In situ unravelling surface plasmon resonance subject-object role of BiVO4@Ag in photocatalytic water splitting
Surface plasmon resonance (SPR) of noble metal particles has been recognized to play a significant role in photocatalysis. We designed the BiVO4@Ag system by photo-deposition to prove the special role of Ag nanoparticles (NPs) in promoting water splitting. The BiVO4@Ag considerably increases light a...
Saved in:
Published in | Journal of colloid and interface science Vol. 701; p. 138656 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.01.2026
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Surface plasmon resonance (SPR) of noble metal particles has been recognized to play a significant role in photocatalysis. We designed the BiVO4@Ag system by photo-deposition to prove the special role of Ag nanoparticles (NPs) in promoting water splitting. The BiVO4@Ag considerably increases light absorption by the SPR effect of Ag NPs. A strong interface effect in BiVO4@Ag-5 is effectively demonstrated through in situ vibration frequency variation of VO bonds from 826.1 cm−1 to 820.9 cm−1. Loaded Ag NPs in BiVO4 improve slightly the hot electron lifetime (1.80 fs) compared with BiVO4 (1.53 fs). Ag NPs significantly raise the conduction band potential of BiVO4@Ag system and evidently enhance the electrochemical specific surface area. The BiVO4@Ag also exhibits significant thermal effects when illuminated with a light source (>520 nm). However, BiVO4@Ag does not exhibit photocatalytic hydrogen evolution ability as using above light source, indicating that the pyroelectric current does not directly promote the photocatalytic hydrogen evolution performance of BiVO4@Ag. Using a light source (<520 nm) to excite and filter out the photothermal effect of BiVO4@Ag-5, an obvious reduction of hydrogen evolution (from 72.1 μmol to 18.3 μmol) can happen. The excited SPR effect with a light source (>520 nm, filter out the intrinsic absorption of BiVO4 matrix) proves that the SPR effect can only accelerate the hydrogen evolution rate of the system. The increase in temperature cannot significantly improve the photocatalytic hydrogen evolution rate of BiVO4@Ag-5. Ab initio molecular dynamics calculations based on solvation models suggest that the surface of BiVO4 mainly provides the role of water decomposition, while Ag NPs mainly provide the role of photocatalytic hydrogen evolution. These findings provide a unique perspective to understand the photocatalytic water splitting behaviors, which are of general significance in various energy conversion reactions.
[Display omitted]
•Ag NPs significantly raise the conduction band potential of BiVO₄@Ag system and optimize electron transfer dynamics.•The VO bonds elongation is beneficial for the formation of effective electronic transmission channels.•HER of BiVO₄@Ag is only activated by intrinsic absorption due to SPR effect does not directly contribute to HER.•BiVO₄ surfaces primarily drive water dissociation, while Ag NPs enhance hydrogen migration and evolution kinetics. |
---|---|
AbstractList | Surface plasmon resonance (SPR) of noble metal particles has been recognized to play a significant role in photocatalysis. We designed the BiVO4@Ag system by photo-deposition to prove the special role of Ag nanoparticles (NPs) in promoting water splitting. The BiVO4@Ag considerably increases light absorption by the SPR effect of Ag NPs. A strong interface effect in BiVO4@Ag-5 is effectively demonstrated through in situ vibration frequency variation of VO bonds from 826.1 cm−1 to 820.9 cm−1. Loaded Ag NPs in BiVO4 improve slightly the hot electron lifetime (1.80 fs) compared with BiVO4 (1.53 fs). Ag NPs significantly raise the conduction band potential of BiVO4@Ag system and evidently enhance the electrochemical specific surface area. The BiVO4@Ag also exhibits significant thermal effects when illuminated with a light source (>520 nm). However, BiVO4@Ag does not exhibit photocatalytic hydrogen evolution ability as using above light source, indicating that the pyroelectric current does not directly promote the photocatalytic hydrogen evolution performance of BiVO4@Ag. Using a light source (<520 nm) to excite and filter out the photothermal effect of BiVO4@Ag-5, an obvious reduction of hydrogen evolution (from 72.1 μmol to 18.3 μmol) can happen. The excited SPR effect with a light source (>520 nm, filter out the intrinsic absorption of BiVO4 matrix) proves that the SPR effect can only accelerate the hydrogen evolution rate of the system. The increase in temperature cannot significantly improve the photocatalytic hydrogen evolution rate of BiVO4@Ag-5. Ab initio molecular dynamics calculations based on solvation models suggest that the surface of BiVO4 mainly provides the role of water decomposition, while Ag NPs mainly provide the role of photocatalytic hydrogen evolution. These findings provide a unique perspective to understand the photocatalytic water splitting behaviors, which are of general significance in various energy conversion reactions.
[Display omitted]
•Ag NPs significantly raise the conduction band potential of BiVO₄@Ag system and optimize electron transfer dynamics.•The VO bonds elongation is beneficial for the formation of effective electronic transmission channels.•HER of BiVO₄@Ag is only activated by intrinsic absorption due to SPR effect does not directly contribute to HER.•BiVO₄ surfaces primarily drive water dissociation, while Ag NPs enhance hydrogen migration and evolution kinetics. Surface plasmon resonance (SPR) of noble metal particles has been recognized to play a significant role in photocatalysis. We designed the BiVO4@Ag system by photo-deposition to prove the special role of Ag nanoparticles (NPs) in promoting water splitting. The BiVO4@Ag considerably increases light absorption by the SPR effect of Ag NPs. A strong interface effect in BiVO4@Ag-5 is effectively demonstrated through in situ vibration frequency variation of VO bonds from 826.1 cm-1 to 820.9 cm-1. Loaded Ag NPs in BiVO4 improve slightly the hot electron lifetime (1.80 fs) compared with BiVO4 (1.53 fs). Ag NPs significantly raise the conduction band potential of BiVO4@Ag system and evidently enhance the electrochemical specific surface area. The BiVO4@Ag also exhibits significant thermal effects when illuminated with a light source (>520 nm). However, BiVO4@Ag does not exhibit photocatalytic hydrogen evolution ability as using above light source, indicating that the pyroelectric current does not directly promote the photocatalytic hydrogen evolution performance of BiVO4@Ag. Using a light source (<520 nm) to excite and filter out the photothermal effect of BiVO4@Ag-5, an obvious reduction of hydrogen evolution (from 72.1 μmol to 18.3 μmol) can happen. The excited SPR effect with a light source (>520 nm, filter out the intrinsic absorption of BiVO4 matrix) proves that the SPR effect can only accelerate the hydrogen evolution rate of the system. The increase in temperature cannot significantly improve the photocatalytic hydrogen evolution rate of BiVO4@Ag-5. Ab initio molecular dynamics calculations based on solvation models suggest that the surface of BiVO4 mainly provides the role of water decomposition, while Ag NPs mainly provide the role of photocatalytic hydrogen evolution. These findings provide a unique perspective to understand the photocatalytic water splitting behaviors, which are of general significance in various energy conversion reactions.Surface plasmon resonance (SPR) of noble metal particles has been recognized to play a significant role in photocatalysis. We designed the BiVO4@Ag system by photo-deposition to prove the special role of Ag nanoparticles (NPs) in promoting water splitting. The BiVO4@Ag considerably increases light absorption by the SPR effect of Ag NPs. A strong interface effect in BiVO4@Ag-5 is effectively demonstrated through in situ vibration frequency variation of VO bonds from 826.1 cm-1 to 820.9 cm-1. Loaded Ag NPs in BiVO4 improve slightly the hot electron lifetime (1.80 fs) compared with BiVO4 (1.53 fs). Ag NPs significantly raise the conduction band potential of BiVO4@Ag system and evidently enhance the electrochemical specific surface area. The BiVO4@Ag also exhibits significant thermal effects when illuminated with a light source (>520 nm). However, BiVO4@Ag does not exhibit photocatalytic hydrogen evolution ability as using above light source, indicating that the pyroelectric current does not directly promote the photocatalytic hydrogen evolution performance of BiVO4@Ag. Using a light source (<520 nm) to excite and filter out the photothermal effect of BiVO4@Ag-5, an obvious reduction of hydrogen evolution (from 72.1 μmol to 18.3 μmol) can happen. The excited SPR effect with a light source (>520 nm, filter out the intrinsic absorption of BiVO4 matrix) proves that the SPR effect can only accelerate the hydrogen evolution rate of the system. The increase in temperature cannot significantly improve the photocatalytic hydrogen evolution rate of BiVO4@Ag-5. Ab initio molecular dynamics calculations based on solvation models suggest that the surface of BiVO4 mainly provides the role of water decomposition, while Ag NPs mainly provide the role of photocatalytic hydrogen evolution. These findings provide a unique perspective to understand the photocatalytic water splitting behaviors, which are of general significance in various energy conversion reactions. |
ArticleNumber | 138656 |
Author | Li, Dan Zhang, Jiawei Shan, Lianwei Li, Bo Chen, Guangri Xu, Huanyan Zhang, Yanyang Zhang, Yinjun Hong, Dapeng Wu, Haitao Dong, Limin Ding, Guodao Gu, Jiajun Zhu, Guoliang Wang, Chunyan |
Author_xml | – sequence: 1 givenname: Guodao surname: Ding fullname: Ding, Guodao organization: Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China – sequence: 2 givenname: Yanyang surname: Zhang fullname: Zhang, Yanyang organization: Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China – sequence: 3 givenname: Yinjun surname: Zhang fullname: Zhang, Yinjun organization: Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China – sequence: 4 givenname: Jiajun surname: Gu fullname: Gu, Jiajun organization: Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China – sequence: 5 givenname: Dapeng surname: Hong fullname: Hong, Dapeng organization: Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China – sequence: 6 givenname: Bo surname: Li fullname: Li, Bo organization: Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China – sequence: 7 givenname: Jiawei surname: Zhang fullname: Zhang, Jiawei organization: Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China – sequence: 8 givenname: Guoliang surname: Zhu fullname: Zhu, Guoliang organization: Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China – sequence: 9 givenname: Guangri surname: Chen fullname: Chen, Guangri organization: Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China – sequence: 10 givenname: Lianwei surname: Shan fullname: Shan, Lianwei email: lwshan@hrbust.edu.cn organization: Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China – sequence: 11 givenname: Haitao surname: Wu fullname: Wu, Haitao email: wuhaitao@ytu.edu.cn organization: School of Environmental and Material Engineering, Yantai University, Yantai 264005, Shandong, China – sequence: 12 givenname: Huanyan surname: Xu fullname: Xu, Huanyan email: xuhuanyan@hrbust.edu.cn organization: Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China – sequence: 13 givenname: Limin surname: Dong fullname: Dong, Limin email: donglimin@hrbust.edu.cn organization: Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China – sequence: 14 givenname: Dan surname: Li fullname: Li, Dan organization: Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China – sequence: 15 givenname: Chunyan surname: Wang fullname: Wang, Chunyan organization: Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China |
BookMark | eNp9kD9PwzAUxC1UJErhCzB5ZEmwE5zEEgOl4k-lSizAajnOMzhK7WA7RXx7XMrM8k56ujvpfqdoZp0FhC4oySmh1VWf98qEvCAFy2nZVKw6QnNKOMtqSsoZmhNS0IzXvD5BpyH0hFDKGJ8jt7Y4mDjhyXq5g2Ew9h2HyWupAI-DDFtnsYfgrLTpE6a2BxUz9yvYuwGw0_jOvD1f3y7fsbF4_HDRKRnl8B2Nwl8ygsdhHEyMqfsMHWs5BDj_0wV6fbh_WT1lm-fH9Wq5yVRBaMx4CVXbkKphrOWt6nRXNl2rdadrDddFTVqlKtDQNFrVALJtVEvT4Z2uiGJduUCXh97Ru88JQhRbE1TaJy24KYiyKHndlLxgyVocrMq7EDxoMXqzlf5bUCL2dEUv9nTFnq440E2hm0MI0oidAS-CMpAQdcYnMqJz5r_4D1-miPI |
Cites_doi | 10.1039/D2TA05332B 10.1007/s12598-015-0669-0 10.1039/C4CP03666B 10.1021/acssuschemeng.3c06046 10.1103/PhysRevA.31.1695 10.1039/D2NA00140C 10.1039/D3NA00712J 10.1002/adma.202305163 10.1002/ejic.201500936 10.1021/acssuschemeng.2c07086 10.1021/acsaem.1c00694 10.1039/D0CS00357C 10.1021/acs.nanolett.2c02070 10.1002/smll.202103245 10.1021/acs.inorgchem.4c00378 10.1039/c2nr12046a 10.1063/1.447334 10.1016/j.apsusc.2019.144417 10.1039/D3CP01425H 10.1021/acscatal.2c01519 10.1021/acscatal.4c02674 10.1021/acscatal.2c00486 10.1021/acssuschemeng.0c01085 10.1021/acsaem.0c00834 10.1016/j.jcis.2023.12.093 10.1039/D3NR02543H 10.1002/adma.202001385 10.1021/acsenergylett.3c01543 10.1021/acsestengg.3c00539 10.1039/C9TA07353A 10.1016/j.surfin.2025.107202 10.1016/j.jcis.2023.09.059 10.1016/j.apsusc.2019.143900 10.1039/C7TA11132K 10.1002/anie.202405756 10.1021/acs.nanolett.3c04166 10.1016/j.apcatb.2021.119880 10.1016/j.apcatb.2020.119226 10.1021/jacs.4c18733 10.1021/acssuschemeng.1c00764 10.1016/j.electacta.2019.04.107 10.1002/adma.202414959 10.1016/j.jallcom.2025.181611 10.1016/j.apsusc.2018.05.154 10.1021/acsami.2c07451 10.1016/j.apcatb.2022.122220 10.1016/j.apcatb.2023.123453 10.1016/j.cej.2024.155641 10.1016/j.jcis.2024.02.058 10.1038/s41467-021-26284-x 10.1016/j.matchemphys.2025.131348 10.1021/acsnano.4c10702 10.1016/j.cej.2020.128336 10.1021/acs.estlett.9b00053 10.1021/acsenergylett.3c02172 10.1016/j.jcis.2024.06.106 10.1038/s41467-022-28146-6 10.1039/D3SC03474G 10.1016/j.apcatb.2019.03.023 10.1039/C9CC02574J 10.1016/j.cej.2021.131516 10.1016/j.cej.2024.153960 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Inc. Copyright © 2025 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2025 Elsevier Inc. – notice: Copyright © 2025 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1016/j.jcis.2025.138656 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
ExternalDocumentID | 10_1016_j_jcis_2025_138656 S0021979725020478 |
GroupedDBID | --- --K --M -~X .GJ .~1 0R~ 1B1 1~. 1~5 29K 4.4 457 4G. 53G 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AATTM AAXKI AAXUO AAYWO ABDPE ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABWVN ABXDB ABXRA ACBEA ACDAQ ACFVG ACGFO ACGFS ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADECG ADEWK ADEZE ADFGL ADMUD ADNMO ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEZYN AFFNX AFJKZ AFPUW AFRZQ AFTJW AFZHZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AIVDX AJSZI AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 D-I DM4 DU5 EBS EFBJH EFKBS EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HLY HVGLF HZ~ H~9 IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A NDZJH NEJ O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SCB SCC SCE SDF SDG SDP SES SEW SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ VH1 WH7 WUQ XPP YQT ZGI ZMT ZU3 ZXP ~02 ~G- AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c201t-93e6b806855b9bcdfd38dbffdf7fe4270bcc6efe88fc7eeab8cb1b8c9df60c5d3 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Fri Aug 15 20:06:15 EDT 2025 Wed Aug 27 16:27:20 EDT 2025 Sat Aug 30 17:14:01 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Surface plasmon resonance Photocatalysis Interface BiVO4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c201t-93e6b806855b9bcdfd38dbffdf7fe4270bcc6efe88fc7eeab8cb1b8c9df60c5d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 3239783925 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3239783925 crossref_primary_10_1016_j_jcis_2025_138656 elsevier_sciencedirect_doi_10_1016_j_jcis_2025_138656 |
PublicationCentury | 2000 |
PublicationDate | 2026-01-01 |
PublicationDateYYYYMMDD | 2026-01-01 |
PublicationDate_xml | – month: 01 year: 2026 text: 2026-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of colloid and interface science |
PublicationYear | 2026 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Kong, Dong, Yu, Zhang, Liu, Ji, Cai, Pu (bb0290) 2024; 496 An, Hu, Wang (bb0125) 2023; 25 Wang, He (bb0130) 2023; 15 Kweon, Hwang, Kim, Kim, Kim (bb0085) 2015; 17 Dey, Gahlawat, Ingole (bb0315) 2019; 7 Zhang, Ma, Xiong, Jiang, Tang (bb0250) 2020; 3 Mateo, Cerrillo, Durini, Gascon (bb0285) 2021; 50 Li, Yang, Ruan, Cui, Ravi (bb0145) 2025 Zhang, Shi, Si, Liu, Guo, Zhao, Prezhdo (bb0050) 2022; 22 Lee, Yoo, Lee, Kim, Sohn, Rhee (bb0155) 2019; 310 Shan, Fang, Ding, Shi, Dong, Li, Wu, Li, Suriyaprakash, Zhou, Xiao (bb0010) 2024; 653 Liu, Yang, Zeng, Xantheas, Yagi, He (bb0280) 2021; 12 Liu, Wang, Cao, Yu, Dong, Zhao, Zhao, Zhang, Pu (bb0035) 2024; 673 Nosé (bb0210) 1984; 81 Huang, Bian, Xiong, Huang, Zhang (bb0205) 2018; 6 Shan, Li, Wu, Dong, Chen, Li, Suriyaprakash, Zhang (bb0230) 2022; 436 Jang, Choi, Roh, Wan, Zhang, Kwon, Kim, Park (bb0105) 2023; 8 Bai, Mei, Zhu, Zhang, Huang, Cheng (bb0120) 2020; 8 Liu, Xu, Li, Cao, Jin, Shan, Dong (bb0005) 2024; 497 Barawi, Gomez-Mendoza, Oropeza, Gorni, Villar-Garcia, Giménez, O'Shea, García-Tecedor (bb0055) 2022; 14 Samsudin, Bashiri, Mohammed, Ng, Sufian (bb0265) 2020; 504 Deng, Zhou, Zhao, Yang, Shi, Tao, Yang, Li, Li (bb0240) 2022; 18 Zou, Wang, Wu, Li, Yuan, Wang (bb0225) 2019; 498 Qi, Zhang, Kong, Zhao, Chen, Li, Liu, Chen, Xie, Cui, Li, Domen, Zhang (bb0060) 2022; 13 Wang, Xie, Cui, Liu, Jiang (bb0115) 2021; 9 Ai, Yin, Hansen (bb0310) 2019; 6 Sekar, Kassam, Bai, Coulson, Li, Douthwaite, Sasaki, Lee (bb0025) 2021; 22 Lin, Feng, Li, Zhang, Wang, Ma (bb0320) 2021; 286 Liu, Dai, Deng, Zhang, Au (bb0070) 2012; 4 Huang, Lin, Yang, Hu, Zhou, Li, Hu, Yang (bb0135) 2023; 11 Zhang, Jiang, Huang, Lu, Zhang (bb0150) 2022; 10 Ruan, Xue, Fujitsuka, Majima (bb0170) 2019; 55 Zhang, Xiang, Guo, Wang, Liu, Lin, Ma (bb0095) 2021; 4 Lv, Du, Wu, Cai, Zhou (bb0180) 2022; 4 Gao, Zhu, Zhao, Xie, Fan, Li (bb0330) 2025; 37 Tong, Liang, Liu, Wang, Liu, Wang, Cheng, Dai, Zheng, Huang (bb0260) 2022; 12 Hoover (bb0215) 1985; 31 Tong, Lou, Liang, Ma, Chen, Wang, Liu, Wang, Cheng, Dai, Zheng, Huang (bb0295) 2020; 277 Lv, Zhang, Li, Huang, Zheng (bb0300) 2024; 18 Su, Zhang, Yao, Liang, Yang, Zhang, Pu, Liu, Cai, Li (bb0020) 2024; 662 Yuan, Suriyaprakash, Shan, Xu, Li, Wu, Ding, Shi, Dong, Zhang (bb0045) 2024; 658 Wang, Hong, Shan, Wu, Xu, Li, Liu, He, Dong (bb0165) 2025; 72 Chen, Wu, Wang, François-Xavier, Wintgens (bb0220) 2019; 250 Legaspi, Regulacio (bb0190) 2023; 5 Zhang, Si, Jiang, Yuan, Yu, Wu, Li, Guo (bb0200) 2021; 410 Hong, Zhang, Li, Zhu, Chen, Shan, Xu, Wu, Li, Dong (bb0015) 2025; 1036 Lv, Zhang, Li, Gong, Zhang, Wang, Liu, Wang, Cheng, Dai, Fan, Huang, Zheng (bb0185) 2023; 8 Guangfu, Anderson, Chen, Pan, Chuang (bb0305) 2017; 2 Zhang, Zhang, Chen, Hong, Shan, Xu, Wu, He, Qi, Dong (bb0080) 2025; 346 Zu, Ying, Wei, Xiong, Ahmed, Lin, Li, Li, Xu, Chen, Bai, She, Tsang, Huang (bb0255) 2024; 63 Wu, Qu, Ng (bb0065) 2025; 147 Wang, He, Chen, Du, Ostrikov, Huang, Wang (bb0075) 2020; 32 Shan, Liu, Ma, Dong, Liu, Wu (bb0160) 2016; 2016 Xu, Xu, Shan, Liu, Cao, Jin, Dong (bb0030) 2024; 63 Huang, Wang, Fan, Philo, Fang, Tu, Qiu, Zou, Ye (bb0100) 2023; 11 Tada, Fujishima, Naya (bb0110) 2024; 4 Wen, Huang, Yang, Wang, Wang, Chen, Peng, Kong, Ye (bb0270) 2024; 14 Chen, Wang, Shen, Zhang, Lou, Pan, Zhu, Xu (bb0325) 2023; 324 Ding, Wang, Yu, Wang, Gao, Liu (bb0195) 2018; 454 Zhao, He, Wang, Ding, Zong, Li, Sun, Du, Fan, Peng (bb0275) 2023; 35 Chen, Cheng, Liu, Wang, Qu, Jiang, Qin, Yuan (bb0245) 2024; 342 Ren, Yang, Sun, Yuan (bb0235) 2024; 24 Wang, Shan, Wu, Dong (bb0090) 2017; 36 Liu, Xie, Wang, Yang, Su, Ling, Chen (bb0175) 2023; 14 Sun, Suriyaprakash, Shan, Xu, Zhang, Chen, Zhang, Wu, Li, Dong, Pang, Li, Li (bb0040) 2024; 355 Yang, Zhang, Xie, Fang, Cui (bb0140) 2022; 12 Samsudin (10.1016/j.jcis.2025.138656_bb0265) 2020; 504 Gao (10.1016/j.jcis.2025.138656_bb0330) 2025; 37 Zhang (10.1016/j.jcis.2025.138656_bb0080) 2025; 346 Lin (10.1016/j.jcis.2025.138656_bb0320) 2021; 286 Su (10.1016/j.jcis.2025.138656_bb0020) 2024; 662 Lv (10.1016/j.jcis.2025.138656_bb0185) 2023; 8 Huang (10.1016/j.jcis.2025.138656_bb0205) 2018; 6 Shan (10.1016/j.jcis.2025.138656_bb0230) 2022; 436 Kweon (10.1016/j.jcis.2025.138656_bb0085) 2015; 17 Yang (10.1016/j.jcis.2025.138656_bb0140) 2022; 12 Sun (10.1016/j.jcis.2025.138656_bb0040) 2024; 355 Deng (10.1016/j.jcis.2025.138656_bb0240) 2022; 18 Tada (10.1016/j.jcis.2025.138656_bb0110) 2024; 4 Ren (10.1016/j.jcis.2025.138656_bb0235) 2024; 24 Zhang (10.1016/j.jcis.2025.138656_bb0095) 2021; 4 Zhang (10.1016/j.jcis.2025.138656_bb0050) 2022; 22 An (10.1016/j.jcis.2025.138656_bb0125) 2023; 25 Liu (10.1016/j.jcis.2025.138656_bb0280) 2021; 12 Li (10.1016/j.jcis.2025.138656_bb0145) 2025 Dey (10.1016/j.jcis.2025.138656_bb0315) 2019; 7 Tong (10.1016/j.jcis.2025.138656_bb0260) 2022; 12 Ding (10.1016/j.jcis.2025.138656_bb0195) 2018; 454 Shan (10.1016/j.jcis.2025.138656_bb0160) 2016; 2016 Barawi (10.1016/j.jcis.2025.138656_bb0055) 2022; 14 Hong (10.1016/j.jcis.2025.138656_bb0015) 2025; 1036 Qi (10.1016/j.jcis.2025.138656_bb0060) 2022; 13 Liu (10.1016/j.jcis.2025.138656_bb0035) 2024; 673 Zhang (10.1016/j.jcis.2025.138656_bb0150) 2022; 10 Zhang (10.1016/j.jcis.2025.138656_bb0250) 2020; 3 Lv (10.1016/j.jcis.2025.138656_bb0180) 2022; 4 Zu (10.1016/j.jcis.2025.138656_bb0255) 2024; 63 Hoover (10.1016/j.jcis.2025.138656_bb0215) 1985; 31 Guangfu (10.1016/j.jcis.2025.138656_bb0305) 2017; 2 Wang (10.1016/j.jcis.2025.138656_bb0165) 2025; 72 Ai (10.1016/j.jcis.2025.138656_bb0310) 2019; 6 Chen (10.1016/j.jcis.2025.138656_bb0220) 2019; 250 Kong (10.1016/j.jcis.2025.138656_bb0290) 2024; 496 Zhao (10.1016/j.jcis.2025.138656_bb0275) 2023; 35 Nosé (10.1016/j.jcis.2025.138656_bb0210) 1984; 81 Chen (10.1016/j.jcis.2025.138656_bb0325) 2023; 324 Sekar (10.1016/j.jcis.2025.138656_bb0025) 2021; 22 Tong (10.1016/j.jcis.2025.138656_bb0295) 2020; 277 Xu (10.1016/j.jcis.2025.138656_bb0030) 2024; 63 Yuan (10.1016/j.jcis.2025.138656_bb0045) 2024; 658 Huang (10.1016/j.jcis.2025.138656_bb0135) 2023; 11 Mateo (10.1016/j.jcis.2025.138656_bb0285) 2021; 50 Zhang (10.1016/j.jcis.2025.138656_bb0200) 2021; 410 Legaspi (10.1016/j.jcis.2025.138656_bb0190) 2023; 5 Wen (10.1016/j.jcis.2025.138656_bb0270) 2024; 14 Wang (10.1016/j.jcis.2025.138656_bb0130) 2023; 15 Lee (10.1016/j.jcis.2025.138656_bb0155) 2019; 310 Bai (10.1016/j.jcis.2025.138656_bb0120) 2020; 8 Shan (10.1016/j.jcis.2025.138656_bb0010) 2024; 653 Ruan (10.1016/j.jcis.2025.138656_bb0170) 2019; 55 Liu (10.1016/j.jcis.2025.138656_bb0175) 2023; 14 Huang (10.1016/j.jcis.2025.138656_bb0100) 2023; 11 Chen (10.1016/j.jcis.2025.138656_bb0245) 2024; 342 Wu (10.1016/j.jcis.2025.138656_bb0065) 2025; 147 Wang (10.1016/j.jcis.2025.138656_bb0090) 2017; 36 Zou (10.1016/j.jcis.2025.138656_bb0225) 2019; 498 Liu (10.1016/j.jcis.2025.138656_bb0005) 2024; 497 Wang (10.1016/j.jcis.2025.138656_bb0075) 2020; 32 Jang (10.1016/j.jcis.2025.138656_bb0105) 2023; 8 Lv (10.1016/j.jcis.2025.138656_bb0300) 2024; 18 Liu (10.1016/j.jcis.2025.138656_bb0070) 2012; 4 Wang (10.1016/j.jcis.2025.138656_bb0115) 2021; 9 |
References_xml | – volume: 2 start-page: 237 year: 2017 end-page: 251 ident: bb0305 article-title: New insights into evaluating catalyst activity and stability of oxygen evolution reactions in alkaline media publication-title: Sustain. Energ. Fuels – volume: 17 start-page: 256 year: 2015 end-page: 260 ident: bb0085 article-title: Electron small polarons and their transport in bismuth vanadate: a first principles study publication-title: Phys. Chem. Chem. Phys. – volume: 454 start-page: 101 year: 2018 end-page: 111 ident: bb0195 article-title: Facile formation of flexible ag/AgCl/polydopamine/cotton fabric composite photocatalysts as an efficient visible-light photocatalysts publication-title: Appl. Surf. Sci. – volume: 653 start-page: 94 year: 2024 end-page: 107 ident: bb0010 article-title: Electron confinement promoted the electric double layer effect of BiOI/β-Bi publication-title: J. Colloid Interf. Sci. – volume: 346 year: 2025 ident: bb0080 article-title: Field effect driven ferroelectric polarization dynamics and design strategies for piezo-photocatalytic water splitting publication-title: Mater. Chem. Phys. – volume: 25 start-page: 19358 year: 2023 end-page: 19370 ident: bb0125 article-title: Schottky-barrier-free plasmonic photocatalysts publication-title: Phys. Chem. Chem. Phys. – volume: 8 start-page: 4033 year: 2023 end-page: 4042 ident: bb0185 article-title: Plasmonic ag interlayer induced direct energy transfer studied at single-particle level publication-title: ACS Energy Lett. – volume: 1036 year: 2025 ident: bb0015 article-title: Progress in polarization synergistic mechanism and cross-domain application of multi-field modulated piezo-photocatalysis for ferroelectric materials publication-title: J. Alloys Compd. – volume: 4 start-page: 506 year: 2024 end-page: 524 ident: bb0110 article-title: Fundamentals and applications of gold nanoparticle-based plasmonic photocatalysts for water purification publication-title: ACS ES T Eng. – year: 2025 ident: bb0145 article-title: Plasmonic nanomaterials in photothermal catalysis and artificial photosynthesis: hot electron dynamics, design challenges, and future prospects publication-title: Adv. Funct. Mater. – volume: 662 start-page: 276 year: 2024 end-page: 288 ident: bb0020 article-title: Enhanced piezo-photocatalytic performance in ZnIn publication-title: J. Colloid Interf. Sci. – volume: 12 start-page: 6141 year: 2021 ident: bb0280 article-title: Towards complete assignment of the infrared spectrum of the protonated water cluster H publication-title: Nat. Commun. – volume: 286 year: 2021 ident: bb0320 article-title: Improved photocatalytic hydrogen evolution on (Ru/WC)/CdS via modulating the transferring paths of photo-excited electrons publication-title: Appl. Catal. Environ. – volume: 22 start-page: 6334 year: 2022 end-page: 6341 ident: bb0050 article-title: Improved carrier lifetime in BiVO publication-title: Nano Lett. – volume: 81 start-page: 511 year: 1984 end-page: 519 ident: bb0210 article-title: A unified formulation of the constant temperature molecular dynamics methods publication-title: J. Chem. Phys. – volume: 9 start-page: 4271 year: 2021 end-page: 4281 ident: bb0115 article-title: Photoinduced Pt/BiVO publication-title: ACS Sustain. Chem. Eng. – volume: 35 start-page: 2305163 year: 2023 ident: bb0275 article-title: Near-infrared self-assembled hydroxyl radical generator based on Photoinduced Cascade Electron transfer for hypoxic tumor phototherapy publication-title: Adv. Mater. – volume: 250 start-page: 31 year: 2019 end-page: 41 ident: bb0220 article-title: Highly efficient Z-scheme structured visible-light photocatalyst constructed by selective doping of Ag@AgBr and Co publication-title: Appl. Catal. B Environ. – volume: 310 start-page: 38 year: 2019 end-page: 44 ident: bb0155 article-title: Formic acid oxidation on Pt deposit model catalysts on Au: single-layered Pt deposits, plateau-type Pt deposits, and conical Pt deposits publication-title: Electrochim. Acta – volume: 277 year: 2020 ident: bb0295 article-title: Plasmon-induced dehydrogenation of formic acid on Pd-dotted ag@Au hexagonal nanoplates and single-particle study publication-title: Appl. Catal. Environ. – volume: 32 start-page: 2001385 year: 2020 ident: bb0075 article-title: In situ formation of oxygen vacancies achieving near-complete charge separation in planar BiVO publication-title: Adv. Mater. – volume: 410 year: 2021 ident: bb0200 article-title: Core-shell ag@nitrogen-doped carbon quantum dots modified BiVO publication-title: Chem. Eng. J. – volume: 13 start-page: 484 year: 2022 ident: bb0060 article-title: Unraveling of cocatalysts photodeposited selectively on facets of BiVO publication-title: Nat. Commun. – volume: 11 start-page: 17168 year: 2023 end-page: 17178 ident: bb0135 article-title: Synergism of the Plasmonic effect and Schottky junction to effectively facilitate photocatalytic CO publication-title: ACS Sustainable Chem. Eng. – volume: 6 start-page: 191 year: 2019 end-page: 196 ident: bb0310 article-title: Fast dechlorination of chlorinated ethylenes by green rust in the presence of bone char publication-title: Environ. Sci. Technol. Lett. – volume: 342 year: 2024 ident: bb0245 article-title: Achieving long-lived shallow trapping states in carbon nitride through the n-π*electronic transition for enhanced photocatalytic hydrogen generation publication-title: Appl. Catal. Environ. – volume: 497 year: 2024 ident: bb0005 article-title: Mechanical-vibration-driven piezocatalytic degradation of organic pollutants over microcrystalline SnSe with selenium vacancies publication-title: Chem. Eng. J. – volume: 658 start-page: 571 year: 2024 end-page: 583 ident: bb0045 article-title: Carrier confinement activated explicit solvent dynamic of CdS/BiVO publication-title: J. Colloid Interf. Sci. – volume: 4 start-page: 2317 year: 2012 end-page: 2325 ident: bb0070 article-title: Three-dimensional ordered macroporous bismuth vanadates: PMMA-templating fabrication and excellent visible light-driven photocatalytic performance for phenol degradation publication-title: Nanoscale – volume: 5 start-page: 5683 year: 2023 end-page: 5704 ident: bb0190 article-title: Nanocomposites of Cu publication-title: Nanoscale Adv. – volume: 14 start-page: 33200 year: 2022 end-page: 33210 ident: bb0055 article-title: Laser-reduced BiVO publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 5192 year: 2023 end-page: 5200 ident: bb0105 article-title: Plasmon-driven reaction selectivity tuning for photoelectrochemical H publication-title: ACS Energy Lett. – volume: 498 year: 2019 ident: bb0225 article-title: Construction of all-solid-state Z-scheme 2D BiVO publication-title: Appl. Surf. Sci. – volume: 12 start-page: 3558 year: 2022 end-page: 3565 ident: bb0260 article-title: Plasmon-enhanced water activation for hydrogen evolution from Ammonia-borane studied at a single-particle level publication-title: ACS Catal. – volume: 36 start-page: 129 year: 2017 end-page: 133 ident: bb0090 article-title: Enhanced photocatalytic properties of molybdenum doped BiVO publication-title: Rare Met. – volume: 8 start-page: 6488 year: 2020 end-page: 6495 ident: bb0120 article-title: In situ irradiated X-ray photoelectron spectroscopy on the ag-Zn publication-title: ACS sustainable Chem. Eng. – volume: 12 start-page: 8558 year: 2022 end-page: 8571 ident: bb0140 article-title: Photocatalytic reduction of carbon dioxide to methane at the Pd-supported TiO publication-title: ACS Catal. – volume: 50 start-page: 2173 year: 2021 end-page: 2210 ident: bb0285 article-title: Fundamentals and applications of photo-thermal catalysis publication-title: Chem. Soc. Rev. – volume: 504 start-page: 144417 year: 2020 ident: bb0265 article-title: Tailoring the morphological structure of BiVO publication-title: Appl. Surf. Sci. – volume: 147 start-page: 10829 year: 2025 end-page: 10833 ident: bb0065 article-title: Bismuth vanadate capable of driving one-step-excitation photocatalytic overall water splitting publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 11153 year: 2024 end-page: 11163 ident: bb0270 article-title: Dynamic bromine vacancy-mediated photocatalytic three-step three-Electron oxygen reduction to hydroxyl radicals publication-title: ACS Catal. – volume: 4 start-page: 2608 year: 2022 end-page: 2631 ident: bb0180 article-title: Review on LSPR assisted photocatalysis: effects of physical fields and opportunities in multifield decoupling publication-title: Nanoscale Adv. – volume: 6 start-page: 3602 year: 2018 end-page: 3609 ident: bb0205 article-title: Low-dimensional Mo:BiVO publication-title: J. Mater. Chem. A – volume: 7 start-page: 21207 year: 2019 end-page: 21221 ident: bb0315 article-title: BiVO publication-title: J. Mater. Chem. A – volume: 63 year: 2024 ident: bb0255 article-title: Oxygen vacancies trigger rapid charge transport channels at the engineered Interface of S-scheme heterojunction for boosting photocatalytic performance publication-title: Angew. Chem. Int. Ed. – volume: 72 start-page: 107202 year: 2025 ident: bb0165 article-title: Polarization engineering and design strategies of ferroelectric materials in photocatalytic CO publication-title: Surf. Interfaces – volume: 436 year: 2022 ident: bb0230 article-title: Unveiling the intrinsic band alignment and robust water oxidation features of hierarchical BiVO publication-title: Chem. Eng. J. – volume: 10 start-page: 20048 year: 2022 end-page: 20058 ident: bb0150 article-title: Plasmon-enhanced photocatalytic overall water-splitting over Au nanoparticle-decorated CaNb publication-title: J. Mater. Chem. A – volume: 15 start-page: 12398 year: 2023 end-page: 12405 ident: bb0130 article-title: Plasmon photocatalytic CO publication-title: Nanoscale – volume: 37 start-page: 2414959 year: 2025 ident: bb0330 article-title: Regulating charge separation via periodic Array nanostructures for Plasmon-enhanced water oxidation publication-title: Adv. Mater. – volume: 24 start-page: 715 year: 2024 end-page: 723 ident: bb0235 article-title: Synchronizing efficient purification of VOCs in durable solar water evaporation over a highly stable cu/W publication-title: Nano Lett. – volume: 63 start-page: 6500 year: 2024 end-page: 6513 ident: bb0030 article-title: Photocatalysis meets piezoelectricity in a type-I oxygen vacancy-rich BaTiO publication-title: Inorg. Chem. – volume: 14 start-page: 13518 year: 2023 end-page: 13529 ident: bb0175 article-title: Synergistic coupling of interface ohmic contact and LSPR effects over Au/Bi publication-title: Chem. Sci. – volume: 31 start-page: 1695 year: 1985 end-page: 1697 ident: bb0215 article-title: Canonical dynamics: equilibrium phase-space distributions publication-title: Phys. Rev. A – volume: 18 start-page: 2103245 year: 2022 ident: bb0240 article-title: Spatial separation of Photogenerated charges on well-defined bismuth Vanadate Square nanocrystals publication-title: Small – volume: 673 start-page: 463 year: 2024 end-page: 474 ident: bb0035 article-title: Anchoring ZnIn publication-title: J. Colloid Interface Sci. – volume: 2016 start-page: 232 year: 2016 end-page: 239 ident: bb0160 article-title: Enhanced photocatalytic performance in ag publication-title: Eur. J. Inorg. Chem. – volume: 18 start-page: 30247 year: 2024 end-page: 30268 ident: bb0300 article-title: Single-particle fluorescence spectroscopy for elucidating charge transfer and catalytic mechanisms on Nanophotocatalysts publication-title: ACS Nano – volume: 55 start-page: 6014 year: 2019 end-page: 6017 ident: bb0170 article-title: Ultrafast spectroscopic study of plasmon-induced hot electron transfer under NIR excitation in Au triangular nanoprism/g-C publication-title: Chem. Commun. (Camb.) – volume: 22 year: 2021 ident: bb0025 article-title: Hierarchical bismuth vanadate/reduced graphene oxide composite photocatalyst for hydrogen evolution and bisphenol a degradation publication-title: Appl. Mater. Today – volume: 324 year: 2023 ident: bb0325 article-title: A plasmonic Z-scheme ag@AgCl/PDI photocatalyst for the efficient elimination of organic pollutants, antibiotic resistant bacteria and antibiotic resistance genes publication-title: Appl. Catal. Environ. – volume: 355 year: 2024 ident: bb0040 article-title: Leveraging electron spin driven photocatalytic hydrogen evolution ability of BiVO publication-title: Appl. Catal. B Environ. Energy – volume: 11 start-page: 10993 year: 2023 end-page: 11001 ident: bb0100 article-title: Near-infrared plasmon-driven nitrogen photofixation achieved by assembling size-controllable gold nanoparticles on TiO publication-title: ACS Sustainable Chem. Eng. – volume: 4 start-page: 4259 year: 2021 end-page: 4268 ident: bb0095 article-title: Fabrication of a facet-oriented BiVO publication-title: ACS Appl. Energy Mater. – volume: 3 start-page: 5927 year: 2020 end-page: 5936 ident: bb0250 article-title: Well-crystallized α-FeOOH cocatalysts modified BiVO publication-title: ACS Appl. Energy Mater. – volume: 496 year: 2024 ident: bb0290 article-title: Photothermal-enhanced magnetic Cd publication-title: Chem. Eng. J. – volume: 10 start-page: 20048 year: 2022 ident: 10.1016/j.jcis.2025.138656_bb0150 article-title: Plasmon-enhanced photocatalytic overall water-splitting over Au nanoparticle-decorated CaNb2O6 electrospun nanofibers publication-title: J. Mater. Chem. A doi: 10.1039/D2TA05332B – volume: 36 start-page: 129 year: 2017 ident: 10.1016/j.jcis.2025.138656_bb0090 article-title: Enhanced photocatalytic properties of molybdenum doped BiVO4 prepared by sol-gel method publication-title: Rare Met. doi: 10.1007/s12598-015-0669-0 – volume: 17 start-page: 256 year: 2015 ident: 10.1016/j.jcis.2025.138656_bb0085 article-title: Electron small polarons and their transport in bismuth vanadate: a first principles study publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP03666B – volume: 11 start-page: 17168 year: 2023 ident: 10.1016/j.jcis.2025.138656_bb0135 article-title: Synergism of the Plasmonic effect and Schottky junction to effectively facilitate photocatalytic CO2 reduction of Bi4O5I2@cu publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.3c06046 – volume: 31 start-page: 1695 year: 1985 ident: 10.1016/j.jcis.2025.138656_bb0215 article-title: Canonical dynamics: equilibrium phase-space distributions publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.31.1695 – volume: 4 start-page: 2608 year: 2022 ident: 10.1016/j.jcis.2025.138656_bb0180 article-title: Review on LSPR assisted photocatalysis: effects of physical fields and opportunities in multifield decoupling publication-title: Nanoscale Adv. doi: 10.1039/D2NA00140C – volume: 5 start-page: 5683 year: 2023 ident: 10.1016/j.jcis.2025.138656_bb0190 article-title: Nanocomposites of Cu2O with plasmonic metals (Au, ag): design, synthesis, and photocatalytic applications publication-title: Nanoscale Adv. doi: 10.1039/D3NA00712J – volume: 35 start-page: 2305163 year: 2023 ident: 10.1016/j.jcis.2025.138656_bb0275 article-title: Near-infrared self-assembled hydroxyl radical generator based on Photoinduced Cascade Electron transfer for hypoxic tumor phototherapy publication-title: Adv. Mater. doi: 10.1002/adma.202305163 – volume: 2016 start-page: 232 year: 2016 ident: 10.1016/j.jcis.2025.138656_bb0160 article-title: Enhanced photocatalytic performance in ag+-induced BiVO4/β-Bi2O3 heterojunctions publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201500936 – volume: 11 start-page: 10993 year: 2023 ident: 10.1016/j.jcis.2025.138656_bb0100 article-title: Near-infrared plasmon-driven nitrogen photofixation achieved by assembling size-controllable gold nanoparticles on TiO2 nanocavity arrays publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.2c07086 – volume: 4 start-page: 4259 year: 2021 ident: 10.1016/j.jcis.2025.138656_bb0095 article-title: Fabrication of a facet-oriented BiVO4 photoanode by particle engineering for promotion of charge separation efficiency publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.1c00694 – volume: 50 start-page: 2173 year: 2021 ident: 10.1016/j.jcis.2025.138656_bb0285 article-title: Fundamentals and applications of photo-thermal catalysis publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00357C – volume: 355 year: 2024 ident: 10.1016/j.jcis.2025.138656_bb0040 article-title: Leveraging electron spin driven photocatalytic hydrogen evolution ability of BiVO4 via crystal facet engineering and iron ion infiltration strategies publication-title: Appl. Catal. B Environ. Energy – volume: 22 start-page: 6334 year: 2022 ident: 10.1016/j.jcis.2025.138656_bb0050 article-title: Improved carrier lifetime in BiVO4 by spin protection publication-title: Nano Lett. doi: 10.1021/acs.nanolett.2c02070 – volume: 18 start-page: 2103245 year: 2022 ident: 10.1016/j.jcis.2025.138656_bb0240 article-title: Spatial separation of Photogenerated charges on well-defined bismuth Vanadate Square nanocrystals publication-title: Small doi: 10.1002/smll.202103245 – volume: 63 start-page: 6500 year: 2024 ident: 10.1016/j.jcis.2025.138656_bb0030 article-title: Photocatalysis meets piezoelectricity in a type-I oxygen vacancy-rich BaTiO3/BiOBr heterojunction: mechanism insights from characterizations to DFT calculations publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.4c00378 – volume: 4 start-page: 2317 year: 2012 ident: 10.1016/j.jcis.2025.138656_bb0070 article-title: Three-dimensional ordered macroporous bismuth vanadates: PMMA-templating fabrication and excellent visible light-driven photocatalytic performance for phenol degradation publication-title: Nanoscale doi: 10.1039/c2nr12046a – volume: 81 start-page: 511 year: 1984 ident: 10.1016/j.jcis.2025.138656_bb0210 article-title: A unified formulation of the constant temperature molecular dynamics methods publication-title: J. Chem. Phys. doi: 10.1063/1.447334 – volume: 504 start-page: 144417 year: 2020 ident: 10.1016/j.jcis.2025.138656_bb0265 article-title: Tailoring the morphological structure of BiVO4 photocatalyst for enhanced photoelectrochemical solar hydrogen production from natural lake water publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.144417 – volume: 25 start-page: 19358 year: 2023 ident: 10.1016/j.jcis.2025.138656_bb0125 article-title: Schottky-barrier-free plasmonic photocatalysts publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D3CP01425H – volume: 12 start-page: 8558 year: 2022 ident: 10.1016/j.jcis.2025.138656_bb0140 article-title: Photocatalytic reduction of carbon dioxide to methane at the Pd-supported TiO2 interface: mechanistic insights from theoretical studies publication-title: ACS Catal. doi: 10.1021/acscatal.2c01519 – volume: 14 start-page: 11153 year: 2024 ident: 10.1016/j.jcis.2025.138656_bb0270 article-title: Dynamic bromine vacancy-mediated photocatalytic three-step three-Electron oxygen reduction to hydroxyl radicals publication-title: ACS Catal. doi: 10.1021/acscatal.4c02674 – volume: 12 start-page: 3558 year: 2022 ident: 10.1016/j.jcis.2025.138656_bb0260 article-title: Plasmon-enhanced water activation for hydrogen evolution from Ammonia-borane studied at a single-particle level publication-title: ACS Catal. doi: 10.1021/acscatal.2c00486 – volume: 8 start-page: 6488 year: 2020 ident: 10.1016/j.jcis.2025.138656_bb0120 article-title: In situ irradiated X-ray photoelectron spectroscopy on the ag-Zn0.5Cd0.5S core–shell structure and the hydrogen production activity publication-title: ACS sustainable Chem. Eng. doi: 10.1021/acssuschemeng.0c01085 – volume: 3 start-page: 5927 year: 2020 ident: 10.1016/j.jcis.2025.138656_bb0250 article-title: Well-crystallized α-FeOOH cocatalysts modified BiVO4 photoanodes for efficient and stable photoelectrochemical water splitting publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c00834 – volume: 22 year: 2021 ident: 10.1016/j.jcis.2025.138656_bb0025 article-title: Hierarchical bismuth vanadate/reduced graphene oxide composite photocatalyst for hydrogen evolution and bisphenol a degradation publication-title: Appl. Mater. Today – volume: 658 start-page: 571 year: 2024 ident: 10.1016/j.jcis.2025.138656_bb0045 article-title: Carrier confinement activated explicit solvent dynamic of CdS/BiVO4/H2O and optimized photocatalytic hydrogen evolution performances publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2023.12.093 – volume: 15 start-page: 12398 year: 2023 ident: 10.1016/j.jcis.2025.138656_bb0130 article-title: Plasmon photocatalytic CO2 reduction reactions over Au particles on various substrates publication-title: Nanoscale doi: 10.1039/D3NR02543H – volume: 32 start-page: 2001385 year: 2020 ident: 10.1016/j.jcis.2025.138656_bb0075 article-title: In situ formation of oxygen vacancies achieving near-complete charge separation in planar BiVO4 photoanodes publication-title: Adv. Mater. doi: 10.1002/adma.202001385 – volume: 8 start-page: 4033 year: 2023 ident: 10.1016/j.jcis.2025.138656_bb0185 article-title: Plasmonic ag interlayer induced direct energy transfer studied at single-particle level publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.3c01543 – volume: 4 start-page: 506 year: 2024 ident: 10.1016/j.jcis.2025.138656_bb0110 article-title: Fundamentals and applications of gold nanoparticle-based plasmonic photocatalysts for water purification publication-title: ACS ES T Eng. doi: 10.1021/acsestengg.3c00539 – volume: 7 start-page: 21207 year: 2019 ident: 10.1016/j.jcis.2025.138656_bb0315 article-title: BiVO4 optimized to nano-worm morphology for enhanced activity towards photoelectrochemical water splitting publication-title: J. Mater. Chem. A doi: 10.1039/C9TA07353A – volume: 2 start-page: 237 issue: 2017 year: 2017 ident: 10.1016/j.jcis.2025.138656_bb0305 article-title: New insights into evaluating catalyst activity and stability of oxygen evolution reactions in alkaline media publication-title: Sustain. Energ. Fuels – volume: 72 start-page: 107202 year: 2025 ident: 10.1016/j.jcis.2025.138656_bb0165 article-title: Polarization engineering and design strategies of ferroelectric materials in photocatalytic CO2 reduction publication-title: Surf. Interfaces doi: 10.1016/j.surfin.2025.107202 – volume: 653 start-page: 94 year: 2024 ident: 10.1016/j.jcis.2025.138656_bb0010 article-title: Electron confinement promoted the electric double layer effect of BiOI/β-Bi2O3 in photocatalytic water splitting publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2023.09.059 – volume: 498 year: 2019 ident: 10.1016/j.jcis.2025.138656_bb0225 article-title: Construction of all-solid-state Z-scheme 2D BiVO4/ag/CdS composites with robust photoactivity and stability publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.143900 – volume: 6 start-page: 3602 year: 2018 ident: 10.1016/j.jcis.2025.138656_bb0205 article-title: Low-dimensional Mo:BiVO4 photoanodes for enhanced photoelectrochemical activity publication-title: J. Mater. Chem. A doi: 10.1039/C7TA11132K – volume: 63 year: 2024 ident: 10.1016/j.jcis.2025.138656_bb0255 article-title: Oxygen vacancies trigger rapid charge transport channels at the engineered Interface of S-scheme heterojunction for boosting photocatalytic performance publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202405756 – volume: 24 start-page: 715 year: 2024 ident: 10.1016/j.jcis.2025.138656_bb0235 article-title: Synchronizing efficient purification of VOCs in durable solar water evaporation over a highly stable cu/W18O49@graphene material publication-title: Nano Lett. doi: 10.1021/acs.nanolett.3c04166 – volume: 286 year: 2021 ident: 10.1016/j.jcis.2025.138656_bb0320 article-title: Improved photocatalytic hydrogen evolution on (Ru/WC)/CdS via modulating the transferring paths of photo-excited electrons publication-title: Appl. Catal. Environ. doi: 10.1016/j.apcatb.2021.119880 – volume: 277 year: 2020 ident: 10.1016/j.jcis.2025.138656_bb0295 article-title: Plasmon-induced dehydrogenation of formic acid on Pd-dotted ag@Au hexagonal nanoplates and single-particle study publication-title: Appl. Catal. Environ. doi: 10.1016/j.apcatb.2020.119226 – volume: 147 start-page: 10829 year: 2025 ident: 10.1016/j.jcis.2025.138656_bb0065 article-title: Bismuth vanadate capable of driving one-step-excitation photocatalytic overall water splitting publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.4c18733 – volume: 9 start-page: 4271 year: 2021 ident: 10.1016/j.jcis.2025.138656_bb0115 article-title: Photoinduced Pt/BiVO4/Bi2O3 heterostructures for methanol oxidation and new insights on the photo−/electrocatalysis coupling mechanism publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.1c00764 – volume: 310 start-page: 38 year: 2019 ident: 10.1016/j.jcis.2025.138656_bb0155 article-title: Formic acid oxidation on Pt deposit model catalysts on Au: single-layered Pt deposits, plateau-type Pt deposits, and conical Pt deposits publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.04.107 – year: 2025 ident: 10.1016/j.jcis.2025.138656_bb0145 article-title: Plasmonic nanomaterials in photothermal catalysis and artificial photosynthesis: hot electron dynamics, design challenges, and future prospects publication-title: Adv. Funct. Mater. – volume: 37 start-page: 2414959 year: 2025 ident: 10.1016/j.jcis.2025.138656_bb0330 article-title: Regulating charge separation via periodic Array nanostructures for Plasmon-enhanced water oxidation publication-title: Adv. Mater. doi: 10.1002/adma.202414959 – volume: 1036 year: 2025 ident: 10.1016/j.jcis.2025.138656_bb0015 article-title: Progress in polarization synergistic mechanism and cross-domain application of multi-field modulated piezo-photocatalysis for ferroelectric materials publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2025.181611 – volume: 454 start-page: 101 year: 2018 ident: 10.1016/j.jcis.2025.138656_bb0195 article-title: Facile formation of flexible ag/AgCl/polydopamine/cotton fabric composite photocatalysts as an efficient visible-light photocatalysts publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.05.154 – volume: 14 start-page: 33200 year: 2022 ident: 10.1016/j.jcis.2025.138656_bb0055 article-title: Laser-reduced BiVO4 for enhanced photoelectrochemical water splitting publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c07451 – volume: 324 year: 2023 ident: 10.1016/j.jcis.2025.138656_bb0325 article-title: A plasmonic Z-scheme ag@AgCl/PDI photocatalyst for the efficient elimination of organic pollutants, antibiotic resistant bacteria and antibiotic resistance genes publication-title: Appl. Catal. Environ. doi: 10.1016/j.apcatb.2022.122220 – volume: 342 year: 2024 ident: 10.1016/j.jcis.2025.138656_bb0245 article-title: Achieving long-lived shallow trapping states in carbon nitride through the n-π*electronic transition for enhanced photocatalytic hydrogen generation publication-title: Appl. Catal. Environ. doi: 10.1016/j.apcatb.2023.123453 – volume: 497 year: 2024 ident: 10.1016/j.jcis.2025.138656_bb0005 article-title: Mechanical-vibration-driven piezocatalytic degradation of organic pollutants over microcrystalline SnSe with selenium vacancies publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2024.155641 – volume: 662 start-page: 276 year: 2024 ident: 10.1016/j.jcis.2025.138656_bb0020 article-title: Enhanced piezo-photocatalytic performance in ZnIn2S4/BiFeO3 heterojunction stimulated by solar and mechanical energy for efficient hydrogen evolution publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2024.02.058 – volume: 12 start-page: 6141 year: 2021 ident: 10.1016/j.jcis.2025.138656_bb0280 article-title: Towards complete assignment of the infrared spectrum of the protonated water cluster H+(H2O)21 publication-title: Nat. Commun. doi: 10.1038/s41467-021-26284-x – volume: 346 year: 2025 ident: 10.1016/j.jcis.2025.138656_bb0080 article-title: Field effect driven ferroelectric polarization dynamics and design strategies for piezo-photocatalytic water splitting publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2025.131348 – volume: 18 start-page: 30247 year: 2024 ident: 10.1016/j.jcis.2025.138656_bb0300 article-title: Single-particle fluorescence spectroscopy for elucidating charge transfer and catalytic mechanisms on Nanophotocatalysts publication-title: ACS Nano doi: 10.1021/acsnano.4c10702 – volume: 410 year: 2021 ident: 10.1016/j.jcis.2025.138656_bb0200 article-title: Core-shell ag@nitrogen-doped carbon quantum dots modified BiVO4 nanosheets with enhanced photocatalytic performance under Vis-NIR light: synergism of molecular oxygen activation and surface plasmon resonance publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.128336 – volume: 6 start-page: 191 year: 2019 ident: 10.1016/j.jcis.2025.138656_bb0310 article-title: Fast dechlorination of chlorinated ethylenes by green rust in the presence of bone char publication-title: Environ. Sci. Technol. Lett. doi: 10.1021/acs.estlett.9b00053 – volume: 8 start-page: 5192 year: 2023 ident: 10.1016/j.jcis.2025.138656_bb0105 article-title: Plasmon-driven reaction selectivity tuning for photoelectrochemical H2O2 production publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.3c02172 – volume: 673 start-page: 463 year: 2024 ident: 10.1016/j.jcis.2025.138656_bb0035 article-title: Anchoring ZnIn2S4 nanosheets on cross-like FeSe2 to construct photothermal-enhanced S-scheme heterojunction for photocatalytic H2 evolution publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2024.06.106 – volume: 13 start-page: 484 year: 2022 ident: 10.1016/j.jcis.2025.138656_bb0060 article-title: Unraveling of cocatalysts photodeposited selectively on facets of BiVO4 to boost solar water splitting publication-title: Nat. Commun. doi: 10.1038/s41467-022-28146-6 – volume: 14 start-page: 13518 year: 2023 ident: 10.1016/j.jcis.2025.138656_bb0175 article-title: Synergistic coupling of interface ohmic contact and LSPR effects over Au/Bi24O31Br10 nanosheets for visible-light-driven photocatalytic CO2 reduction to CO publication-title: Chem. Sci. doi: 10.1039/D3SC03474G – volume: 250 start-page: 31 year: 2019 ident: 10.1016/j.jcis.2025.138656_bb0220 article-title: Highly efficient Z-scheme structured visible-light photocatalyst constructed by selective doping of Ag@AgBr and Co3O4 separately on {010} and {110} facets of BiVO4: pre-separation channel and hole-sink effects publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.03.023 – volume: 55 start-page: 6014 year: 2019 ident: 10.1016/j.jcis.2025.138656_bb0170 article-title: Ultrafast spectroscopic study of plasmon-induced hot electron transfer under NIR excitation in Au triangular nanoprism/g-C3N4 for photocatalytic H2 production publication-title: Chem. Commun. (Camb.) doi: 10.1039/C9CC02574J – volume: 436 year: 2022 ident: 10.1016/j.jcis.2025.138656_bb0230 article-title: Unveiling the intrinsic band alignment and robust water oxidation features of hierarchical BiVO4 phase junction publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131516 – volume: 496 year: 2024 ident: 10.1016/j.jcis.2025.138656_bb0290 article-title: Photothermal-enhanced magnetic Cd0.9Zn0.1S/CoB Schottky heterojunction toward photocatalytic hydrogen evolution publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2024.153960 |
SSID | ssj0011559 |
Score | 2.4902728 |
Snippet | Surface plasmon resonance (SPR) of noble metal particles has been recognized to play a significant role in photocatalysis. We designed the BiVO4@Ag system by... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 138656 |
SubjectTerms | BiVO4 Interface Photocatalysis Surface plasmon resonance |
Title | In situ unravelling surface plasmon resonance subject-object role of BiVO4@Ag in photocatalytic water splitting |
URI | https://dx.doi.org/10.1016/j.jcis.2025.138656 https://www.proquest.com/docview/3239783925 |
Volume | 701 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQHNoeEAWqLi8ZqTcU2MR27NxYVkULVeECiJtlO3YJh2S1mwhx6W_vTB6oVCoHLonylDWezHwZz3xDyDenHGdciogbgG-cWx5Z8KtRnCrkVxp7E7Aa-edVOrvll_fifoVMh1oYTKvsbX9n01tr3Z856aV5Mi8KrPGFr01mEpx4ghwzWMHOJWr58e-XNI8Yl926NI84wrv7wpkux-vRFUjZnYjjGHtfpv9zTv-Y6db3nG-Q9R400kk3rs9kxZeb5MN06NW2ST79RSu4RaqLki6LuqFNic2FWtZtumwWwThP5wCXQfUo_GZXSLbh4YrFYExUtTuK-Ya0CvSsuLvmp5NftCjp_KGqqzbS8wxDoE8AUBd0Cfi1zZreJrfn32-ms6hvrBA58Pd1lDGfWjVOlRA2sy4POVO5DSEPMnieyLF1LvXBKxWc9N5Y5WwMmywP6diJnH0hq2VV-q-EhtR6Lp1nsYlhDgzAScOMipnLpciMG5GjQaJ63vFn6CGx7FGj_DXKX3fyHxExCF2_0gINBv7N5w6HGdIgeVzzMKWvmqVmCcPgVpaInXe-e5d8hKM-7LJHVutF4_cBiNT2oNW0A7I2ufgxu_oDPubgFA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7aFwQKWAKI9iJG4odBPbiXNjWbXape1yaVFvlu3YkB6S1W4i1H_fmTwQVIIDl0SK5cj67MxM5vENwHunnOAik5EwaL4JYUVkUa9GcaqIX2nqTaBq5ItVurgSX67l9Q7Mx1oYSqscZH8v0ztpPTw5HtA8Xpcl1fji15blGSrxhDhmHsAusVPJCezOlmeL1a9gAkXe-kyPOKIJQ-1Mn-Z140pi7U7kx5jaX6Z_00_3JHWnfk734fFgN7JZv7QnsOOrA9ibj-3aDuDRb8yCT6FeVmxbNi1rK-ov1BFvs227CcZ5tkaLGU8fwz_tmvg2PI5Y8sdEdXdjlHLI6sA-l9--ik-z76ys2PpH3dSds-cWl8B-oo26YVs0YbvE6WdwdXpyOV9EQ2-FyKHKb6Kc-9SqaaqktLl1RSi4KmwIRciCF0k2tc6lPnilgsu8N1Y5G-MlL0I6dbLgz2FS1ZV_ASyk1ovMeR6bGLfBoEVpuFExd0Umc-MO4cOIqF73FBp6zC270YS_Jvx1j_8hyBF0_cdB0Cjj_znv3bhDGpGnsIepfN1uNU84-bfyRL78z3e_hb3F5cW5Pl-uzl7BQxwZvDCvYdJsWv8G7ZLGHg3n7g7txeLF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+situ+unravelling+surface+plasmon+resonance+subject-object+role+of+BiVO4%40Ag+in+photocatalytic+water+splitting&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Ding%2C+Guodao&rft.au=Zhang%2C+Yanyang&rft.au=Zhang%2C+Yinjun&rft.au=Gu%2C+Jiajun&rft.date=2026-01-01&rft.pub=Elsevier+Inc&rft.issn=0021-9797&rft.volume=701&rft_id=info:doi/10.1016%2Fj.jcis.2025.138656&rft.externalDocID=S0021979725020478 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |