Monte Carlo estimates of the solution of a parabolic equation and its derivatives made by solving stochastic differential equations
In this paper a method of estimation of both the solution to a parabolic boundary value problem and its derivatives with respect to parameters and spatial variables is proposed. The method uses a probability representation of a solution of a parabolic equation in the form of a functional of a diffus...
Saved in:
Published in | Communications in nonlinear science & numerical simulation Vol. 9; no. 2; pp. 177 - 185 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2004
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper a method of estimation of both the solution to a parabolic boundary value problem and its derivatives with respect to parameters and spatial variables is proposed. The method uses a probability representation of a solution of a parabolic equation in the form of a functional of a diffusion process. This process is the solution of a system of stochastic differential equations (SDE) corresponding to the parabolic operator. To obtain the derivatives of the solution of the parabolic boundary value problem the differentiation of the SDE system with respect to the parameters or the initial data is applied. |
---|---|
AbstractList | In this paper a method of estimation of both the solution to a parabolic boundary value problem and its derivatives with respect to parameters and spatial variables is proposed. The method uses a probability representation of a solution of a parabolic equation in the form of a functional of a diffusion process. This process is the solution of a system of stochastic differential equations (SDE) corresponding to the parabolic operator. To obtain the derivatives of the solution of the parabolic boundary value problem the differentiation of the SDE system with respect to the parameters or the initial data is applied. A method of estimation of both the solution to a parabolic boundary value problem and its derivatives with respect to parameters and spatial variables is proposed. The method uses a probability representation of a solution of a parabolic equation in the form of a functional of a diffusion process. This process is the solution of a system of stochastic differential equations (SDE) corresponding to the parabolic operator. To obtain the derivatives of the solution of the parabolic boundary value problem the differentiation of the SDE system with respect to the parameters or the initial data is applied. |
Author | Gusev, S.A. |
Author_xml | – sequence: 1 givenname: S.A. surname: Gusev fullname: Gusev, S.A. email: sag@osmf.sscc.ru organization: Institute of Computational Mathematics and Mathematical Geophysics, Siberian Division of Russian Academy of Sciences, Prospect Lavrentjeva 6, Novosibirsk 630090, Russia |
BookMark | eNqFkD9vFDEQxS2USCSBj4DkCkGxYey1106F0ClApEQpArU1650lRnv2xfadlJovju8OaKnm33tPmt85O4kpEmNvBFwKEMOHBwFgOm1AvYP-PYAA26kX7ExYYzsjjTpp_V_JS3Zeys8mGq60OmO_7lKsxFeYl8Sp1LDGSoWnmddH4iUt2xpS3M_IN5hxTEvwnJ62eNhjnHiohU-Uw66tds27xon4-Lw370L8wUtN_hFbtOdTmGfKFGvA5V9IecVOZ1wKvf5TL9j3z9ffVl-72_svN6tPt52XIGrXD-CV0gjzKP2oLFA_GTvo2SC0G1yBlqO2VklLw9wLVL3REqWZeo2WqL9gb4-5m5yetu1Ztw7F07JgpLQtTlqpGzLRhPoo9DmVkml2m9zA5GcnwO2RuwNyt-fpoHcH5E4138ejj9oXu0DZFR8oeppCJl_dlMJ_En4DxkqMIg |
ContentType | Journal Article |
Copyright | 2003 Elsevier B.V. |
Copyright_xml | – notice: 2003 Elsevier B.V. |
DBID | AAYXX CITATION 7SC 7TB 7U5 8FD FR3 H8D JQ2 KR7 L7M L~C L~D |
DOI | 10.1016/S1007-5704(03)00108-4 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1878-7274 |
EndPage | 185 |
ExternalDocumentID | 10_1016_S1007_5704_03_00108_4 S1007570403001084 |
GroupedDBID | --K --M -01 -0A -0I -0Y -SA -S~ .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VR 5VS 7-5 71M 8P~ 92M 9D9 9DA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABFNM ABJNI ABMAC ABNEU ABXDB ABYKQ ACAZW ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADGUI ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AFUIB AGHFR AGUBO AGYEJ AHJVU AIEXJ AIGVJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAJEA CAJUS CCEZO CCVFK CHBEP CS3 CUBFJ DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA0 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA JUIAU KOM M41 MHUIS MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q-- Q-0 Q38 R-A R-I R2- RIG ROL RPZ RT1 RT9 S.. SDF SDG SES SEW SPC SPCBC SPD SSQ SST SSW SSZ T5K T8Q T8Y U1F U1G U5A U5I U5K UHS ~G- ~LA AAXDM AAXKI AAYXX AFJKZ AKRWK CITATION 7SC 7TB 7U5 8FD FR3 H8D JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c201t-360c445a0fb2cb480e3d7865f7a036009052b588428e6f31a43752a27d35a8ee3 |
IEDL.DBID | .~1 |
ISSN | 1007-5704 |
IngestDate | Thu Oct 24 22:58:30 EDT 2024 Thu Sep 26 18:52:13 EDT 2024 Fri Feb 23 02:34:11 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | 35K20 Parabolic equation 65C30 60J60 35B30 65C05 Euler method Parametric derivative 60H35 Stochastic differential equation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c201t-360c445a0fb2cb480e3d7865f7a036009052b588428e6f31a43752a27d35a8ee3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 28258781 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_28258781 crossref_primary_10_1016_S1007_5704_03_00108_4 elsevier_sciencedirect_doi_10_1016_S1007_5704_03_00108_4 |
PublicationCentury | 2000 |
PublicationDate | 20040401 |
PublicationDateYYYYMMDD | 2004-04-01 |
PublicationDate_xml | – month: 04 year: 2004 text: 20040401 day: 01 |
PublicationDecade | 2000 |
PublicationTitle | Communications in nonlinear science & numerical simulation |
PublicationYear | 2004 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Kazakov (BIB3) 1977 Cramer (BIB2) 1975 Tikhonov, Mironov (BIB4) 1977 Averina TA, Artemiev SS. Some problems of construction and using of numerical methods for solving SDE’s. Preprint no. 728, Comp Cent Sib Branch, USSR Acad Sci, Novosibirsk, 1987 [in Russian] Tikhonov (10.1016/S1007-5704(03)00108-4_BIB4) 1977 Cramer (10.1016/S1007-5704(03)00108-4_BIB2) 1975 Kazakov (10.1016/S1007-5704(03)00108-4_BIB3) 1977 10.1016/S1007-5704(03)00108-4_BIB1 |
References_xml | – year: 1977 ident: BIB3 article-title: Statistical dynamics of systems with variable structure contributor: fullname: Kazakov – year: 1977 ident: BIB4 article-title: Markovian processes contributor: fullname: Mironov – year: 1975 ident: BIB2 article-title: Mathematical methods of statistics contributor: fullname: Cramer – year: 1975 ident: 10.1016/S1007-5704(03)00108-4_BIB2 contributor: fullname: Cramer – year: 1977 ident: 10.1016/S1007-5704(03)00108-4_BIB4 contributor: fullname: Tikhonov – ident: 10.1016/S1007-5704(03)00108-4_BIB1 – year: 1977 ident: 10.1016/S1007-5704(03)00108-4_BIB3 contributor: fullname: Kazakov |
SSID | ssj0016954 |
Score | 1.7118785 |
Snippet | In this paper a method of estimation of both the solution to a parabolic boundary value problem and its derivatives with respect to parameters and spatial... A method of estimation of both the solution to a parabolic boundary value problem and its derivatives with respect to parameters and spatial variables is... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 177 |
SubjectTerms | Euler method Parabolic equation Parametric derivative Stochastic differential equation |
Title | Monte Carlo estimates of the solution of a parabolic equation and its derivatives made by solving stochastic differential equations |
URI | https://dx.doi.org/10.1016/S1007-5704(03)00108-4 https://search.proquest.com/docview/28258781 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZWcOkFSgvi1e0ceoCD2SR-xBzRqmjbCi4FiZtlO7ZYCbILWSpx4cIfr8dJFhWpQuIYKx5FnvHM53jmG0K-5dL46HtzaiolKQ-lpdZlguKlYBCh8DL1WDo7l5NL_vNKXA3IuK-FwbTKzve3Pj15625k1K3maD6djn7j_b4ooxEyPNgo5ATlMfxFmz56WqZ55PI4dULDlym-_VLF00pIgwcZO0xCKP9ffHrlqVP4Of1I1jrcCCftp22Qga8_kfUOQ0K3Q5vP5PkM6aZgbO5vZoAMGrcIJmEWICI96A0Nnw0g7bdFXmDwdy3jN5i6gumigSoa5p_ECd7Arak82EecjH8fIMJFd22Q3xn69irRTdwshTSb5PL0-8V4QrtGC9TF-L-gTGaOc2GyYAtnuco8q0olRShNDHARhWWisFjRWigvA8sNZ6UoTFFWTBjlPdsiK_Ws9tsEKselC447lc5eRlklj22Rh9IzZaTZIUf98up5y6ehl4lmiT8Z9aEzppM-NN8hqleC_scwdPT5b0392itNx02DNyGm9rOHRmPBripVvvt-4Xvkw0sSzz5ZWdw_-C8RnyzsMBngkKye_Pg1Of8LEyvhrw |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELbocmgvhb7EqzCHHtqD2SR-xBzRqmgpLJeCxM2yHVtdCbKU7CL10gt_HI-TLCpShcQxlj2yPOPx53jmG0K-5NL46HtzaiolKQ-lpdZlguKjYBCh8DLVWJqcyfEF_3EpLlfIqM-FwbDKzve3Pj15665l2K3m8GY6Hf7E931RRiNkeLFR_BVZ5YiPo1Hv_13GeeTyIJVCw94Uuz-m8bQiUuPXjH1LUij_3wH1xFWn8-donbztgCMctnN7R1Z8_Z6sdSASui3afCD3E-SbgpG5vZoBUmhcI5qEWYAI9aC3NPw2gLzfFomBwf9uKb_B1BVM5w1U0TLvEil4A9em8mD_4GD8_QARL7pfBgmeoa-vEv3E1VJI85FcHH0_H41pV2mBuggA5pTJzHEuTBZs4SxXmWdVqaQIpYknXIRhmSgsprQWysvAcsNZKQpTlBUTRnnPPpFBPav9BoHKcemC406ly5dRVskDW-Sh9EwZaTbJfr-8-qYl1NDLSLNEoIz60BnTSR-abxLVK0H_Yxk6Ov3nhu71StNx1-BTiKn9bNFozNhVpcq3Xi58j7wen09O9enx2ck2efMY0bNDBvPbhf8cwcrc7iZjfABxV-NI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monte+Carlo+estimates+of+the+solution+of+a+parabolic+equation+and+its+derivatives+made+by+solving+stochastic+differential+equations&rft.jtitle=Communications+in+nonlinear+science+%26+numerical+simulation&rft.au=Gusev%2C+S.A.&rft.date=2004-04-01&rft.issn=1007-5704&rft.volume=9&rft.issue=2&rft.spage=177&rft.epage=185&rft_id=info:doi/10.1016%2FS1007-5704%2803%2900108-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S1007_5704_03_00108_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1007-5704&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1007-5704&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1007-5704&client=summon |