MPFCNet: multi-scale parallel feature fusion convolutional network for 3D knee segmentation from MR images

Accurate and automatic segmentation of knee magnetic resonance (MR) images plays a vital role in the diagnosis of osteoarthritis and knee bone diseases. However, the anatomical structure of the knee joint is complex, it is difficult to segment knee joints accurately and efficiently. This paper propo...

Full description

Saved in:
Bibliographic Details
Published inPattern analysis and applications : PAA Vol. 28; no. 2
Main Authors Zhang, Hanzheng, Wu, Qing, Zhao, Xing, Wang, Yuanquan, Zhou, Shoujun, Zhang, Lei, Zhang, Tao
Format Journal Article
LanguageEnglish
Published London Springer London 01.06.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1433-7541
1433-755X
DOI10.1007/s10044-025-01437-6

Cover

Loading…
Abstract Accurate and automatic segmentation of knee magnetic resonance (MR) images plays a vital role in the diagnosis of osteoarthritis and knee bone diseases. However, the anatomical structure of the knee joint is complex, it is difficult to segment knee joints accurately and efficiently. This paper proposes a knee joint segmentation model from MR image, which is named a multi-scale parallel feature fusion convolutional network (MPFCNet). A Large Kernel Attention (LKA) module is coined in the MPFCNet, which effectively increases the receptive field and preserves detail textures, resulting in better feature extraction. To further utilize complementary information at various scales in both spatial and channel dimensions, a Multi-Scale Fusion (MSF) module is established. A Hybrid Feedforward Attention (HFA) module is proposed to establish long-range dependencies. Experiments and comparisons with state-of-the-art methods were conducted on the publicly available dataset OAI-ZIB. The results show that the MPFCNet achieved excellent segmentation results on the knee joint segmentation task, improving the average dice similarity coefficient.
AbstractList Accurate and automatic segmentation of knee magnetic resonance (MR) images plays a vital role in the diagnosis of osteoarthritis and knee bone diseases. However, the anatomical structure of the knee joint is complex, it is difficult to segment knee joints accurately and efficiently. This paper proposes a knee joint segmentation model from MR image, which is named a multi-scale parallel feature fusion convolutional network (MPFCNet). A Large Kernel Attention (LKA) module is coined in the MPFCNet, which effectively increases the receptive field and preserves detail textures, resulting in better feature extraction. To further utilize complementary information at various scales in both spatial and channel dimensions, a Multi-Scale Fusion (MSF) module is established. A Hybrid Feedforward Attention (HFA) module is proposed to establish long-range dependencies. Experiments and comparisons with state-of-the-art methods were conducted on the publicly available dataset OAI-ZIB. The results show that the MPFCNet achieved excellent segmentation results on the knee joint segmentation task, improving the average dice similarity coefficient.
ArticleNumber 62
Author Wang, Yuanquan
Zhang, Hanzheng
Zhao, Xing
Zhang, Lei
Wu, Qing
Zhou, Shoujun
Zhang, Tao
Author_xml – sequence: 1
  givenname: Hanzheng
  surname: Zhang
  fullname: Zhang, Hanzheng
  organization: School of Artificial Intelligence, Hebei University of Technology (HeBUT)
– sequence: 2
  givenname: Qing
  surname: Wu
  fullname: Wu, Qing
  organization: School of Artificial Intelligence, Hebei University of Technology (HeBUT)
– sequence: 3
  givenname: Xing
  surname: Zhao
  fullname: Zhao, Xing
  organization: School of Mathematical Sciences, Capital Normal University
– sequence: 4
  givenname: Yuanquan
  surname: Wang
  fullname: Wang, Yuanquan
  email: wangyuanquan@scse.hebut.edu.cn
  organization: School of Artificial Intelligence, Hebei University of Technology (HeBUT)
– sequence: 5
  givenname: Shoujun
  surname: Zhou
  fullname: Zhou, Shoujun
  email: sj.zhou@siat.ac.cn
  organization: Institutes of Advanced Technology, Chinese Academy of Sciences
– sequence: 6
  givenname: Lei
  surname: Zhang
  fullname: Zhang, Lei
  email: zhanglei@hebut.edu.cn
  organization: School of Artificial Intelligence, Hebei University of Technology (HeBUT)
– sequence: 7
  givenname: Tao
  surname: Zhang
  fullname: Zhang, Tao
  organization: Tianjin Hospital, Tianjin University
BookMark eNp9kE9LAzEUxINUsK1-AU8Bz6v5s0lab1KtCq2KKHgLMX0pbXeTmuwqfntTV_TmZd4cfjM8ZoB6PnhA6JiSU0qIOktZy7IgTBSEllwVcg_1s-GFEuKl9-tLeoAGKa0J4ZyzUR-t5w_TyR0057huq2ZVJGsqwFsTTVVBhR2Ypo2AXZtWwWMb_Huo2iZ7U2EPzUeIG-xCxPwSbzwATrCswTdmh2AXQ43nj3hVmyWkQ7TvTJXg6OcO0fP06mlyU8zur28nF7PCMkKaApiQyjAqJTELap2U44WSOy2Jkpw6YqzipWXCGAWOCkMNHb9aqTgj1ig-RCdd7zaGtxZSo9ehjfnhpDlVYizESIpMsY6yMaQUweltzH_GT02J3m2qu0113lR_b6plDvEulDLslxD_qv9JfQFx9nuG
Cites_doi 10.1002/mrm.26841
10.1007/978-3-642-40763-5_31
10.1016/j.eswa.2022.119105
10.1007/978-1-4471-3201-1_28
10.1186/s13018-023-04392-2
10.1136/annrheumdis-2013-204763
10.1016/j.artmed.2021.102213
10.1002/mrm.27229
10.1117/12.467113
10.1109/tpami.2020.2983686
10.1109/tmi.2019.2959609
10.1145/3230631
10.1177/1759720x11431005
10.1109/jproc.2021.3054390
10.1016/j.bspc.2021.102684
10.3934/ipi.2020057
10.1016/j.artmed.2020.101851
10.1007/s10278-021-00464-z
10.1007/s11517-011-0838-8
10.1109/jbhi.2020.3038847
10.1109/3DV.2016.79
10.1016/j.joca.2006.03.004
10.1109/embc.2013.6610787
10.1038/s41592-020-01008-z
10.1109/cvpr52688.2022.01167
10.1148/radiol.2018172322
10.1007/s10334-021-00934-z
10.1109/tnb.2018.2840082
10.1109/TIP.2023.3293771
10.1109/iembs.2000.901563
10.1016/j.compmedimag.2020.101793
10.1007/978-3-319-24574-4_28
10.1109/jbhi.2017.2727218
10.1016/j.media.2018.11.009
10.1109/wacv51458.2022.00181
10.1109/tbme.2006.872816
10.1109/jstars.2021.3073661
10.1007/978-3-031-08999-2_22
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025.
DBID AAYXX
CITATION
DOI 10.1007/s10044-025-01437-6
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1433-755X
ExternalDocumentID 10_1007_s10044_025_01437_6
GrantInformation_xml – fundername: Shenzhen Technology Innovation Commission
  grantid: JCYJ20200109114610201, JSGG20220831110400001
– fundername: Natural Science Foundation of Guangdong Province
  grantid: 2023A1515010673
– fundername: National Key R&D Project of China
  grantid: 2018YFA0704102, 2018YFA0704104
– fundername: National Science Foundation of China (NSFC)
  grantid: 61976241, 61827809
– fundername: Shenzhen Engineering Laboratory for Diagnosis & Treatment Key Technologies of Interventional Surgical Robots
  grantid: XMHT20220104009
GroupedDBID -~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
203
29O
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BGNMA
BSONS
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9J
OAM
P2P
P9O
PF0
PT4
PT5
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~A9
-Y2
1SB
2P1
2VQ
AARHV
AAYXX
ABQSL
ABULA
ACBXY
ADHKG
AEBTG
AEKMD
AFGCZ
AGGDS
AGJBK
AGQPQ
AHSBF
AJBLW
BDATZ
CAG
CITATION
COF
EJD
FINBP
FSGXE
H13
N2Q
O9-
RIG
RNI
RZK
ID FETCH-LOGICAL-c200t-e2567a21660ad1cf669d76669d407631f0ac734c25aa7ef15a1a19bc67320ca73
IEDL.DBID U2A
ISSN 1433-7541
IngestDate Fri Jul 25 09:01:57 EDT 2025
Thu Jul 10 07:27:09 EDT 2025
Mon Jul 21 06:06:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Magnetic resonance imaging (MRI)
Attention mechanism
Knee osteoarthritis (KOA)
Multi-scale feature fusion
Medical image segmentation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c200t-e2567a21660ad1cf669d76669d407631f0ac734c25aa7ef15a1a19bc67320ca73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3175955865
PQPubID 2043691
ParticipantIDs proquest_journals_3175955865
crossref_primary_10_1007_s10044_025_01437_6
springer_journals_10_1007_s10044_025_01437_6
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Pattern analysis and applications : PAA
PublicationTitleAbbrev Pattern Anal Applic
PublicationYear 2025
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References 1437_CR23
Z Zhou (1437_CR26) 2018; 80
1437_CR25
B Norman (1437_CR24) 2018; 288
M Cross (1437_CR2) 2014; 73
S Ghosh (1437_CR13) 2002
J Wang (1437_CR10) 2021; 43
Y Deng (1437_CR5) 2021; 34
SK Zhou (1437_CR18) 2021; 109
W Shen (1437_CR19) 2021; 15
A Bitarafan (1437_CR21) 2021; 25
H Zhang (1437_CR20) 2021; 68
S Ebrahimkhani (1437_CR4) 2020; 106
C Zhao (1437_CR22) 2023; 214
D Kumar (1437_CR35) 2019; 51
J Tang (1437_CR15) 2006; 53
DA Kessler (1437_CR28) 2020; 86
AA Gatti (1437_CR31) 2021
Y Du (1437_CR6) 2018; 17
F Isensee (1437_CR36) 2021; 18
1437_CR34
SK Pakin (1437_CR12) 2002
Y Wang (1437_CR3) 2012; 4
1437_CR17
1437_CR39
1437_CR16
1437_CR38
F Movahedi (1437_CR8) 2018; 22
F Liu (1437_CR27) 2018; 79
1437_CR9
JL Jaremko (1437_CR7) 2006; 14
X Liu (1437_CR1) 2024; 19
1437_CR32
MHA Latif (1437_CR11) 2021; 122
P Dodin (1437_CR14) 2011; 49
H-Y Zhou (1437_CR37) 2023; 32
Y Wang (1437_CR33) 2021; 14
F Ambellan (1437_CR29) 2018
Z Zhou (1437_CR30) 2020; 39
References_xml – volume: 79
  start-page: 2379
  year: 2018
  ident: 1437_CR27
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.26841
– ident: 1437_CR9
  doi: 10.1007/978-3-642-40763-5_31
– volume: 214
  start-page: 119105
  year: 2023
  ident: 1437_CR22
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.119105
– ident: 1437_CR16
  doi: 10.1007/978-1-4471-3201-1_28
– volume: 19
  start-page: 1
  issue: 1
  year: 2024
  ident: 1437_CR1
  publication-title: J Orthop Surg Res
  doi: 10.1186/s13018-023-04392-2
– volume: 73
  start-page: 1323
  year: 2014
  ident: 1437_CR2
  publication-title: Ann Rheum Dis
  doi: 10.1136/annrheumdis-2013-204763
– volume: 122
  start-page: 102213
  year: 2021
  ident: 1437_CR11
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2021.102213
– volume: 80
  start-page: 2759
  year: 2018
  ident: 1437_CR26
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27229
– year: 2002
  ident: 1437_CR12
  publication-title: SPIE Proc Med Imaging 2002: Image Process
  doi: 10.1117/12.467113
– volume: 43
  start-page: 3349
  year: 2021
  ident: 1437_CR10
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/tpami.2020.2983686
– volume: 39
  start-page: 1856
  year: 2020
  ident: 1437_CR30
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/tmi.2019.2959609
– volume: 51
  start-page: 1
  year: 2019
  ident: 1437_CR35
  publication-title: ACM-CSUR
  doi: 10.1145/3230631
– volume: 4
  start-page: 77
  year: 2012
  ident: 1437_CR3
  publication-title: Therapeutic Adv Musculoskelet Disease
  doi: 10.1177/1759720x11431005
– volume: 109
  start-page: 820
  year: 2021
  ident: 1437_CR18
  publication-title: Proc IEEE
  doi: 10.1109/jproc.2021.3054390
– volume: 68
  start-page: 102684
  year: 2021
  ident: 1437_CR20
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.102684
– volume: 15
  start-page: 1333
  year: 2021
  ident: 1437_CR19
  publication-title: Inverse Probl Imaging
  doi: 10.3934/ipi.2020057
– volume: 106
  start-page: 101851
  year: 2020
  ident: 1437_CR4
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2020.101851
– volume: 34
  start-page: 833
  year: 2021
  ident: 1437_CR5
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-021-00464-z
– volume: 49
  start-page: 1413
  year: 2011
  ident: 1437_CR14
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-011-0838-8
– volume: 25
  start-page: 2665
  year: 2021
  ident: 1437_CR21
  publication-title: IEEE J Biomedical Health Inf
  doi: 10.1109/jbhi.2020.3038847
– ident: 1437_CR34
  doi: 10.1109/3DV.2016.79
– volume: 14
  start-page: 914
  year: 2006
  ident: 1437_CR7
  publication-title: Osteoarthr Cartil
  doi: 10.1016/j.joca.2006.03.004
– ident: 1437_CR17
  doi: 10.1109/embc.2013.6610787
– volume: 18
  start-page: 203
  year: 2021
  ident: 1437_CR36
  publication-title: Nat Methods
  doi: 10.1038/s41592-020-01008-z
– ident: 1437_CR32
  doi: 10.1109/cvpr52688.2022.01167
– ident: 1437_CR23
  doi: 10.1007/978-3-642-40763-5_31
– volume: 288
  start-page: 177
  year: 2018
  ident: 1437_CR24
  publication-title: Radiology
  doi: 10.1148/radiol.2018172322
– year: 2021
  ident: 1437_CR31
  doi: 10.1007/s10334-021-00934-z
– volume: 17
  start-page: 228
  year: 2018
  ident: 1437_CR6
  publication-title: IEEE Trans Nanobiosci
  doi: 10.1109/tnb.2018.2840082
– volume: 32
  start-page: 4036
  year: 2023
  ident: 1437_CR37
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2023.3293771
– year: 2002
  ident: 1437_CR13
  publication-title: Proc 22nd Annual Int Conf IEEE Eng Med Biology Soc (Cat No 00CH37143)
  doi: 10.1109/iembs.2000.901563
– volume: 86
  start-page: 101793
  year: 2020
  ident: 1437_CR28
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2020.101793
– ident: 1437_CR25
  doi: 10.1007/978-3-319-24574-4_28
– volume: 22
  start-page: 642
  year: 2018
  ident: 1437_CR8
  publication-title: IEEE J Biomedical Health Inf
  doi: 10.1109/jbhi.2017.2727218
– year: 2018
  ident: 1437_CR29
  doi: 10.1016/j.media.2018.11.009
– ident: 1437_CR38
  doi: 10.1109/wacv51458.2022.00181
– volume: 53
  start-page: 896
  year: 2006
  ident: 1437_CR15
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/tbme.2006.872816
– volume: 14
  start-page: 4621
  year: 2021
  ident: 1437_CR33
  publication-title: IEEE J Sel Top Appl Earth Observations Remote Sens
  doi: 10.1109/jstars.2021.3073661
– ident: 1437_CR39
  doi: 10.1007/978-3-031-08999-2_22
SSID ssj0033328
Score 2.3808882
Snippet Accurate and automatic segmentation of knee magnetic resonance (MR) images plays a vital role in the diagnosis of osteoarthritis and knee bone diseases....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Computer Science
Feature extraction
Image segmentation
Joints (anatomy)
Knee
Magnetic resonance imaging
Medical imaging
Modules
Original Article
Pattern Recognition
Title MPFCNet: multi-scale parallel feature fusion convolutional network for 3D knee segmentation from MR images
URI https://link.springer.com/article/10.1007/s10044-025-01437-6
https://www.proquest.com/docview/3175955865
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwGP_Q7eLFtzidIwdvWkib1-ptzE1RNkQczFNJ21TUrYrt_n-TLGEqevCSQxpSyPf6Jd8L4DRO89Q0HAhokeqhS7VIGf97iDMso5RyYovpjMb8ekJvpmzqksIqH-3uXZJWU39JdsOUBqb9qqlJJwK-Dk1m7u6aiydRz-tfQojtqKrXkEAwGrpUmd_3-G6OVhjzh1vUWpvhNmw6mIh6S7ruwJoqd2HLQUbkBLLSU74rg5_bg5fR3bA_VvUFssGCQaWpoJAp8T2bqRkqlC3liYqFeSdDJurccZ_-X7kMCkcaySJyiV5LpVClnuYuQalEJhsFje7R81zroWofJsPBQ_86cB0VgkxLQx0oDXCEjELOsczDrOA8zgU3o77XcRIWWGaC0CxiUgpVhEyGMozTjAsS4UwKcgCN8q1Uh4BSQTMhcqykMXCcSxzjbhopKXKpYVXegjN_sMn7snBGsiqRbMiQaDIklgwJb0Hbn33ihKhKDLSJGety1oJzT4_V5793O_rf8mPYiCxLmLeVNjTqj4U60VCjTjvQ7F093g46lsM-AQ5byls
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LT8MgGCc6D3rxbZxO5eBNSaBQaL0t02XqthizJbs1tKVG3aqx3f8vMMjU6MELB0og4Xv9yvcC4DxO89Q0HECsSPUQMS1Sxv9OcIZlkDJObTGdwZD3xuxuEk5cUljlo929S9Jq6i_JbpgxZNqvmpp0AvFVsKbBQGQCucZB2-tfSqntqKrXUCRCRlyqzO97fDdHS4z5wy1qrU13G2w6mAjbC7rugBVV7oItBxmhE8hKT_muDH5uD7wMHrqdoaqvoA0WRJWmgoKmxPd0qqawULaUJyzm5p0Mmqhzx336vHIRFA41koX0Gr6WSsFKPc1cglIJTTYKHDzC55nWQ9U-GHdvRp0ech0VUKaloUZKAxwhA8I5ljnJCs7jXHAz6v86TkmBZSYoy4JQSqEKEkoiSZxmXNAAZ1LQA9Ao30p1CGAqWCZEjpU0Bo5ziWMcpYGSIpcaVuVNcOEvNnlfFM5IliWSDRkSTYbEkiHhTdDyd584IaoSA23iMIx42ASXnh7Lz3_vdvS_5WdgvTca9JP-7fD-GGwElj3MO0sLNOqPuTrRsKNOTy2XfQJhvsu6
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8MgFCc6E-PFb-N0Kgdv2gwKhdXbsrnMjy2LccluBFpq1K0utvv_Bdpm0-jBCwdKIOG9B7_y3vs9AC5DFStbcMCjiTJNixqTsv53jCIkfUUZcWQ6gyHrj-n9JJisZPG7aPfKJVnkNFiWpjRvzuOkuZL4hij1bClWy0_HPbYONsxxjK1ej_12dRYTQlx1VTOGeDyguEyb-X2O71fTEm_-cJG6m6e3C7ZLyAjbhYz3wJpO98FOCR9haZyZ6aoqNFR9B-BtMOp1hjq_gS5w0MuMRDS0dN_TqZ7CRDtaT5gs7JsZtBHopSaa9dIiQBwaVAtJF76nWsNMv8zKZKUU2swUOHiCrzNzJmWHYNy7fe70vbK6ghcZy8g9bcAOlz5mDMkYRwljYcyZbc0_HiM4QTLihEZ-ICXXCQ4kljhUEePER5Hk5AjU0o9UHwOoOI04j5GW9rJjTKIQtZSvJY-lgVhxHVxVGyvmBYmGWNIlWzEIIwbhxCBYHTSqvRelQWXCwpwwCFosqIPrSh7Lz3_PdvK_4Rdgc9Ttice74cMp2PKddtgnlwao5Z8LfWYQSK7OnZJ9AW2fz_Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MPFCNet%3A+multi-scale+parallel+feature+fusion+convolutional+network+for+3D+knee+segmentation+from+MR+images&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Zhang+Hanzheng&rft.au=Wu%2C+Qing&rft.au=Zhao%2C+Xing&rft.au=Wang%2C+Yuanquan&rft.date=2025-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=28&rft.issue=2&rft_id=info:doi/10.1007%2Fs10044-025-01437-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon