Monte Carlo estimates of the solution of a parabolic equation and its derivatives made by solving stochastic differential equations

In this paper a method of estimation of both the solution to a parabolic boundary value problem and its derivatives with respect to parameters and spatial variables is proposed. The method uses a probability representation of a solution of a parabolic equation in the form of a functional of a diffus...

Full description

Saved in:
Bibliographic Details
Published inCommunications in nonlinear science & numerical simulation Vol. 9; no. 2; pp. 177 - 185
Main Author Gusev, S.A.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2004
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper a method of estimation of both the solution to a parabolic boundary value problem and its derivatives with respect to parameters and spatial variables is proposed. The method uses a probability representation of a solution of a parabolic equation in the form of a functional of a diffusion process. This process is the solution of a system of stochastic differential equations (SDE) corresponding to the parabolic operator. To obtain the derivatives of the solution of the parabolic boundary value problem the differentiation of the SDE system with respect to the parameters or the initial data is applied.
AbstractList In this paper a method of estimation of both the solution to a parabolic boundary value problem and its derivatives with respect to parameters and spatial variables is proposed. The method uses a probability representation of a solution of a parabolic equation in the form of a functional of a diffusion process. This process is the solution of a system of stochastic differential equations (SDE) corresponding to the parabolic operator. To obtain the derivatives of the solution of the parabolic boundary value problem the differentiation of the SDE system with respect to the parameters or the initial data is applied.
A method of estimation of both the solution to a parabolic boundary value problem and its derivatives with respect to parameters and spatial variables is proposed. The method uses a probability representation of a solution of a parabolic equation in the form of a functional of a diffusion process. This process is the solution of a system of stochastic differential equations (SDE) corresponding to the parabolic operator. To obtain the derivatives of the solution of the parabolic boundary value problem the differentiation of the SDE system with respect to the parameters or the initial data is applied.
Author Gusev, S.A.
Author_xml – sequence: 1
  givenname: S.A.
  surname: Gusev
  fullname: Gusev, S.A.
  email: sag@osmf.sscc.ru
  organization: Institute of Computational Mathematics and Mathematical Geophysics, Siberian Division of Russian Academy of Sciences, Prospect Lavrentjeva 6, Novosibirsk 630090, Russia
BookMark eNqFkD9vFDEQxS2USCSBj4DkCkGxYey1106F0ClApEQpArU1650lRnv2xfadlJovju8OaKnm33tPmt85O4kpEmNvBFwKEMOHBwFgOm1AvYP-PYAA26kX7ExYYzsjjTpp_V_JS3Zeys8mGq60OmO_7lKsxFeYl8Sp1LDGSoWnmddH4iUt2xpS3M_IN5hxTEvwnJ62eNhjnHiohU-Uw66tds27xon4-Lw370L8wUtN_hFbtOdTmGfKFGvA5V9IecVOZ1wKvf5TL9j3z9ffVl-72_svN6tPt52XIGrXD-CV0gjzKP2oLFA_GTvo2SC0G1yBlqO2VklLw9wLVL3REqWZeo2WqL9gb4-5m5yetu1Ztw7F07JgpLQtTlqpGzLRhPoo9DmVkml2m9zA5GcnwO2RuwNyt-fpoHcH5E4138ejj9oXu0DZFR8oeppCJl_dlMJ_En4DxkqMIg
ContentType Journal Article
Copyright 2003 Elsevier B.V.
Copyright_xml – notice: 2003 Elsevier B.V.
DBID AAYXX
CITATION
7SC
7TB
7U5
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/S1007-5704(03)00108-4
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1878-7274
EndPage 185
ExternalDocumentID 10_1016_S1007_5704_03_00108_4
S1007570403001084
GroupedDBID --K
--M
-01
-0A
-0I
-0Y
-SA
-S~
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VR
5VS
7-5
71M
8P~
92M
9D9
9DA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABYKQ
ACAZW
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AFUIB
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAJEA
CAJUS
CCEZO
CCVFK
CHBEP
CS3
CUBFJ
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA0
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
JUIAU
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q--
Q-0
Q38
R-A
R-I
R2-
RIG
ROL
RPZ
RT1
RT9
S..
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSQ
SST
SSW
SSZ
T5K
T8Q
T8Y
U1F
U1G
U5A
U5I
U5K
UHS
~G-
~LA
AAXDM
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7SC
7TB
7U5
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c201t-360c445a0fb2cb480e3d7865f7a036009052b588428e6f31a43752a27d35a8ee3
IEDL.DBID .~1
ISSN 1007-5704
IngestDate Thu Oct 24 22:58:30 EDT 2024
Thu Sep 26 18:52:13 EDT 2024
Fri Feb 23 02:34:11 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords 35K20
Parabolic equation
65C30
60J60
35B30
65C05
Euler method
Parametric derivative
60H35
Stochastic differential equation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c201t-360c445a0fb2cb480e3d7865f7a036009052b588428e6f31a43752a27d35a8ee3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 28258781
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_28258781
crossref_primary_10_1016_S1007_5704_03_00108_4
elsevier_sciencedirect_doi_10_1016_S1007_5704_03_00108_4
PublicationCentury 2000
PublicationDate 20040401
PublicationDateYYYYMMDD 2004-04-01
PublicationDate_xml – month: 04
  year: 2004
  text: 20040401
  day: 01
PublicationDecade 2000
PublicationTitle Communications in nonlinear science & numerical simulation
PublicationYear 2004
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kazakov (BIB3) 1977
Cramer (BIB2) 1975
Tikhonov, Mironov (BIB4) 1977
Averina TA, Artemiev SS. Some problems of construction and using of numerical methods for solving SDE’s. Preprint no. 728, Comp Cent Sib Branch, USSR Acad Sci, Novosibirsk, 1987 [in Russian]
Tikhonov (10.1016/S1007-5704(03)00108-4_BIB4) 1977
Cramer (10.1016/S1007-5704(03)00108-4_BIB2) 1975
Kazakov (10.1016/S1007-5704(03)00108-4_BIB3) 1977
10.1016/S1007-5704(03)00108-4_BIB1
References_xml – year: 1977
  ident: BIB3
  article-title: Statistical dynamics of systems with variable structure
  contributor:
    fullname: Kazakov
– year: 1977
  ident: BIB4
  article-title: Markovian processes
  contributor:
    fullname: Mironov
– year: 1975
  ident: BIB2
  article-title: Mathematical methods of statistics
  contributor:
    fullname: Cramer
– year: 1975
  ident: 10.1016/S1007-5704(03)00108-4_BIB2
  contributor:
    fullname: Cramer
– year: 1977
  ident: 10.1016/S1007-5704(03)00108-4_BIB4
  contributor:
    fullname: Tikhonov
– ident: 10.1016/S1007-5704(03)00108-4_BIB1
– year: 1977
  ident: 10.1016/S1007-5704(03)00108-4_BIB3
  contributor:
    fullname: Kazakov
SSID ssj0016954
Score 1.7118785
Snippet In this paper a method of estimation of both the solution to a parabolic boundary value problem and its derivatives with respect to parameters and spatial...
A method of estimation of both the solution to a parabolic boundary value problem and its derivatives with respect to parameters and spatial variables is...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 177
SubjectTerms Euler method
Parabolic equation
Parametric derivative
Stochastic differential equation
Title Monte Carlo estimates of the solution of a parabolic equation and its derivatives made by solving stochastic differential equations
URI https://dx.doi.org/10.1016/S1007-5704(03)00108-4
https://search.proquest.com/docview/28258781
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZWcOkFSgvi1e0ceoCD2SR-xBzRqmjbCi4FiZtlO7ZYCbILWSpx4cIfr8dJFhWpQuIYKx5FnvHM53jmG0K-5dL46HtzaiolKQ-lpdZlguKlYBCh8DL1WDo7l5NL_vNKXA3IuK-FwbTKzve3Pj15625k1K3maD6djn7j_b4ooxEyPNgo5ATlMfxFmz56WqZ55PI4dULDlym-_VLF00pIgwcZO0xCKP9ffHrlqVP4Of1I1jrcCCftp22Qga8_kfUOQ0K3Q5vP5PkM6aZgbO5vZoAMGrcIJmEWICI96A0Nnw0g7bdFXmDwdy3jN5i6gumigSoa5p_ECd7Arak82EecjH8fIMJFd22Q3xn69irRTdwshTSb5PL0-8V4QrtGC9TF-L-gTGaOc2GyYAtnuco8q0olRShNDHARhWWisFjRWigvA8sNZ6UoTFFWTBjlPdsiK_Ws9tsEKselC447lc5eRlklj22Rh9IzZaTZIUf98up5y6ehl4lmiT8Z9aEzppM-NN8hqleC_scwdPT5b0392itNx02DNyGm9rOHRmPBripVvvt-4Xvkw0sSzz5ZWdw_-C8RnyzsMBngkKye_Pg1Of8LEyvhrw
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELbocmgvhb7EqzCHHtqD2SR-xBzRqmgpLJeCxM2yHVtdCbKU7CL10gt_HI-TLCpShcQxlj2yPOPx53jmG0K-5NL46HtzaiolKQ-lpdZlguKjYBCh8DLVWJqcyfEF_3EpLlfIqM-FwbDKzve3Pj15665l2K3m8GY6Hf7E931RRiNkeLFR_BVZ5YiPo1Hv_13GeeTyIJVCw94Uuz-m8bQiUuPXjH1LUij_3wH1xFWn8-donbztgCMctnN7R1Z8_Z6sdSASui3afCD3E-SbgpG5vZoBUmhcI5qEWYAI9aC3NPw2gLzfFomBwf9uKb_B1BVM5w1U0TLvEil4A9em8mD_4GD8_QARL7pfBgmeoa-vEv3E1VJI85FcHH0_H41pV2mBuggA5pTJzHEuTBZs4SxXmWdVqaQIpYknXIRhmSgsprQWysvAcsNZKQpTlBUTRnnPPpFBPav9BoHKcemC406ly5dRVskDW-Sh9EwZaTbJfr-8-qYl1NDLSLNEoIz60BnTSR-abxLVK0H_Yxk6Ov3nhu71StNx1-BTiKn9bNFozNhVpcq3Xi58j7wen09O9enx2ck2efMY0bNDBvPbhf8cwcrc7iZjfABxV-NI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monte+Carlo+estimates+of+the+solution+of+a+parabolic+equation+and+its+derivatives+made+by+solving+stochastic+differential+equations&rft.jtitle=Communications+in+nonlinear+science+%26+numerical+simulation&rft.au=Gusev%2C+S.A.&rft.date=2004-04-01&rft.issn=1007-5704&rft.volume=9&rft.issue=2&rft.spage=177&rft.epage=185&rft_id=info:doi/10.1016%2FS1007-5704%2803%2900108-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S1007_5704_03_00108_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1007-5704&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1007-5704&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1007-5704&client=summon