In situ unravelling surface plasmon resonance subject-object role of BiVO4@Ag in photocatalytic water splitting

Surface plasmon resonance (SPR) of noble metal particles has been recognized to play a significant role in photocatalysis. We designed the BiVO4@Ag system by photo-deposition to prove the special role of Ag nanoparticles (NPs) in promoting water splitting. The BiVO4@Ag considerably increases light a...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 701; p. 138656
Main Authors Ding, Guodao, Zhang, Yanyang, Zhang, Yinjun, Gu, Jiajun, Hong, Dapeng, Li, Bo, Zhang, Jiawei, Zhu, Guoliang, Chen, Guangri, Shan, Lianwei, Wu, Haitao, Xu, Huanyan, Dong, Limin, Li, Dan, Wang, Chunyan
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.01.2026
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Surface plasmon resonance (SPR) of noble metal particles has been recognized to play a significant role in photocatalysis. We designed the BiVO4@Ag system by photo-deposition to prove the special role of Ag nanoparticles (NPs) in promoting water splitting. The BiVO4@Ag considerably increases light absorption by the SPR effect of Ag NPs. A strong interface effect in BiVO4@Ag-5 is effectively demonstrated through in situ vibration frequency variation of VO bonds from 826.1 cm−1 to 820.9 cm−1. Loaded Ag NPs in BiVO4 improve slightly the hot electron lifetime (1.80 fs) compared with BiVO4 (1.53 fs). Ag NPs significantly raise the conduction band potential of BiVO4@Ag system and evidently enhance the electrochemical specific surface area. The BiVO4@Ag also exhibits significant thermal effects when illuminated with a light source (>520 nm). However, BiVO4@Ag does not exhibit photocatalytic hydrogen evolution ability as using above light source, indicating that the pyroelectric current does not directly promote the photocatalytic hydrogen evolution performance of BiVO4@Ag. Using a light source (<520 nm) to excite and filter out the photothermal effect of BiVO4@Ag-5, an obvious reduction of hydrogen evolution (from 72.1 μmol to 18.3 μmol) can happen. The excited SPR effect with a light source (>520 nm, filter out the intrinsic absorption of BiVO4 matrix) proves that the SPR effect can only accelerate the hydrogen evolution rate of the system. The increase in temperature cannot significantly improve the photocatalytic hydrogen evolution rate of BiVO4@Ag-5. Ab initio molecular dynamics calculations based on solvation models suggest that the surface of BiVO4 mainly provides the role of water decomposition, while Ag NPs mainly provide the role of photocatalytic hydrogen evolution. These findings provide a unique perspective to understand the photocatalytic water splitting behaviors, which are of general significance in various energy conversion reactions. [Display omitted] •Ag NPs significantly raise the conduction band potential of BiVO₄@Ag system and optimize electron transfer dynamics.•The VO bonds elongation is beneficial for the formation of effective electronic transmission channels.•HER of BiVO₄@Ag is only activated by intrinsic absorption due to SPR effect does not directly contribute to HER.•BiVO₄ surfaces primarily drive water dissociation, while Ag NPs enhance hydrogen migration and evolution kinetics.
AbstractList Surface plasmon resonance (SPR) of noble metal particles has been recognized to play a significant role in photocatalysis. We designed the BiVO4@Ag system by photo-deposition to prove the special role of Ag nanoparticles (NPs) in promoting water splitting. The BiVO4@Ag considerably increases light absorption by the SPR effect of Ag NPs. A strong interface effect in BiVO4@Ag-5 is effectively demonstrated through in situ vibration frequency variation of VO bonds from 826.1 cm−1 to 820.9 cm−1. Loaded Ag NPs in BiVO4 improve slightly the hot electron lifetime (1.80 fs) compared with BiVO4 (1.53 fs). Ag NPs significantly raise the conduction band potential of BiVO4@Ag system and evidently enhance the electrochemical specific surface area. The BiVO4@Ag also exhibits significant thermal effects when illuminated with a light source (>520 nm). However, BiVO4@Ag does not exhibit photocatalytic hydrogen evolution ability as using above light source, indicating that the pyroelectric current does not directly promote the photocatalytic hydrogen evolution performance of BiVO4@Ag. Using a light source (<520 nm) to excite and filter out the photothermal effect of BiVO4@Ag-5, an obvious reduction of hydrogen evolution (from 72.1 μmol to 18.3 μmol) can happen. The excited SPR effect with a light source (>520 nm, filter out the intrinsic absorption of BiVO4 matrix) proves that the SPR effect can only accelerate the hydrogen evolution rate of the system. The increase in temperature cannot significantly improve the photocatalytic hydrogen evolution rate of BiVO4@Ag-5. Ab initio molecular dynamics calculations based on solvation models suggest that the surface of BiVO4 mainly provides the role of water decomposition, while Ag NPs mainly provide the role of photocatalytic hydrogen evolution. These findings provide a unique perspective to understand the photocatalytic water splitting behaviors, which are of general significance in various energy conversion reactions. [Display omitted] •Ag NPs significantly raise the conduction band potential of BiVO₄@Ag system and optimize electron transfer dynamics.•The VO bonds elongation is beneficial for the formation of effective electronic transmission channels.•HER of BiVO₄@Ag is only activated by intrinsic absorption due to SPR effect does not directly contribute to HER.•BiVO₄ surfaces primarily drive water dissociation, while Ag NPs enhance hydrogen migration and evolution kinetics.
Surface plasmon resonance (SPR) of noble metal particles has been recognized to play a significant role in photocatalysis. We designed the BiVO4@Ag system by photo-deposition to prove the special role of Ag nanoparticles (NPs) in promoting water splitting. The BiVO4@Ag considerably increases light absorption by the SPR effect of Ag NPs. A strong interface effect in BiVO4@Ag-5 is effectively demonstrated through in situ vibration frequency variation of VO bonds from 826.1 cm-1 to 820.9 cm-1. Loaded Ag NPs in BiVO4 improve slightly the hot electron lifetime (1.80 fs) compared with BiVO4 (1.53 fs). Ag NPs significantly raise the conduction band potential of BiVO4@Ag system and evidently enhance the electrochemical specific surface area. The BiVO4@Ag also exhibits significant thermal effects when illuminated with a light source (>520 nm). However, BiVO4@Ag does not exhibit photocatalytic hydrogen evolution ability as using above light source, indicating that the pyroelectric current does not directly promote the photocatalytic hydrogen evolution performance of BiVO4@Ag. Using a light source (<520 nm) to excite and filter out the photothermal effect of BiVO4@Ag-5, an obvious reduction of hydrogen evolution (from 72.1 μmol to 18.3 μmol) can happen. The excited SPR effect with a light source (>520 nm, filter out the intrinsic absorption of BiVO4 matrix) proves that the SPR effect can only accelerate the hydrogen evolution rate of the system. The increase in temperature cannot significantly improve the photocatalytic hydrogen evolution rate of BiVO4@Ag-5. Ab initio molecular dynamics calculations based on solvation models suggest that the surface of BiVO4 mainly provides the role of water decomposition, while Ag NPs mainly provide the role of photocatalytic hydrogen evolution. These findings provide a unique perspective to understand the photocatalytic water splitting behaviors, which are of general significance in various energy conversion reactions.Surface plasmon resonance (SPR) of noble metal particles has been recognized to play a significant role in photocatalysis. We designed the BiVO4@Ag system by photo-deposition to prove the special role of Ag nanoparticles (NPs) in promoting water splitting. The BiVO4@Ag considerably increases light absorption by the SPR effect of Ag NPs. A strong interface effect in BiVO4@Ag-5 is effectively demonstrated through in situ vibration frequency variation of VO bonds from 826.1 cm-1 to 820.9 cm-1. Loaded Ag NPs in BiVO4 improve slightly the hot electron lifetime (1.80 fs) compared with BiVO4 (1.53 fs). Ag NPs significantly raise the conduction band potential of BiVO4@Ag system and evidently enhance the electrochemical specific surface area. The BiVO4@Ag also exhibits significant thermal effects when illuminated with a light source (>520 nm). However, BiVO4@Ag does not exhibit photocatalytic hydrogen evolution ability as using above light source, indicating that the pyroelectric current does not directly promote the photocatalytic hydrogen evolution performance of BiVO4@Ag. Using a light source (<520 nm) to excite and filter out the photothermal effect of BiVO4@Ag-5, an obvious reduction of hydrogen evolution (from 72.1 μmol to 18.3 μmol) can happen. The excited SPR effect with a light source (>520 nm, filter out the intrinsic absorption of BiVO4 matrix) proves that the SPR effect can only accelerate the hydrogen evolution rate of the system. The increase in temperature cannot significantly improve the photocatalytic hydrogen evolution rate of BiVO4@Ag-5. Ab initio molecular dynamics calculations based on solvation models suggest that the surface of BiVO4 mainly provides the role of water decomposition, while Ag NPs mainly provide the role of photocatalytic hydrogen evolution. These findings provide a unique perspective to understand the photocatalytic water splitting behaviors, which are of general significance in various energy conversion reactions.
ArticleNumber 138656
Author Li, Dan
Zhang, Jiawei
Shan, Lianwei
Li, Bo
Chen, Guangri
Xu, Huanyan
Zhang, Yanyang
Zhang, Yinjun
Hong, Dapeng
Wu, Haitao
Dong, Limin
Ding, Guodao
Gu, Jiajun
Zhu, Guoliang
Wang, Chunyan
Author_xml – sequence: 1
  givenname: Guodao
  surname: Ding
  fullname: Ding, Guodao
  organization: Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China
– sequence: 2
  givenname: Yanyang
  surname: Zhang
  fullname: Zhang, Yanyang
  organization: Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China
– sequence: 3
  givenname: Yinjun
  surname: Zhang
  fullname: Zhang, Yinjun
  organization: Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China
– sequence: 4
  givenname: Jiajun
  surname: Gu
  fullname: Gu, Jiajun
  organization: Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China
– sequence: 5
  givenname: Dapeng
  surname: Hong
  fullname: Hong, Dapeng
  organization: Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China
– sequence: 6
  givenname: Bo
  surname: Li
  fullname: Li, Bo
  organization: Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China
– sequence: 7
  givenname: Jiawei
  surname: Zhang
  fullname: Zhang, Jiawei
  organization: Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China
– sequence: 8
  givenname: Guoliang
  surname: Zhu
  fullname: Zhu, Guoliang
  organization: Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China
– sequence: 9
  givenname: Guangri
  surname: Chen
  fullname: Chen, Guangri
  organization: Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China
– sequence: 10
  givenname: Lianwei
  surname: Shan
  fullname: Shan, Lianwei
  email: lwshan@hrbust.edu.cn
  organization: Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China
– sequence: 11
  givenname: Haitao
  surname: Wu
  fullname: Wu, Haitao
  email: wuhaitao@ytu.edu.cn
  organization: School of Environmental and Material Engineering, Yantai University, Yantai 264005, Shandong, China
– sequence: 12
  givenname: Huanyan
  surname: Xu
  fullname: Xu, Huanyan
  email: xuhuanyan@hrbust.edu.cn
  organization: Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China
– sequence: 13
  givenname: Limin
  surname: Dong
  fullname: Dong, Limin
  email: donglimin@hrbust.edu.cn
  organization: Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China
– sequence: 14
  givenname: Dan
  surname: Li
  fullname: Li, Dan
  organization: Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China
– sequence: 15
  givenname: Chunyan
  surname: Wang
  fullname: Wang, Chunyan
  organization: Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China
BookMark eNp9kD9PwzAUxC1UJErhCzB5ZEmwE5zEEgOl4k-lSizAajnOMzhK7WA7RXx7XMrM8k56ujvpfqdoZp0FhC4oySmh1VWf98qEvCAFy2nZVKw6QnNKOMtqSsoZmhNS0IzXvD5BpyH0hFDKGJ8jt7Y4mDjhyXq5g2Ew9h2HyWupAI-DDFtnsYfgrLTpE6a2BxUz9yvYuwGw0_jOvD1f3y7fsbF4_HDRKRnl8B2Nwl8ygsdhHEyMqfsMHWs5BDj_0wV6fbh_WT1lm-fH9Wq5yVRBaMx4CVXbkKphrOWt6nRXNl2rdadrDddFTVqlKtDQNFrVALJtVEvT4Z2uiGJduUCXh97Ru88JQhRbE1TaJy24KYiyKHndlLxgyVocrMq7EDxoMXqzlf5bUCL2dEUv9nTFnq440E2hm0MI0oidAS-CMpAQdcYnMqJz5r_4D1-miPI
Cites_doi 10.1039/D2TA05332B
10.1007/s12598-015-0669-0
10.1039/C4CP03666B
10.1021/acssuschemeng.3c06046
10.1103/PhysRevA.31.1695
10.1039/D2NA00140C
10.1039/D3NA00712J
10.1002/adma.202305163
10.1002/ejic.201500936
10.1021/acssuschemeng.2c07086
10.1021/acsaem.1c00694
10.1039/D0CS00357C
10.1021/acs.nanolett.2c02070
10.1002/smll.202103245
10.1021/acs.inorgchem.4c00378
10.1039/c2nr12046a
10.1063/1.447334
10.1016/j.apsusc.2019.144417
10.1039/D3CP01425H
10.1021/acscatal.2c01519
10.1021/acscatal.4c02674
10.1021/acscatal.2c00486
10.1021/acssuschemeng.0c01085
10.1021/acsaem.0c00834
10.1016/j.jcis.2023.12.093
10.1039/D3NR02543H
10.1002/adma.202001385
10.1021/acsenergylett.3c01543
10.1021/acsestengg.3c00539
10.1039/C9TA07353A
10.1016/j.surfin.2025.107202
10.1016/j.jcis.2023.09.059
10.1016/j.apsusc.2019.143900
10.1039/C7TA11132K
10.1002/anie.202405756
10.1021/acs.nanolett.3c04166
10.1016/j.apcatb.2021.119880
10.1016/j.apcatb.2020.119226
10.1021/jacs.4c18733
10.1021/acssuschemeng.1c00764
10.1016/j.electacta.2019.04.107
10.1002/adma.202414959
10.1016/j.jallcom.2025.181611
10.1016/j.apsusc.2018.05.154
10.1021/acsami.2c07451
10.1016/j.apcatb.2022.122220
10.1016/j.apcatb.2023.123453
10.1016/j.cej.2024.155641
10.1016/j.jcis.2024.02.058
10.1038/s41467-021-26284-x
10.1016/j.matchemphys.2025.131348
10.1021/acsnano.4c10702
10.1016/j.cej.2020.128336
10.1021/acs.estlett.9b00053
10.1021/acsenergylett.3c02172
10.1016/j.jcis.2024.06.106
10.1038/s41467-022-28146-6
10.1039/D3SC03474G
10.1016/j.apcatb.2019.03.023
10.1039/C9CC02574J
10.1016/j.cej.2021.131516
10.1016/j.cej.2024.153960
ContentType Journal Article
Copyright 2025 Elsevier Inc.
Copyright © 2025 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2025 Elsevier Inc.
– notice: Copyright © 2025 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
7X8
DOI 10.1016/j.jcis.2025.138656
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1095-7103
ExternalDocumentID 10_1016_j_jcis_2025_138656
S0021979725020478
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
1B1
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AATTM
AAXKI
AAXUO
AAYWO
ABDPE
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABWVN
ABXDB
ABXRA
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADECG
ADEWK
ADEZE
ADFGL
ADMUD
ADNMO
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEZYN
AFFNX
AFJKZ
AFPUW
AFRZQ
AFTJW
AFZHZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AIVDX
AJSZI
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EFKBS
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLY
HVGLF
HZ~
H~9
IHE
J1W
KOM
LG5
LX6
M24
M41
MAGPM
MO0
N9A
NDZJH
NEJ
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SCB
SCC
SCE
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
VH1
WH7
WUQ
XPP
YQT
ZGI
ZMT
ZU3
ZXP
~02
~G-
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c201t-93e6b806855b9bcdfd38dbffdf7fe4270bcc6efe88fc7eeab8cb1b8c9df60c5d3
IEDL.DBID .~1
ISSN 0021-9797
1095-7103
IngestDate Fri Aug 15 20:06:15 EDT 2025
Wed Aug 27 16:27:20 EDT 2025
Sat Aug 30 17:14:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Surface plasmon resonance
Photocatalysis
Interface
BiVO4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c201t-93e6b806855b9bcdfd38dbffdf7fe4270bcc6efe88fc7eeab8cb1b8c9df60c5d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 3239783925
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3239783925
crossref_primary_10_1016_j_jcis_2025_138656
elsevier_sciencedirect_doi_10_1016_j_jcis_2025_138656
PublicationCentury 2000
PublicationDate 2026-01-01
PublicationDateYYYYMMDD 2026-01-01
PublicationDate_xml – month: 01
  year: 2026
  text: 2026-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of colloid and interface science
PublicationYear 2026
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Kong, Dong, Yu, Zhang, Liu, Ji, Cai, Pu (bb0290) 2024; 496
An, Hu, Wang (bb0125) 2023; 25
Wang, He (bb0130) 2023; 15
Kweon, Hwang, Kim, Kim, Kim (bb0085) 2015; 17
Dey, Gahlawat, Ingole (bb0315) 2019; 7
Zhang, Ma, Xiong, Jiang, Tang (bb0250) 2020; 3
Mateo, Cerrillo, Durini, Gascon (bb0285) 2021; 50
Li, Yang, Ruan, Cui, Ravi (bb0145) 2025
Zhang, Shi, Si, Liu, Guo, Zhao, Prezhdo (bb0050) 2022; 22
Lee, Yoo, Lee, Kim, Sohn, Rhee (bb0155) 2019; 310
Shan, Fang, Ding, Shi, Dong, Li, Wu, Li, Suriyaprakash, Zhou, Xiao (bb0010) 2024; 653
Liu, Yang, Zeng, Xantheas, Yagi, He (bb0280) 2021; 12
Liu, Wang, Cao, Yu, Dong, Zhao, Zhao, Zhang, Pu (bb0035) 2024; 673
Nosé (bb0210) 1984; 81
Huang, Bian, Xiong, Huang, Zhang (bb0205) 2018; 6
Shan, Li, Wu, Dong, Chen, Li, Suriyaprakash, Zhang (bb0230) 2022; 436
Jang, Choi, Roh, Wan, Zhang, Kwon, Kim, Park (bb0105) 2023; 8
Bai, Mei, Zhu, Zhang, Huang, Cheng (bb0120) 2020; 8
Liu, Xu, Li, Cao, Jin, Shan, Dong (bb0005) 2024; 497
Barawi, Gomez-Mendoza, Oropeza, Gorni, Villar-Garcia, Giménez, O'Shea, García-Tecedor (bb0055) 2022; 14
Samsudin, Bashiri, Mohammed, Ng, Sufian (bb0265) 2020; 504
Deng, Zhou, Zhao, Yang, Shi, Tao, Yang, Li, Li (bb0240) 2022; 18
Zou, Wang, Wu, Li, Yuan, Wang (bb0225) 2019; 498
Qi, Zhang, Kong, Zhao, Chen, Li, Liu, Chen, Xie, Cui, Li, Domen, Zhang (bb0060) 2022; 13
Wang, Xie, Cui, Liu, Jiang (bb0115) 2021; 9
Ai, Yin, Hansen (bb0310) 2019; 6
Sekar, Kassam, Bai, Coulson, Li, Douthwaite, Sasaki, Lee (bb0025) 2021; 22
Lin, Feng, Li, Zhang, Wang, Ma (bb0320) 2021; 286
Liu, Dai, Deng, Zhang, Au (bb0070) 2012; 4
Huang, Lin, Yang, Hu, Zhou, Li, Hu, Yang (bb0135) 2023; 11
Zhang, Jiang, Huang, Lu, Zhang (bb0150) 2022; 10
Ruan, Xue, Fujitsuka, Majima (bb0170) 2019; 55
Zhang, Xiang, Guo, Wang, Liu, Lin, Ma (bb0095) 2021; 4
Lv, Du, Wu, Cai, Zhou (bb0180) 2022; 4
Gao, Zhu, Zhao, Xie, Fan, Li (bb0330) 2025; 37
Tong, Liang, Liu, Wang, Liu, Wang, Cheng, Dai, Zheng, Huang (bb0260) 2022; 12
Hoover (bb0215) 1985; 31
Tong, Lou, Liang, Ma, Chen, Wang, Liu, Wang, Cheng, Dai, Zheng, Huang (bb0295) 2020; 277
Lv, Zhang, Li, Huang, Zheng (bb0300) 2024; 18
Su, Zhang, Yao, Liang, Yang, Zhang, Pu, Liu, Cai, Li (bb0020) 2024; 662
Yuan, Suriyaprakash, Shan, Xu, Li, Wu, Ding, Shi, Dong, Zhang (bb0045) 2024; 658
Wang, Hong, Shan, Wu, Xu, Li, Liu, He, Dong (bb0165) 2025; 72
Chen, Wu, Wang, François-Xavier, Wintgens (bb0220) 2019; 250
Legaspi, Regulacio (bb0190) 2023; 5
Zhang, Si, Jiang, Yuan, Yu, Wu, Li, Guo (bb0200) 2021; 410
Hong, Zhang, Li, Zhu, Chen, Shan, Xu, Wu, Li, Dong (bb0015) 2025; 1036
Lv, Zhang, Li, Gong, Zhang, Wang, Liu, Wang, Cheng, Dai, Fan, Huang, Zheng (bb0185) 2023; 8
Guangfu, Anderson, Chen, Pan, Chuang (bb0305) 2017; 2
Zhang, Zhang, Chen, Hong, Shan, Xu, Wu, He, Qi, Dong (bb0080) 2025; 346
Zu, Ying, Wei, Xiong, Ahmed, Lin, Li, Li, Xu, Chen, Bai, She, Tsang, Huang (bb0255) 2024; 63
Wu, Qu, Ng (bb0065) 2025; 147
Wang, He, Chen, Du, Ostrikov, Huang, Wang (bb0075) 2020; 32
Shan, Liu, Ma, Dong, Liu, Wu (bb0160) 2016; 2016
Xu, Xu, Shan, Liu, Cao, Jin, Dong (bb0030) 2024; 63
Huang, Wang, Fan, Philo, Fang, Tu, Qiu, Zou, Ye (bb0100) 2023; 11
Tada, Fujishima, Naya (bb0110) 2024; 4
Wen, Huang, Yang, Wang, Wang, Chen, Peng, Kong, Ye (bb0270) 2024; 14
Chen, Wang, Shen, Zhang, Lou, Pan, Zhu, Xu (bb0325) 2023; 324
Ding, Wang, Yu, Wang, Gao, Liu (bb0195) 2018; 454
Zhao, He, Wang, Ding, Zong, Li, Sun, Du, Fan, Peng (bb0275) 2023; 35
Chen, Cheng, Liu, Wang, Qu, Jiang, Qin, Yuan (bb0245) 2024; 342
Ren, Yang, Sun, Yuan (bb0235) 2024; 24
Wang, Shan, Wu, Dong (bb0090) 2017; 36
Liu, Xie, Wang, Yang, Su, Ling, Chen (bb0175) 2023; 14
Sun, Suriyaprakash, Shan, Xu, Zhang, Chen, Zhang, Wu, Li, Dong, Pang, Li, Li (bb0040) 2024; 355
Yang, Zhang, Xie, Fang, Cui (bb0140) 2022; 12
Samsudin (10.1016/j.jcis.2025.138656_bb0265) 2020; 504
Gao (10.1016/j.jcis.2025.138656_bb0330) 2025; 37
Zhang (10.1016/j.jcis.2025.138656_bb0080) 2025; 346
Lin (10.1016/j.jcis.2025.138656_bb0320) 2021; 286
Su (10.1016/j.jcis.2025.138656_bb0020) 2024; 662
Lv (10.1016/j.jcis.2025.138656_bb0185) 2023; 8
Huang (10.1016/j.jcis.2025.138656_bb0205) 2018; 6
Shan (10.1016/j.jcis.2025.138656_bb0230) 2022; 436
Kweon (10.1016/j.jcis.2025.138656_bb0085) 2015; 17
Yang (10.1016/j.jcis.2025.138656_bb0140) 2022; 12
Sun (10.1016/j.jcis.2025.138656_bb0040) 2024; 355
Deng (10.1016/j.jcis.2025.138656_bb0240) 2022; 18
Tada (10.1016/j.jcis.2025.138656_bb0110) 2024; 4
Ren (10.1016/j.jcis.2025.138656_bb0235) 2024; 24
Zhang (10.1016/j.jcis.2025.138656_bb0095) 2021; 4
Zhang (10.1016/j.jcis.2025.138656_bb0050) 2022; 22
An (10.1016/j.jcis.2025.138656_bb0125) 2023; 25
Liu (10.1016/j.jcis.2025.138656_bb0280) 2021; 12
Li (10.1016/j.jcis.2025.138656_bb0145) 2025
Dey (10.1016/j.jcis.2025.138656_bb0315) 2019; 7
Tong (10.1016/j.jcis.2025.138656_bb0260) 2022; 12
Ding (10.1016/j.jcis.2025.138656_bb0195) 2018; 454
Shan (10.1016/j.jcis.2025.138656_bb0160) 2016; 2016
Barawi (10.1016/j.jcis.2025.138656_bb0055) 2022; 14
Hong (10.1016/j.jcis.2025.138656_bb0015) 2025; 1036
Qi (10.1016/j.jcis.2025.138656_bb0060) 2022; 13
Liu (10.1016/j.jcis.2025.138656_bb0035) 2024; 673
Zhang (10.1016/j.jcis.2025.138656_bb0150) 2022; 10
Zhang (10.1016/j.jcis.2025.138656_bb0250) 2020; 3
Lv (10.1016/j.jcis.2025.138656_bb0180) 2022; 4
Zu (10.1016/j.jcis.2025.138656_bb0255) 2024; 63
Hoover (10.1016/j.jcis.2025.138656_bb0215) 1985; 31
Guangfu (10.1016/j.jcis.2025.138656_bb0305) 2017; 2
Wang (10.1016/j.jcis.2025.138656_bb0165) 2025; 72
Ai (10.1016/j.jcis.2025.138656_bb0310) 2019; 6
Chen (10.1016/j.jcis.2025.138656_bb0220) 2019; 250
Kong (10.1016/j.jcis.2025.138656_bb0290) 2024; 496
Zhao (10.1016/j.jcis.2025.138656_bb0275) 2023; 35
Nosé (10.1016/j.jcis.2025.138656_bb0210) 1984; 81
Chen (10.1016/j.jcis.2025.138656_bb0325) 2023; 324
Sekar (10.1016/j.jcis.2025.138656_bb0025) 2021; 22
Tong (10.1016/j.jcis.2025.138656_bb0295) 2020; 277
Xu (10.1016/j.jcis.2025.138656_bb0030) 2024; 63
Yuan (10.1016/j.jcis.2025.138656_bb0045) 2024; 658
Huang (10.1016/j.jcis.2025.138656_bb0135) 2023; 11
Mateo (10.1016/j.jcis.2025.138656_bb0285) 2021; 50
Zhang (10.1016/j.jcis.2025.138656_bb0200) 2021; 410
Legaspi (10.1016/j.jcis.2025.138656_bb0190) 2023; 5
Wen (10.1016/j.jcis.2025.138656_bb0270) 2024; 14
Wang (10.1016/j.jcis.2025.138656_bb0130) 2023; 15
Lee (10.1016/j.jcis.2025.138656_bb0155) 2019; 310
Bai (10.1016/j.jcis.2025.138656_bb0120) 2020; 8
Shan (10.1016/j.jcis.2025.138656_bb0010) 2024; 653
Ruan (10.1016/j.jcis.2025.138656_bb0170) 2019; 55
Liu (10.1016/j.jcis.2025.138656_bb0175) 2023; 14
Huang (10.1016/j.jcis.2025.138656_bb0100) 2023; 11
Chen (10.1016/j.jcis.2025.138656_bb0245) 2024; 342
Wu (10.1016/j.jcis.2025.138656_bb0065) 2025; 147
Wang (10.1016/j.jcis.2025.138656_bb0090) 2017; 36
Zou (10.1016/j.jcis.2025.138656_bb0225) 2019; 498
Liu (10.1016/j.jcis.2025.138656_bb0005) 2024; 497
Wang (10.1016/j.jcis.2025.138656_bb0075) 2020; 32
Jang (10.1016/j.jcis.2025.138656_bb0105) 2023; 8
Lv (10.1016/j.jcis.2025.138656_bb0300) 2024; 18
Liu (10.1016/j.jcis.2025.138656_bb0070) 2012; 4
Wang (10.1016/j.jcis.2025.138656_bb0115) 2021; 9
References_xml – volume: 2
  start-page: 237
  year: 2017
  end-page: 251
  ident: bb0305
  article-title: New insights into evaluating catalyst activity and stability of oxygen evolution reactions in alkaline media
  publication-title: Sustain. Energ. Fuels
– volume: 17
  start-page: 256
  year: 2015
  end-page: 260
  ident: bb0085
  article-title: Electron small polarons and their transport in bismuth vanadate: a first principles study
  publication-title: Phys. Chem. Chem. Phys.
– volume: 454
  start-page: 101
  year: 2018
  end-page: 111
  ident: bb0195
  article-title: Facile formation of flexible ag/AgCl/polydopamine/cotton fabric composite photocatalysts as an efficient visible-light photocatalysts
  publication-title: Appl. Surf. Sci.
– volume: 653
  start-page: 94
  year: 2024
  end-page: 107
  ident: bb0010
  article-title: Electron confinement promoted the electric double layer effect of BiOI/β-Bi
  publication-title: J. Colloid Interf. Sci.
– volume: 346
  year: 2025
  ident: bb0080
  article-title: Field effect driven ferroelectric polarization dynamics and design strategies for piezo-photocatalytic water splitting
  publication-title: Mater. Chem. Phys.
– volume: 25
  start-page: 19358
  year: 2023
  end-page: 19370
  ident: bb0125
  article-title: Schottky-barrier-free plasmonic photocatalysts
  publication-title: Phys. Chem. Chem. Phys.
– volume: 8
  start-page: 4033
  year: 2023
  end-page: 4042
  ident: bb0185
  article-title: Plasmonic ag interlayer induced direct energy transfer studied at single-particle level
  publication-title: ACS Energy Lett.
– volume: 1036
  year: 2025
  ident: bb0015
  article-title: Progress in polarization synergistic mechanism and cross-domain application of multi-field modulated piezo-photocatalysis for ferroelectric materials
  publication-title: J. Alloys Compd.
– volume: 4
  start-page: 506
  year: 2024
  end-page: 524
  ident: bb0110
  article-title: Fundamentals and applications of gold nanoparticle-based plasmonic photocatalysts for water purification
  publication-title: ACS ES T Eng.
– year: 2025
  ident: bb0145
  article-title: Plasmonic nanomaterials in photothermal catalysis and artificial photosynthesis: hot electron dynamics, design challenges, and future prospects
  publication-title: Adv. Funct. Mater.
– volume: 662
  start-page: 276
  year: 2024
  end-page: 288
  ident: bb0020
  article-title: Enhanced piezo-photocatalytic performance in ZnIn
  publication-title: J. Colloid Interf. Sci.
– volume: 12
  start-page: 6141
  year: 2021
  ident: bb0280
  article-title: Towards complete assignment of the infrared spectrum of the protonated water cluster H
  publication-title: Nat. Commun.
– volume: 286
  year: 2021
  ident: bb0320
  article-title: Improved photocatalytic hydrogen evolution on (Ru/WC)/CdS via modulating the transferring paths of photo-excited electrons
  publication-title: Appl. Catal. Environ.
– volume: 22
  start-page: 6334
  year: 2022
  end-page: 6341
  ident: bb0050
  article-title: Improved carrier lifetime in BiVO
  publication-title: Nano Lett.
– volume: 81
  start-page: 511
  year: 1984
  end-page: 519
  ident: bb0210
  article-title: A unified formulation of the constant temperature molecular dynamics methods
  publication-title: J. Chem. Phys.
– volume: 9
  start-page: 4271
  year: 2021
  end-page: 4281
  ident: bb0115
  article-title: Photoinduced Pt/BiVO
  publication-title: ACS Sustain. Chem. Eng.
– volume: 35
  start-page: 2305163
  year: 2023
  ident: bb0275
  article-title: Near-infrared self-assembled hydroxyl radical generator based on Photoinduced Cascade Electron transfer for hypoxic tumor phototherapy
  publication-title: Adv. Mater.
– volume: 250
  start-page: 31
  year: 2019
  end-page: 41
  ident: bb0220
  article-title: Highly efficient Z-scheme structured visible-light photocatalyst constructed by selective doping of Ag@AgBr and Co
  publication-title: Appl. Catal. B Environ.
– volume: 310
  start-page: 38
  year: 2019
  end-page: 44
  ident: bb0155
  article-title: Formic acid oxidation on Pt deposit model catalysts on Au: single-layered Pt deposits, plateau-type Pt deposits, and conical Pt deposits
  publication-title: Electrochim. Acta
– volume: 277
  year: 2020
  ident: bb0295
  article-title: Plasmon-induced dehydrogenation of formic acid on Pd-dotted ag@Au hexagonal nanoplates and single-particle study
  publication-title: Appl. Catal. Environ.
– volume: 32
  start-page: 2001385
  year: 2020
  ident: bb0075
  article-title: In situ formation of oxygen vacancies achieving near-complete charge separation in planar BiVO
  publication-title: Adv. Mater.
– volume: 410
  year: 2021
  ident: bb0200
  article-title: Core-shell ag@nitrogen-doped carbon quantum dots modified BiVO
  publication-title: Chem. Eng. J.
– volume: 13
  start-page: 484
  year: 2022
  ident: bb0060
  article-title: Unraveling of cocatalysts photodeposited selectively on facets of BiVO
  publication-title: Nat. Commun.
– volume: 11
  start-page: 17168
  year: 2023
  end-page: 17178
  ident: bb0135
  article-title: Synergism of the Plasmonic effect and Schottky junction to effectively facilitate photocatalytic CO
  publication-title: ACS Sustainable Chem. Eng.
– volume: 6
  start-page: 191
  year: 2019
  end-page: 196
  ident: bb0310
  article-title: Fast dechlorination of chlorinated ethylenes by green rust in the presence of bone char
  publication-title: Environ. Sci. Technol. Lett.
– volume: 342
  year: 2024
  ident: bb0245
  article-title: Achieving long-lived shallow trapping states in carbon nitride through the n-π*electronic transition for enhanced photocatalytic hydrogen generation
  publication-title: Appl. Catal. Environ.
– volume: 497
  year: 2024
  ident: bb0005
  article-title: Mechanical-vibration-driven piezocatalytic degradation of organic pollutants over microcrystalline SnSe with selenium vacancies
  publication-title: Chem. Eng. J.
– volume: 658
  start-page: 571
  year: 2024
  end-page: 583
  ident: bb0045
  article-title: Carrier confinement activated explicit solvent dynamic of CdS/BiVO
  publication-title: J. Colloid Interf. Sci.
– volume: 4
  start-page: 2317
  year: 2012
  end-page: 2325
  ident: bb0070
  article-title: Three-dimensional ordered macroporous bismuth vanadates: PMMA-templating fabrication and excellent visible light-driven photocatalytic performance for phenol degradation
  publication-title: Nanoscale
– volume: 5
  start-page: 5683
  year: 2023
  end-page: 5704
  ident: bb0190
  article-title: Nanocomposites of Cu
  publication-title: Nanoscale Adv.
– volume: 14
  start-page: 33200
  year: 2022
  end-page: 33210
  ident: bb0055
  article-title: Laser-reduced BiVO
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 5192
  year: 2023
  end-page: 5200
  ident: bb0105
  article-title: Plasmon-driven reaction selectivity tuning for photoelectrochemical H
  publication-title: ACS Energy Lett.
– volume: 498
  year: 2019
  ident: bb0225
  article-title: Construction of all-solid-state Z-scheme 2D BiVO
  publication-title: Appl. Surf. Sci.
– volume: 12
  start-page: 3558
  year: 2022
  end-page: 3565
  ident: bb0260
  article-title: Plasmon-enhanced water activation for hydrogen evolution from Ammonia-borane studied at a single-particle level
  publication-title: ACS Catal.
– volume: 36
  start-page: 129
  year: 2017
  end-page: 133
  ident: bb0090
  article-title: Enhanced photocatalytic properties of molybdenum doped BiVO
  publication-title: Rare Met.
– volume: 8
  start-page: 6488
  year: 2020
  end-page: 6495
  ident: bb0120
  article-title: In situ irradiated X-ray photoelectron spectroscopy on the ag-Zn
  publication-title: ACS sustainable Chem. Eng.
– volume: 12
  start-page: 8558
  year: 2022
  end-page: 8571
  ident: bb0140
  article-title: Photocatalytic reduction of carbon dioxide to methane at the Pd-supported TiO
  publication-title: ACS Catal.
– volume: 50
  start-page: 2173
  year: 2021
  end-page: 2210
  ident: bb0285
  article-title: Fundamentals and applications of photo-thermal catalysis
  publication-title: Chem. Soc. Rev.
– volume: 504
  start-page: 144417
  year: 2020
  ident: bb0265
  article-title: Tailoring the morphological structure of BiVO
  publication-title: Appl. Surf. Sci.
– volume: 147
  start-page: 10829
  year: 2025
  end-page: 10833
  ident: bb0065
  article-title: Bismuth vanadate capable of driving one-step-excitation photocatalytic overall water splitting
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 11153
  year: 2024
  end-page: 11163
  ident: bb0270
  article-title: Dynamic bromine vacancy-mediated photocatalytic three-step three-Electron oxygen reduction to hydroxyl radicals
  publication-title: ACS Catal.
– volume: 4
  start-page: 2608
  year: 2022
  end-page: 2631
  ident: bb0180
  article-title: Review on LSPR assisted photocatalysis: effects of physical fields and opportunities in multifield decoupling
  publication-title: Nanoscale Adv.
– volume: 6
  start-page: 3602
  year: 2018
  end-page: 3609
  ident: bb0205
  article-title: Low-dimensional Mo:BiVO
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 21207
  year: 2019
  end-page: 21221
  ident: bb0315
  article-title: BiVO
  publication-title: J. Mater. Chem. A
– volume: 63
  year: 2024
  ident: bb0255
  article-title: Oxygen vacancies trigger rapid charge transport channels at the engineered Interface of S-scheme heterojunction for boosting photocatalytic performance
  publication-title: Angew. Chem. Int. Ed.
– volume: 72
  start-page: 107202
  year: 2025
  ident: bb0165
  article-title: Polarization engineering and design strategies of ferroelectric materials in photocatalytic CO
  publication-title: Surf. Interfaces
– volume: 436
  year: 2022
  ident: bb0230
  article-title: Unveiling the intrinsic band alignment and robust water oxidation features of hierarchical BiVO
  publication-title: Chem. Eng. J.
– volume: 10
  start-page: 20048
  year: 2022
  end-page: 20058
  ident: bb0150
  article-title: Plasmon-enhanced photocatalytic overall water-splitting over Au nanoparticle-decorated CaNb
  publication-title: J. Mater. Chem. A
– volume: 15
  start-page: 12398
  year: 2023
  end-page: 12405
  ident: bb0130
  article-title: Plasmon photocatalytic CO
  publication-title: Nanoscale
– volume: 37
  start-page: 2414959
  year: 2025
  ident: bb0330
  article-title: Regulating charge separation via periodic Array nanostructures for Plasmon-enhanced water oxidation
  publication-title: Adv. Mater.
– volume: 24
  start-page: 715
  year: 2024
  end-page: 723
  ident: bb0235
  article-title: Synchronizing efficient purification of VOCs in durable solar water evaporation over a highly stable cu/W
  publication-title: Nano Lett.
– volume: 63
  start-page: 6500
  year: 2024
  end-page: 6513
  ident: bb0030
  article-title: Photocatalysis meets piezoelectricity in a type-I oxygen vacancy-rich BaTiO
  publication-title: Inorg. Chem.
– volume: 14
  start-page: 13518
  year: 2023
  end-page: 13529
  ident: bb0175
  article-title: Synergistic coupling of interface ohmic contact and LSPR effects over Au/Bi
  publication-title: Chem. Sci.
– volume: 31
  start-page: 1695
  year: 1985
  end-page: 1697
  ident: bb0215
  article-title: Canonical dynamics: equilibrium phase-space distributions
  publication-title: Phys. Rev. A
– volume: 18
  start-page: 2103245
  year: 2022
  ident: bb0240
  article-title: Spatial separation of Photogenerated charges on well-defined bismuth Vanadate Square nanocrystals
  publication-title: Small
– volume: 673
  start-page: 463
  year: 2024
  end-page: 474
  ident: bb0035
  article-title: Anchoring ZnIn
  publication-title: J. Colloid Interface Sci.
– volume: 2016
  start-page: 232
  year: 2016
  end-page: 239
  ident: bb0160
  article-title: Enhanced photocatalytic performance in ag
  publication-title: Eur. J. Inorg. Chem.
– volume: 18
  start-page: 30247
  year: 2024
  end-page: 30268
  ident: bb0300
  article-title: Single-particle fluorescence spectroscopy for elucidating charge transfer and catalytic mechanisms on Nanophotocatalysts
  publication-title: ACS Nano
– volume: 55
  start-page: 6014
  year: 2019
  end-page: 6017
  ident: bb0170
  article-title: Ultrafast spectroscopic study of plasmon-induced hot electron transfer under NIR excitation in Au triangular nanoprism/g-C
  publication-title: Chem. Commun. (Camb.)
– volume: 22
  year: 2021
  ident: bb0025
  article-title: Hierarchical bismuth vanadate/reduced graphene oxide composite photocatalyst for hydrogen evolution and bisphenol a degradation
  publication-title: Appl. Mater. Today
– volume: 324
  year: 2023
  ident: bb0325
  article-title: A plasmonic Z-scheme ag@AgCl/PDI photocatalyst for the efficient elimination of organic pollutants, antibiotic resistant bacteria and antibiotic resistance genes
  publication-title: Appl. Catal. Environ.
– volume: 355
  year: 2024
  ident: bb0040
  article-title: Leveraging electron spin driven photocatalytic hydrogen evolution ability of BiVO
  publication-title: Appl. Catal. B Environ. Energy
– volume: 11
  start-page: 10993
  year: 2023
  end-page: 11001
  ident: bb0100
  article-title: Near-infrared plasmon-driven nitrogen photofixation achieved by assembling size-controllable gold nanoparticles on TiO
  publication-title: ACS Sustainable Chem. Eng.
– volume: 4
  start-page: 4259
  year: 2021
  end-page: 4268
  ident: bb0095
  article-title: Fabrication of a facet-oriented BiVO
  publication-title: ACS Appl. Energy Mater.
– volume: 3
  start-page: 5927
  year: 2020
  end-page: 5936
  ident: bb0250
  article-title: Well-crystallized α-FeOOH cocatalysts modified BiVO
  publication-title: ACS Appl. Energy Mater.
– volume: 496
  year: 2024
  ident: bb0290
  article-title: Photothermal-enhanced magnetic Cd
  publication-title: Chem. Eng. J.
– volume: 10
  start-page: 20048
  year: 2022
  ident: 10.1016/j.jcis.2025.138656_bb0150
  article-title: Plasmon-enhanced photocatalytic overall water-splitting over Au nanoparticle-decorated CaNb2O6 electrospun nanofibers
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA05332B
– volume: 36
  start-page: 129
  year: 2017
  ident: 10.1016/j.jcis.2025.138656_bb0090
  article-title: Enhanced photocatalytic properties of molybdenum doped BiVO4 prepared by sol-gel method
  publication-title: Rare Met.
  doi: 10.1007/s12598-015-0669-0
– volume: 17
  start-page: 256
  year: 2015
  ident: 10.1016/j.jcis.2025.138656_bb0085
  article-title: Electron small polarons and their transport in bismuth vanadate: a first principles study
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP03666B
– volume: 11
  start-page: 17168
  year: 2023
  ident: 10.1016/j.jcis.2025.138656_bb0135
  article-title: Synergism of the Plasmonic effect and Schottky junction to effectively facilitate photocatalytic CO2 reduction of Bi4O5I2@cu
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.3c06046
– volume: 31
  start-page: 1695
  year: 1985
  ident: 10.1016/j.jcis.2025.138656_bb0215
  article-title: Canonical dynamics: equilibrium phase-space distributions
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.31.1695
– volume: 4
  start-page: 2608
  year: 2022
  ident: 10.1016/j.jcis.2025.138656_bb0180
  article-title: Review on LSPR assisted photocatalysis: effects of physical fields and opportunities in multifield decoupling
  publication-title: Nanoscale Adv.
  doi: 10.1039/D2NA00140C
– volume: 5
  start-page: 5683
  year: 2023
  ident: 10.1016/j.jcis.2025.138656_bb0190
  article-title: Nanocomposites of Cu2O with plasmonic metals (Au, ag): design, synthesis, and photocatalytic applications
  publication-title: Nanoscale Adv.
  doi: 10.1039/D3NA00712J
– volume: 35
  start-page: 2305163
  year: 2023
  ident: 10.1016/j.jcis.2025.138656_bb0275
  article-title: Near-infrared self-assembled hydroxyl radical generator based on Photoinduced Cascade Electron transfer for hypoxic tumor phototherapy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202305163
– volume: 2016
  start-page: 232
  year: 2016
  ident: 10.1016/j.jcis.2025.138656_bb0160
  article-title: Enhanced photocatalytic performance in ag+-induced BiVO4/β-Bi2O3 heterojunctions
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.201500936
– volume: 11
  start-page: 10993
  year: 2023
  ident: 10.1016/j.jcis.2025.138656_bb0100
  article-title: Near-infrared plasmon-driven nitrogen photofixation achieved by assembling size-controllable gold nanoparticles on TiO2 nanocavity arrays
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.2c07086
– volume: 4
  start-page: 4259
  year: 2021
  ident: 10.1016/j.jcis.2025.138656_bb0095
  article-title: Fabrication of a facet-oriented BiVO4 photoanode by particle engineering for promotion of charge separation efficiency
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.1c00694
– volume: 50
  start-page: 2173
  year: 2021
  ident: 10.1016/j.jcis.2025.138656_bb0285
  article-title: Fundamentals and applications of photo-thermal catalysis
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00357C
– volume: 355
  year: 2024
  ident: 10.1016/j.jcis.2025.138656_bb0040
  article-title: Leveraging electron spin driven photocatalytic hydrogen evolution ability of BiVO4 via crystal facet engineering and iron ion infiltration strategies
  publication-title: Appl. Catal. B Environ. Energy
– volume: 22
  start-page: 6334
  year: 2022
  ident: 10.1016/j.jcis.2025.138656_bb0050
  article-title: Improved carrier lifetime in BiVO4 by spin protection
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.2c02070
– volume: 18
  start-page: 2103245
  year: 2022
  ident: 10.1016/j.jcis.2025.138656_bb0240
  article-title: Spatial separation of Photogenerated charges on well-defined bismuth Vanadate Square nanocrystals
  publication-title: Small
  doi: 10.1002/smll.202103245
– volume: 63
  start-page: 6500
  year: 2024
  ident: 10.1016/j.jcis.2025.138656_bb0030
  article-title: Photocatalysis meets piezoelectricity in a type-I oxygen vacancy-rich BaTiO3/BiOBr heterojunction: mechanism insights from characterizations to DFT calculations
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.4c00378
– volume: 4
  start-page: 2317
  year: 2012
  ident: 10.1016/j.jcis.2025.138656_bb0070
  article-title: Three-dimensional ordered macroporous bismuth vanadates: PMMA-templating fabrication and excellent visible light-driven photocatalytic performance for phenol degradation
  publication-title: Nanoscale
  doi: 10.1039/c2nr12046a
– volume: 81
  start-page: 511
  year: 1984
  ident: 10.1016/j.jcis.2025.138656_bb0210
  article-title: A unified formulation of the constant temperature molecular dynamics methods
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.447334
– volume: 504
  start-page: 144417
  year: 2020
  ident: 10.1016/j.jcis.2025.138656_bb0265
  article-title: Tailoring the morphological structure of BiVO4 photocatalyst for enhanced photoelectrochemical solar hydrogen production from natural lake water
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.144417
– volume: 25
  start-page: 19358
  year: 2023
  ident: 10.1016/j.jcis.2025.138656_bb0125
  article-title: Schottky-barrier-free plasmonic photocatalysts
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D3CP01425H
– volume: 12
  start-page: 8558
  year: 2022
  ident: 10.1016/j.jcis.2025.138656_bb0140
  article-title: Photocatalytic reduction of carbon dioxide to methane at the Pd-supported TiO2 interface: mechanistic insights from theoretical studies
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.2c01519
– volume: 14
  start-page: 11153
  year: 2024
  ident: 10.1016/j.jcis.2025.138656_bb0270
  article-title: Dynamic bromine vacancy-mediated photocatalytic three-step three-Electron oxygen reduction to hydroxyl radicals
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.4c02674
– volume: 12
  start-page: 3558
  year: 2022
  ident: 10.1016/j.jcis.2025.138656_bb0260
  article-title: Plasmon-enhanced water activation for hydrogen evolution from Ammonia-borane studied at a single-particle level
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.2c00486
– volume: 8
  start-page: 6488
  year: 2020
  ident: 10.1016/j.jcis.2025.138656_bb0120
  article-title: In situ irradiated X-ray photoelectron spectroscopy on the ag-Zn0.5Cd0.5S core–shell structure and the hydrogen production activity
  publication-title: ACS sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.0c01085
– volume: 3
  start-page: 5927
  year: 2020
  ident: 10.1016/j.jcis.2025.138656_bb0250
  article-title: Well-crystallized α-FeOOH cocatalysts modified BiVO4 photoanodes for efficient and stable photoelectrochemical water splitting
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c00834
– volume: 22
  year: 2021
  ident: 10.1016/j.jcis.2025.138656_bb0025
  article-title: Hierarchical bismuth vanadate/reduced graphene oxide composite photocatalyst for hydrogen evolution and bisphenol a degradation
  publication-title: Appl. Mater. Today
– volume: 658
  start-page: 571
  year: 2024
  ident: 10.1016/j.jcis.2025.138656_bb0045
  article-title: Carrier confinement activated explicit solvent dynamic of CdS/BiVO4/H2O and optimized photocatalytic hydrogen evolution performances
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2023.12.093
– volume: 15
  start-page: 12398
  year: 2023
  ident: 10.1016/j.jcis.2025.138656_bb0130
  article-title: Plasmon photocatalytic CO2 reduction reactions over Au particles on various substrates
  publication-title: Nanoscale
  doi: 10.1039/D3NR02543H
– volume: 32
  start-page: 2001385
  year: 2020
  ident: 10.1016/j.jcis.2025.138656_bb0075
  article-title: In situ formation of oxygen vacancies achieving near-complete charge separation in planar BiVO4 photoanodes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202001385
– volume: 8
  start-page: 4033
  year: 2023
  ident: 10.1016/j.jcis.2025.138656_bb0185
  article-title: Plasmonic ag interlayer induced direct energy transfer studied at single-particle level
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.3c01543
– volume: 4
  start-page: 506
  year: 2024
  ident: 10.1016/j.jcis.2025.138656_bb0110
  article-title: Fundamentals and applications of gold nanoparticle-based plasmonic photocatalysts for water purification
  publication-title: ACS ES T Eng.
  doi: 10.1021/acsestengg.3c00539
– volume: 7
  start-page: 21207
  year: 2019
  ident: 10.1016/j.jcis.2025.138656_bb0315
  article-title: BiVO4 optimized to nano-worm morphology for enhanced activity towards photoelectrochemical water splitting
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA07353A
– volume: 2
  start-page: 237
  issue: 2017
  year: 2017
  ident: 10.1016/j.jcis.2025.138656_bb0305
  article-title: New insights into evaluating catalyst activity and stability of oxygen evolution reactions in alkaline media
  publication-title: Sustain. Energ. Fuels
– volume: 72
  start-page: 107202
  year: 2025
  ident: 10.1016/j.jcis.2025.138656_bb0165
  article-title: Polarization engineering and design strategies of ferroelectric materials in photocatalytic CO2 reduction
  publication-title: Surf. Interfaces
  doi: 10.1016/j.surfin.2025.107202
– volume: 653
  start-page: 94
  year: 2024
  ident: 10.1016/j.jcis.2025.138656_bb0010
  article-title: Electron confinement promoted the electric double layer effect of BiOI/β-Bi2O3 in photocatalytic water splitting
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2023.09.059
– volume: 498
  year: 2019
  ident: 10.1016/j.jcis.2025.138656_bb0225
  article-title: Construction of all-solid-state Z-scheme 2D BiVO4/ag/CdS composites with robust photoactivity and stability
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.143900
– volume: 6
  start-page: 3602
  year: 2018
  ident: 10.1016/j.jcis.2025.138656_bb0205
  article-title: Low-dimensional Mo:BiVO4 photoanodes for enhanced photoelectrochemical activity
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA11132K
– volume: 63
  year: 2024
  ident: 10.1016/j.jcis.2025.138656_bb0255
  article-title: Oxygen vacancies trigger rapid charge transport channels at the engineered Interface of S-scheme heterojunction for boosting photocatalytic performance
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202405756
– volume: 24
  start-page: 715
  year: 2024
  ident: 10.1016/j.jcis.2025.138656_bb0235
  article-title: Synchronizing efficient purification of VOCs in durable solar water evaporation over a highly stable cu/W18O49@graphene material
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.3c04166
– volume: 286
  year: 2021
  ident: 10.1016/j.jcis.2025.138656_bb0320
  article-title: Improved photocatalytic hydrogen evolution on (Ru/WC)/CdS via modulating the transferring paths of photo-excited electrons
  publication-title: Appl. Catal. Environ.
  doi: 10.1016/j.apcatb.2021.119880
– volume: 277
  year: 2020
  ident: 10.1016/j.jcis.2025.138656_bb0295
  article-title: Plasmon-induced dehydrogenation of formic acid on Pd-dotted ag@Au hexagonal nanoplates and single-particle study
  publication-title: Appl. Catal. Environ.
  doi: 10.1016/j.apcatb.2020.119226
– volume: 147
  start-page: 10829
  year: 2025
  ident: 10.1016/j.jcis.2025.138656_bb0065
  article-title: Bismuth vanadate capable of driving one-step-excitation photocatalytic overall water splitting
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.4c18733
– volume: 9
  start-page: 4271
  year: 2021
  ident: 10.1016/j.jcis.2025.138656_bb0115
  article-title: Photoinduced Pt/BiVO4/Bi2O3 heterostructures for methanol oxidation and new insights on the photo−/electrocatalysis coupling mechanism
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.1c00764
– volume: 310
  start-page: 38
  year: 2019
  ident: 10.1016/j.jcis.2025.138656_bb0155
  article-title: Formic acid oxidation on Pt deposit model catalysts on Au: single-layered Pt deposits, plateau-type Pt deposits, and conical Pt deposits
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.04.107
– year: 2025
  ident: 10.1016/j.jcis.2025.138656_bb0145
  article-title: Plasmonic nanomaterials in photothermal catalysis and artificial photosynthesis: hot electron dynamics, design challenges, and future prospects
  publication-title: Adv. Funct. Mater.
– volume: 37
  start-page: 2414959
  year: 2025
  ident: 10.1016/j.jcis.2025.138656_bb0330
  article-title: Regulating charge separation via periodic Array nanostructures for Plasmon-enhanced water oxidation
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202414959
– volume: 1036
  year: 2025
  ident: 10.1016/j.jcis.2025.138656_bb0015
  article-title: Progress in polarization synergistic mechanism and cross-domain application of multi-field modulated piezo-photocatalysis for ferroelectric materials
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2025.181611
– volume: 454
  start-page: 101
  year: 2018
  ident: 10.1016/j.jcis.2025.138656_bb0195
  article-title: Facile formation of flexible ag/AgCl/polydopamine/cotton fabric composite photocatalysts as an efficient visible-light photocatalysts
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.05.154
– volume: 14
  start-page: 33200
  year: 2022
  ident: 10.1016/j.jcis.2025.138656_bb0055
  article-title: Laser-reduced BiVO4 for enhanced photoelectrochemical water splitting
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c07451
– volume: 324
  year: 2023
  ident: 10.1016/j.jcis.2025.138656_bb0325
  article-title: A plasmonic Z-scheme ag@AgCl/PDI photocatalyst for the efficient elimination of organic pollutants, antibiotic resistant bacteria and antibiotic resistance genes
  publication-title: Appl. Catal. Environ.
  doi: 10.1016/j.apcatb.2022.122220
– volume: 342
  year: 2024
  ident: 10.1016/j.jcis.2025.138656_bb0245
  article-title: Achieving long-lived shallow trapping states in carbon nitride through the n-π*electronic transition for enhanced photocatalytic hydrogen generation
  publication-title: Appl. Catal. Environ.
  doi: 10.1016/j.apcatb.2023.123453
– volume: 497
  year: 2024
  ident: 10.1016/j.jcis.2025.138656_bb0005
  article-title: Mechanical-vibration-driven piezocatalytic degradation of organic pollutants over microcrystalline SnSe with selenium vacancies
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2024.155641
– volume: 662
  start-page: 276
  year: 2024
  ident: 10.1016/j.jcis.2025.138656_bb0020
  article-title: Enhanced piezo-photocatalytic performance in ZnIn2S4/BiFeO3 heterojunction stimulated by solar and mechanical energy for efficient hydrogen evolution
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2024.02.058
– volume: 12
  start-page: 6141
  year: 2021
  ident: 10.1016/j.jcis.2025.138656_bb0280
  article-title: Towards complete assignment of the infrared spectrum of the protonated water cluster H+(H2O)21
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-26284-x
– volume: 346
  year: 2025
  ident: 10.1016/j.jcis.2025.138656_bb0080
  article-title: Field effect driven ferroelectric polarization dynamics and design strategies for piezo-photocatalytic water splitting
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2025.131348
– volume: 18
  start-page: 30247
  year: 2024
  ident: 10.1016/j.jcis.2025.138656_bb0300
  article-title: Single-particle fluorescence spectroscopy for elucidating charge transfer and catalytic mechanisms on Nanophotocatalysts
  publication-title: ACS Nano
  doi: 10.1021/acsnano.4c10702
– volume: 410
  year: 2021
  ident: 10.1016/j.jcis.2025.138656_bb0200
  article-title: Core-shell ag@nitrogen-doped carbon quantum dots modified BiVO4 nanosheets with enhanced photocatalytic performance under Vis-NIR light: synergism of molecular oxygen activation and surface plasmon resonance
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.128336
– volume: 6
  start-page: 191
  year: 2019
  ident: 10.1016/j.jcis.2025.138656_bb0310
  article-title: Fast dechlorination of chlorinated ethylenes by green rust in the presence of bone char
  publication-title: Environ. Sci. Technol. Lett.
  doi: 10.1021/acs.estlett.9b00053
– volume: 8
  start-page: 5192
  year: 2023
  ident: 10.1016/j.jcis.2025.138656_bb0105
  article-title: Plasmon-driven reaction selectivity tuning for photoelectrochemical H2O2 production
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.3c02172
– volume: 673
  start-page: 463
  year: 2024
  ident: 10.1016/j.jcis.2025.138656_bb0035
  article-title: Anchoring ZnIn2S4 nanosheets on cross-like FeSe2 to construct photothermal-enhanced S-scheme heterojunction for photocatalytic H2 evolution
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2024.06.106
– volume: 13
  start-page: 484
  year: 2022
  ident: 10.1016/j.jcis.2025.138656_bb0060
  article-title: Unraveling of cocatalysts photodeposited selectively on facets of BiVO4 to boost solar water splitting
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-28146-6
– volume: 14
  start-page: 13518
  year: 2023
  ident: 10.1016/j.jcis.2025.138656_bb0175
  article-title: Synergistic coupling of interface ohmic contact and LSPR effects over Au/Bi24O31Br10 nanosheets for visible-light-driven photocatalytic CO2 reduction to CO
  publication-title: Chem. Sci.
  doi: 10.1039/D3SC03474G
– volume: 250
  start-page: 31
  year: 2019
  ident: 10.1016/j.jcis.2025.138656_bb0220
  article-title: Highly efficient Z-scheme structured visible-light photocatalyst constructed by selective doping of Ag@AgBr and Co3O4 separately on {010} and {110} facets of BiVO4: pre-separation channel and hole-sink effects
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.03.023
– volume: 55
  start-page: 6014
  year: 2019
  ident: 10.1016/j.jcis.2025.138656_bb0170
  article-title: Ultrafast spectroscopic study of plasmon-induced hot electron transfer under NIR excitation in Au triangular nanoprism/g-C3N4 for photocatalytic H2 production
  publication-title: Chem. Commun. (Camb.)
  doi: 10.1039/C9CC02574J
– volume: 436
  year: 2022
  ident: 10.1016/j.jcis.2025.138656_bb0230
  article-title: Unveiling the intrinsic band alignment and robust water oxidation features of hierarchical BiVO4 phase junction
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.131516
– volume: 496
  year: 2024
  ident: 10.1016/j.jcis.2025.138656_bb0290
  article-title: Photothermal-enhanced magnetic Cd0.9Zn0.1S/CoB Schottky heterojunction toward photocatalytic hydrogen evolution
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2024.153960
SSID ssj0011559
Score 2.4902728
Snippet Surface plasmon resonance (SPR) of noble metal particles has been recognized to play a significant role in photocatalysis. We designed the BiVO4@Ag system by...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 138656
SubjectTerms BiVO4
Interface
Photocatalysis
Surface plasmon resonance
Title In situ unravelling surface plasmon resonance subject-object role of BiVO4@Ag in photocatalytic water splitting
URI https://dx.doi.org/10.1016/j.jcis.2025.138656
https://www.proquest.com/docview/3239783925
Volume 701
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQHNoeEAWqLi8ZqTcU2MR27NxYVkULVeECiJtlO3YJh2S1mwhx6W_vTB6oVCoHLonylDWezHwZz3xDyDenHGdciogbgG-cWx5Z8KtRnCrkVxp7E7Aa-edVOrvll_fifoVMh1oYTKvsbX9n01tr3Z856aV5Mi8KrPGFr01mEpx4ghwzWMHOJWr58e-XNI8Yl926NI84wrv7wpkux-vRFUjZnYjjGHtfpv9zTv-Y6db3nG-Q9R400kk3rs9kxZeb5MN06NW2ST79RSu4RaqLki6LuqFNic2FWtZtumwWwThP5wCXQfUo_GZXSLbh4YrFYExUtTuK-Ya0CvSsuLvmp5NftCjp_KGqqzbS8wxDoE8AUBd0Cfi1zZreJrfn32-ms6hvrBA58Pd1lDGfWjVOlRA2sy4POVO5DSEPMnieyLF1LvXBKxWc9N5Y5WwMmywP6diJnH0hq2VV-q-EhtR6Lp1nsYlhDgzAScOMipnLpciMG5GjQaJ63vFn6CGx7FGj_DXKX3fyHxExCF2_0gINBv7N5w6HGdIgeVzzMKWvmqVmCcPgVpaInXe-e5d8hKM-7LJHVutF4_cBiNT2oNW0A7I2ufgxu_oDPubgFA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7aFwQKWAKI9iJG4odBPbiXNjWbXape1yaVFvlu3YkB6S1W4i1H_fmTwQVIIDl0SK5cj67MxM5vENwHunnOAik5EwaL4JYUVkUa9GcaqIX2nqTaBq5ItVurgSX67l9Q7Mx1oYSqscZH8v0ztpPTw5HtA8Xpcl1fji15blGSrxhDhmHsAusVPJCezOlmeL1a9gAkXe-kyPOKIJQ-1Mn-Z140pi7U7kx5jaX6Z_00_3JHWnfk734fFgN7JZv7QnsOOrA9ibj-3aDuDRb8yCT6FeVmxbNi1rK-ov1BFvs227CcZ5tkaLGU8fwz_tmvg2PI5Y8sdEdXdjlHLI6sA-l9--ik-z76ys2PpH3dSds-cWl8B-oo26YVs0YbvE6WdwdXpyOV9EQ2-FyKHKb6Kc-9SqaaqktLl1RSi4KmwIRciCF0k2tc6lPnilgsu8N1Y5G-MlL0I6dbLgz2FS1ZV_ASyk1ovMeR6bGLfBoEVpuFExd0Umc-MO4cOIqF73FBp6zC270YS_Jvx1j_8hyBF0_cdB0Cjj_znv3bhDGpGnsIepfN1uNU84-bfyRL78z3e_hb3F5cW5Pl-uzl7BQxwZvDCvYdJsWv8G7ZLGHg3n7g7txeLF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+situ+unravelling+surface+plasmon+resonance+subject-object+role+of+BiVO4%40Ag+in+photocatalytic+water+splitting&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Ding%2C+Guodao&rft.au=Zhang%2C+Yanyang&rft.au=Zhang%2C+Yinjun&rft.au=Gu%2C+Jiajun&rft.date=2026-01-01&rft.pub=Elsevier+Inc&rft.issn=0021-9797&rft.volume=701&rft_id=info:doi/10.1016%2Fj.jcis.2025.138656&rft.externalDocID=S0021979725020478
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon