019 end-page: 9165 publication-title: Angew. Chem. Int. Ed. – volume: 104 start-page: 6147 year: 2004 end-page: 6176 publication-title: Chem. Rev. – volume: 2022 year: 2022 publication-title: Eur. J. Inorg. Chem. – volume: 121 start-page: 3751 year: 2021 end-page: 3891 publication-title: Chem. Rev. – volume: 59 start-page: 8727 year: 2023 end-page: 8730 publication-title: Chem. Commun. – volume: 43 start-page: 6717 year: 2004 end-page: 6725 publication-title: Inorg. Chem. – volume: 2 start-page: 1 year: 2017 end-page: 16 publication-title: Nat. Rev. Mater. – volume: 370 start-page: 11 year: 2019 end-page: 20 publication-title: J. Catal. – volume: 380 start-page: 35 year: 2019 end-page: 57 publication-title: Coord. Chem. Rev. – volume: 6 start-page: 5238 year: 2016 end-page: 5261 publication-title: Catal. Sci. Technol. – volume: 138 start-page: 2142 year: 2016 end-page: 2145 publication-title: J. Am. Chem. Soc. – volume: 115 start-page: 6966 year: 2015 end-page: 6997 publication-title: Chem. Rev. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 43 start-page: 5815 year: 2014 end-page: 5840 publication-title: Chem. Soc. Rev. – volume: 38 start-page: 1450 year: 2009 end-page: 1459 publication-title: Chem. Soc. Rev. – volume: 1 start-page: 48 year: 2003 end-page: 49 publication-title: Chem. Commun. – volume: 10 start-page: 3843 year: 2022 end-page: 3868 publication-title: J. Mater. Chem. A – volume: 43 start-page: 6537 year: 2014 end-page: 6554 publication-title: Chem. Soc. Rev. – volume: 39 start-page: 1724 year: 2010 end-page: 1746 publication-title: Chem. Soc. Rev. – volume: 39 start-page: 486 year: 2010 end-page: 494 publication-title: Chem. Soc. Rev. – volume: 95 start-page: 6 year: 2017 end-page: 11 publication-title: Catal. Commun. – volume: 34 start-page: 3863 year: 2001 end-page: 3868 publication-title: Macromolecules – volume: 43 start-page: 4550 year: 2014 end-page: 4564 publication-title: Dalton Trans. – ident: e_1_2_8_70_1 – ident: e_1_2_8_37_1 – ident: e_1_2_8_3_2 doi: 10.1021/cr300263a – ident: e_1_2_8_85_1 – ident: e_1_2_8_81_2 doi: 10.1039/D1CY02143E – ident: e_1_2_8_9_2 doi: 10.1126/science.1230444 – ident: e_1_2_8_45_2 doi: 10.1002/cssc.201600761 – ident: e_1_2_8_66_2 doi: 10.1021/ma0019510 – ident: e_1_2_8_51_2 doi: 10.1021/cr040002s – ident: e_1_2_8_86_2 doi: 10.1016/j.ccr.2010.10.038 – ident: e_1_2_8_2_2 doi: 10.1038/35044040 – ident: e_1_2_8_39_2 doi: 10.1021/acs.chemrev.5b00221 – ident: e_1_2_8_67_2 doi: 10.1039/B208679D – ident: e_1_2_8_40_2 doi: 10.1021/jacs.5b01352 – ident: e_1_2_8_7_2 doi: 10.1039/b807080f – ident: e_1_2_8_99_1 – ident: e_1_2_8_29_2 doi: 10.1039/C9DT01763A – ident: e_1_2_8_101_1 doi: 10.1039/D1RA02909F – ident: e_1_2_8_12_2 doi: 10.1002/adma.201704303 – ident: e_1_2_8_96_2 doi: 10.1021/ic0113045 – ident: e_1_2_8_54_2 doi: 10.1016/j.ccr.2018.09.008 – ident: e_1_2_8_10_2 doi: 10.1039/C4CS00010B – ident: e_1_2_8_6_1 – ident: e_1_2_8_61_2 doi: 10.1021/ja003851f – ident: e_1_2_8_55_2 doi: 10.1016/j.eurpolymj.2022.111727 – ident: e_1_2_8_43_2 doi: 10.1021/jacs.9b02294 – ident: e_1_2_8_59_2 doi: 10.1039/D3CC01343J – ident: e_1_2_8_25_1 – ident: e_1_2_8_26_2 doi: 10.1016/j.apcata.2018.11.003 – ident: e_1_2_8_1_1 – ident: e_1_2_8_38_2 doi: 10.1021/ja807357r – ident: e_1_2_8_36_2 doi: 10.1016/j.mcat.2018.03.011 – ident: e_1_2_8_88_2 doi: 10.1016/j.cej.2022.139475 – ident: e_1_2_8_52_2 doi: 10.1039/B815104K – ident: e_1_2_8_4_2 doi: 10.1039/C4CS00102H – ident: e_1_2_8_11_2 doi: 10.1039/C6CS00930A – ident: e_1_2_8_16_1 – ident: e_1_2_8_60_1 – ident: e_1_2_8_42_2 doi: 10.1039/C6CS00250A – ident: e_1_2_8_13_2 doi: 10.1039/D1CS00056J – ident: e_1_2_8_18_2 doi: 10.1021/jacs.5b13335 – ident: e_1_2_8_84_1 doi: 10.1039/C9SC06024C – ident: e_1_2_8_89_1 doi: 10.1039/C6CY00695G – ident: e_1_2_8_33_2 doi: 10.1016/j.jcat.2018.11.031 – ident: e_1_2_8_95_1 – ident: e_1_2_8_94_1 doi: 10.1039/D0CE00309C – ident: e_1_2_8_35_2 doi: 10.1021/acscatal.0c00801 – ident: e_1_2_8_76_2 doi: 10.1002/anie.201505674 – ident: e_1_2_8_73_2 doi: 10.1002/anie.202008473 – ident: e_1_2_8_92_1 doi: 10.1016/j.mcat.2018.03.011 – ident: e_1_2_8_31_1 – ident: e_1_2_8_34_2 doi: 10.1002/anie.201904347 – ident: e_1_2_8_41_2 doi: 10.1002/anie.201511484 – ident: e_1_2_8_14_2 doi: 10.1021/acs.chemrev.0c01049 – ident: e_1_2_8_74_2 doi: 10.1021/acscatal.2c00858 – ident: e_1_2_8_21_2 doi: 10.1021/ja101208s – ident: e_1_2_8_47_2 doi: 10.1016/j.apcatb.2021.120411 – ident: e_1_2_8_90_1 doi: 10.1039/jr9490001841 – ident: e_1_2_8_22_2 doi: 10.1021/jacs.8b09606 – ident: e_1_2_8_53_2 doi: 10.1016/j.ccr.2019.04.013 – ident: e_1_2_8_27_2 doi: 10.1016/j.mcat.2019.110635 – ident: e_1_2_8_91_1 doi: 10.1016/j.catcom.2017.02.024 – ident: e_1_2_8_103_1 – ident: e_1_2_8_71_2 doi: 10.1021/ja0359512 – ident: e_1_2_8_83_1 doi: 10.1016/j.apcata.2017.08.007 – ident: e_1_2_8_104_1 – ident: e_1_2_8_28_1 – ident: e_1_2_8_44_1 – ident: e_1_2_8_69_1 doi: 10.1002/cctc.202300972 – volume: 43 start-page: 10948 year: 2014 ident: e_1_2_8_97_2 publication-title: Dalton Trans. – ident: e_1_2_8_32_2 doi: 10.1039/C4SC02362E – ident: e_1_2_8_57_2 doi: 10.1039/B912806A – ident: e_1_2_8_100_1 doi: 10.1039/c3dt52629a – ident: e_1_2_8_82_1 doi: 10.1021/ic060969 – ident: e_1_2_8_19_2 doi: 10.1038/natrevmats.2017.45 – ident: e_1_2_8_98_2 doi: 10.1039/b925829a – ident: e_1_2_8_75_1 – ident: e_1_2_8_49_2 doi: 10.1021/acs.jpcc.2c06643 – ident: e_1_2_8_46_2 doi: 10.1021/acscatal.6b02359 – ident: e_1_2_8_8_2 doi: 10.1039/b802426j – ident: e_1_2_8_50_1 – ident: e_1_2_8_102_1 – ident: e_1_2_8_68_2 doi: 10.1021/ic0490730 – ident: e_1_2_8_87_2 doi: 10.1016/j.ccr.2018.02.009 – ident: e_1_2_8_15_2 doi: 10.1021/acs.chemrev.2c00879 – ident: e_1_2_8_23_2 doi: 10.1021/acs.inorgchem.9b00963 – ident: e_1_2_8_80_2 doi: 10.1021/ja407920d – ident: e_1_2_8_5_2 doi: 10.1039/C6CS00424E – ident: e_1_2_8_20_1 – ident: e_1_2_8_65_1 – ident: e_1_2_8_56_1 – ident: e_1_2_8_78_1 – ident: e_1_2_8_62_2 doi: 10.1021/ic801397t – ident: e_1_2_8_77_2 doi: 10.1021/acscatal.7b02049 – ident: e_1_2_8_64_2 doi: 10.1002/ejic.202200494 – ident: e_1_2_8_79_2 doi: 10.1021/ja012689t – ident: e_1_2_8_24_1 doi: 10.1021/jacs.9b07891 – ident: e_1_2_8_93_1 doi: 10.1021/acs.inorgchem.3c02184 – ident: e_1_2_8_58_2 doi: 10.1002/tcr.202100148 – ident: e_1_2_8_72_2 doi: 10.1021/ja4069968 – ident: e_1_2_8_63_2 doi: 10.1021/ma101263g – ident: e_1_2_8_17_2 doi: 10.1002/ange.201309778 – ident: e_1_2_8_30_2 doi: 10.1016/j.jcat.2020.03.034 – ident: e_1_2_8_48_2 doi: 10.1039/D1TA09424F |
SSID | ssj0001055 |
Score | 2.365543 |
Snippet | Three new coordination polymers (CPs), {[Cu(NDC)(Fbtx)(H2O)] ⋅ 1.5H2O}n (1), {[Co(NDC)(Fbtx)(H2O)2] ⋅ 0.5Fbtx}n (2), and [Co2(NDC)2(Fbtx)]n (3), were... Three new coordination polymers (CPs), {[Cu(NDC)(Fbtx)(H 2 O)] ⋅ 1.5H 2 O} n ( 1 ), {[Co(NDC)(Fbtx)(H 2 O) 2 ] ⋅ 0.5Fbtx} n ( 2 ), and [Co 2 (NDC) 2 (Fbtx)] n... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Catalysts Catalytic activity Catalytic property Cobalt compounds Coordination polymer Coordination polymers Crystal structure Ligands Metal-to-ligand ratio Polymerization Ring opening polymerization Structural analysis |
Title | Metal Ion and Metal‐to‐Ligand Ratio Regulated Construction of Cu(II) and Co(II) Coordination Polymers as Efficient Catalysts for Ring‐Opening Polymerization of L‐Lactide |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fzaac.202400020 https://www.proquest.com/docview/3062773188 |
Volume | 650 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSsQwEA6iB734L66ukoOgHqrbNE3b41pdXFGRRUG8lKRNZFFaoevBPfkIvoqv5JM4k2531YugUEpSmCZl8vPNdPINITtChDyUCswSX3CHi1Q6oSsjJ0vBltC-0swy8F1citMbfnbr3345xV_xQ4wdbjgz7HqNE1yq8nBCGjqUEikIMQYSIA8swhiwhaioN-GPwuyP1S9m7gCQ8WrWxhY7_C7-fVeaQM2vgNXuOJ0FIuu-VoEmDwfPA3WQDn_QOP7nYxbJ_AiO0nY1fpbIlM6XyWxcZ4FbIe8XGuA57RY5lXlGbe3j9W1QwO28f4_Peqhc2quS2uuMYg7QmpWWFobGz3vd7r4VjwtbjAswefuVH5JeFY8v6DynsqQnltAC9kEao1vppRyUFFA17cEGCw1i9AuUapHREVJs4xy7g2c0Mr1Kbjon1_GpM0rz4KQMjVfT0gbMUGZCYzJPRpL7WvtZwFUk4HJdbZQwropM4PkqBISUMSNTX5sgCFp-6K2R6bzI9TqhBhSegoFnmGpxL2NKpK5nRMhUpDzO0wbZrdWcPFVsHknF28wSVEEyVkGDNOtRkIxmdZl4yOkcwCoYNgiz6vzlLcldux2Paxt_Edokc1jGgAU3aJJp0J_eAhw0UNtkpn10fNTZtmP-E77bBW4 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTuMwEB6xcIDL8rMguvz5sBLsIdA4jpMcqwjUsi1CFUirvUR2YiPEKlmp5QAnHoFX4ZV4EmacpgUuSKwURbGliR2Nf76ZjL8B-CFlLGKl0SwJpfCEzJUX-yrxihxtCRNqwx0D3-BMdi_F6e-wiSakszA1P8TU4UYzw63XNMHJIX00Yw29V4o4CCkIEjHPF1igtN7OqhrOGKQo_2P9k1l4CGWChrexzY_eyr_dl2Zg8zVkdXvOyTLoprd1qMnN4e1YH-b374gc_-tzVuDrBJGyTj2EVmHOlGuwmDaJ4L7B08AgQme9qmSqLJgrPT88jiu89a-vqG5I-mXDOq-9KRilAW2IaVllWXp70Ov9dOJp5R7TCq3e69oVyc6rv3fkP2dqxI4dpwVuhSwlz9LdaDxiCKzZEPdYbJACYPCpEZmcIqU2-tQdOqZRmHW4PDm-SLveJNODl3OyX23bWLREuY2tLQKVKBEaExaR0InEy_eN1dL6OrFREOoYQVLBrcpDY6MoaodxsAHzZVWaTWAWNZ6jjWe5boug4FrmfmBlzHWiAyHyFuw3es7-1YQeWU3dzDNSQTZVQQu2m2GQTSb2KAuI1jnChTBuAXf6_OAt2Z9OJ52Wvn9GaA8WuxeDftbvnf3agiWqp_gFP9qGedSl2UFYNNa7buC_AMd8CBc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEB7aFNpc-l-yTZrqUGh7cGLLsiwfFydLtt2EsDQQejGSJZXQYgd2c0hOfYS-Sl-pT5IZeb2b5FJowRhLMJbMSJpvxtI3AO-kVEJpg25JJkUkZK0jlegisjX6Ei4zjgcGvsMjeXAiPp1mpzdO8Xf8EMuAG82MsF7TBD-3fndFGnqlNVEQ0h5IhDz34YGQsaJxvTddEUhR-sfuH7OIEMmkPW1jzHdvy982SyuseROxBpMzegK672y30-T7zsXc7NRXd3gc_-drnsLjBR5lw24APYN7rnkOj8o-DdwL-H3oEJ-zcdsw3VgWSn9-_pq3eJucfaO6KWmXTbus9s4ySgLa09Ky1rPy4sN4_DGIl214LFv0ec-6QCQ7bn9cUvSc6RnbD4wWaAhZSXGly9l8xhBWsylaWGyQtr_gUy-yOENKbUyoO3RIw7qXcDLa_1IeRIs8D1HNyXv1sfPoh3KvvLepLrTInMtsLkwh8UoS5430iSl8nmZGIUSy3Os6cz7P8zhT6StYa9rGbQDzqPAaPTzPTSxSy42sk9RLxU1hUiHqAbzv1Vydd3QeVUfczCtSQbVUwQC2-lFQLab1rEqJ1DnHZVANgAd1_uUt1dfhsFyWXv-L0Ft4eLw3qibjo8-bsE7VtHkhybdgDVXp3iAmmpvtMOyvAcvnBs8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal+Ion+and+Metal%E2%80%90to%E2%80%90Ligand+Ratio+Regulated+Construction+of+Cu%28II%29+and+Co%28II%29+Coordination+Polymers+as+Efficient+Catalysts+for+Ring%E2%80%90Opening+Polymerization+of+L%E2%80%90Lactide&rft.jtitle=Zeitschrift+f%C3%BCr+anorganische+und+allgemeine+Chemie+%281950%29&rft.au=Jin%E2%80%90Xia+Tao&rft.au=Mei%E2%80%90Jun+Wei&rft.au=Tian%2C+Feng&rft.au=Zhen%E2%80%90Xiang+Xia&rft.date=2024-05-17&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0044-2313&rft.eissn=1521-3749&rft.volume=650&rft.issue=9-10&rft_id=info:doi/10.1002%2Fzaac.202400020&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-2313&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-2313&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-2313&client=summon |