MPFCNet: multi-scale parallel feature fusion convolutional network for 3D knee segmentation from MR images
Accurate and automatic segmentation of knee magnetic resonance (MR) images plays a vital role in the diagnosis of osteoarthritis and knee bone diseases. However, the anatomical structure of the knee joint is complex, it is difficult to segment knee joints accurately and efficiently. This paper propo...
Saved in:
Published in | Pattern analysis and applications : PAA Vol. 28; no. 2 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.06.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1433-7541 1433-755X |
DOI | 10.1007/s10044-025-01437-6 |
Cover
Loading…
Abstract | Accurate and automatic segmentation of knee magnetic resonance (MR) images plays a vital role in the diagnosis of osteoarthritis and knee bone diseases. However, the anatomical structure of the knee joint is complex, it is difficult to segment knee joints accurately and efficiently. This paper proposes a knee joint segmentation model from MR image, which is named a multi-scale parallel feature fusion convolutional network (MPFCNet). A Large Kernel Attention (LKA) module is coined in the MPFCNet, which effectively increases the receptive field and preserves detail textures, resulting in better feature extraction. To further utilize complementary information at various scales in both spatial and channel dimensions, a Multi-Scale Fusion (MSF) module is established. A Hybrid Feedforward Attention (HFA) module is proposed to establish long-range dependencies. Experiments and comparisons with state-of-the-art methods were conducted on the publicly available dataset OAI-ZIB. The results show that the MPFCNet achieved excellent segmentation results on the knee joint segmentation task, improving the average dice similarity coefficient. |
---|---|
AbstractList | Accurate and automatic segmentation of knee magnetic resonance (MR) images plays a vital role in the diagnosis of osteoarthritis and knee bone diseases. However, the anatomical structure of the knee joint is complex, it is difficult to segment knee joints accurately and efficiently. This paper proposes a knee joint segmentation model from MR image, which is named a multi-scale parallel feature fusion convolutional network (MPFCNet). A Large Kernel Attention (LKA) module is coined in the MPFCNet, which effectively increases the receptive field and preserves detail textures, resulting in better feature extraction. To further utilize complementary information at various scales in both spatial and channel dimensions, a Multi-Scale Fusion (MSF) module is established. A Hybrid Feedforward Attention (HFA) module is proposed to establish long-range dependencies. Experiments and comparisons with state-of-the-art methods were conducted on the publicly available dataset OAI-ZIB. The results show that the MPFCNet achieved excellent segmentation results on the knee joint segmentation task, improving the average dice similarity coefficient. |
ArticleNumber | 62 |
Author | Wang, Yuanquan Zhang, Hanzheng Zhao, Xing Zhang, Lei Wu, Qing Zhou, Shoujun Zhang, Tao |
Author_xml | – sequence: 1 givenname: Hanzheng surname: Zhang fullname: Zhang, Hanzheng organization: School of Artificial Intelligence, Hebei University of Technology (HeBUT) – sequence: 2 givenname: Qing surname: Wu fullname: Wu, Qing organization: School of Artificial Intelligence, Hebei University of Technology (HeBUT) – sequence: 3 givenname: Xing surname: Zhao fullname: Zhao, Xing organization: School of Mathematical Sciences, Capital Normal University – sequence: 4 givenname: Yuanquan surname: Wang fullname: Wang, Yuanquan email: wangyuanquan@scse.hebut.edu.cn organization: School of Artificial Intelligence, Hebei University of Technology (HeBUT) – sequence: 5 givenname: Shoujun surname: Zhou fullname: Zhou, Shoujun email: sj.zhou@siat.ac.cn organization: Institutes of Advanced Technology, Chinese Academy of Sciences – sequence: 6 givenname: Lei surname: Zhang fullname: Zhang, Lei email: zhanglei@hebut.edu.cn organization: School of Artificial Intelligence, Hebei University of Technology (HeBUT) – sequence: 7 givenname: Tao surname: Zhang fullname: Zhang, Tao organization: Tianjin Hospital, Tianjin University |
BookMark | eNp9kE9LAzEUxINUsK1-AU8Bz6v5s0lab1KtCq2KKHgLMX0pbXeTmuwqfntTV_TmZd4cfjM8ZoB6PnhA6JiSU0qIOktZy7IgTBSEllwVcg_1s-GFEuKl9-tLeoAGKa0J4ZyzUR-t5w_TyR0057huq2ZVJGsqwFsTTVVBhR2Ypo2AXZtWwWMb_Huo2iZ7U2EPzUeIG-xCxPwSbzwATrCswTdmh2AXQ43nj3hVmyWkQ7TvTJXg6OcO0fP06mlyU8zur28nF7PCMkKaApiQyjAqJTELap2U44WSOy2Jkpw6YqzipWXCGAWOCkMNHb9aqTgj1ig-RCdd7zaGtxZSo9ehjfnhpDlVYizESIpMsY6yMaQUweltzH_GT02J3m2qu0113lR_b6plDvEulDLslxD_qv9JfQFx9nuG |
Cites_doi | 10.1002/mrm.26841 10.1007/978-3-642-40763-5_31 10.1016/j.eswa.2022.119105 10.1007/978-1-4471-3201-1_28 10.1186/s13018-023-04392-2 10.1136/annrheumdis-2013-204763 10.1016/j.artmed.2021.102213 10.1002/mrm.27229 10.1117/12.467113 10.1109/tpami.2020.2983686 10.1109/tmi.2019.2959609 10.1145/3230631 10.1177/1759720x11431005 10.1109/jproc.2021.3054390 10.1016/j.bspc.2021.102684 10.3934/ipi.2020057 10.1016/j.artmed.2020.101851 10.1007/s10278-021-00464-z 10.1007/s11517-011-0838-8 10.1109/jbhi.2020.3038847 10.1109/3DV.2016.79 10.1016/j.joca.2006.03.004 10.1109/embc.2013.6610787 10.1038/s41592-020-01008-z 10.1109/cvpr52688.2022.01167 10.1148/radiol.2018172322 10.1007/s10334-021-00934-z 10.1109/tnb.2018.2840082 10.1109/TIP.2023.3293771 10.1109/iembs.2000.901563 10.1016/j.compmedimag.2020.101793 10.1007/978-3-319-24574-4_28 10.1109/jbhi.2017.2727218 10.1016/j.media.2018.11.009 10.1109/wacv51458.2022.00181 10.1109/tbme.2006.872816 10.1109/jstars.2021.3073661 10.1007/978-3-031-08999-2_22 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025. |
DBID | AAYXX CITATION |
DOI | 10.1007/s10044-025-01437-6 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1433-755X |
ExternalDocumentID | 10_1007_s10044_025_01437_6 |
GrantInformation_xml | – fundername: Shenzhen Technology Innovation Commission grantid: JCYJ20200109114610201, JSGG20220831110400001 – fundername: Natural Science Foundation of Guangdong Province grantid: 2023A1515010673 – fundername: National Key R&D Project of China grantid: 2018YFA0704102, 2018YFA0704104 – fundername: National Science Foundation of China (NSFC) grantid: 61976241, 61827809 – fundername: Shenzhen Engineering Laboratory for Diagnosis & Treatment Key Technologies of Interventional Surgical Robots grantid: XMHT20220104009 |
GroupedDBID | -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 203 29O 2J2 2JN 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACSTC ACZOJ ADHHG ADHIR ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BGNMA BSONS CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI ESBYG F5P FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9J OAM P2P P9O PF0 PT4 PT5 QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~A9 -Y2 1SB 2P1 2VQ AARHV AAYXX ABQSL ABULA ACBXY ADHKG AEBTG AEKMD AFGCZ AGGDS AGJBK AGQPQ AHSBF AJBLW BDATZ CAG CITATION COF EJD FINBP FSGXE H13 N2Q O9- RIG RNI RZK |
ID | FETCH-LOGICAL-c200t-e2567a21660ad1cf669d76669d407631f0ac734c25aa7ef15a1a19bc67320ca73 |
IEDL.DBID | U2A |
ISSN | 1433-7541 |
IngestDate | Fri Jul 25 09:01:57 EDT 2025 Thu Jul 10 07:27:09 EDT 2025 Mon Jul 21 06:06:31 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Magnetic resonance imaging (MRI) Attention mechanism Knee osteoarthritis (KOA) Multi-scale feature fusion Medical image segmentation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c200t-e2567a21660ad1cf669d76669d407631f0ac734c25aa7ef15a1a19bc67320ca73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3175955865 |
PQPubID | 2043691 |
ParticipantIDs | proquest_journals_3175955865 crossref_primary_10_1007_s10044_025_01437_6 springer_journals_10_1007_s10044_025_01437_6 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-01 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Pattern analysis and applications : PAA |
PublicationTitleAbbrev | Pattern Anal Applic |
PublicationYear | 2025 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | 1437_CR23 Z Zhou (1437_CR26) 2018; 80 1437_CR25 B Norman (1437_CR24) 2018; 288 M Cross (1437_CR2) 2014; 73 S Ghosh (1437_CR13) 2002 J Wang (1437_CR10) 2021; 43 Y Deng (1437_CR5) 2021; 34 SK Zhou (1437_CR18) 2021; 109 W Shen (1437_CR19) 2021; 15 A Bitarafan (1437_CR21) 2021; 25 H Zhang (1437_CR20) 2021; 68 S Ebrahimkhani (1437_CR4) 2020; 106 C Zhao (1437_CR22) 2023; 214 D Kumar (1437_CR35) 2019; 51 J Tang (1437_CR15) 2006; 53 DA Kessler (1437_CR28) 2020; 86 AA Gatti (1437_CR31) 2021 Y Du (1437_CR6) 2018; 17 F Isensee (1437_CR36) 2021; 18 1437_CR34 SK Pakin (1437_CR12) 2002 Y Wang (1437_CR3) 2012; 4 1437_CR17 1437_CR39 1437_CR16 1437_CR38 F Movahedi (1437_CR8) 2018; 22 F Liu (1437_CR27) 2018; 79 1437_CR9 JL Jaremko (1437_CR7) 2006; 14 X Liu (1437_CR1) 2024; 19 1437_CR32 MHA Latif (1437_CR11) 2021; 122 P Dodin (1437_CR14) 2011; 49 H-Y Zhou (1437_CR37) 2023; 32 Y Wang (1437_CR33) 2021; 14 F Ambellan (1437_CR29) 2018 Z Zhou (1437_CR30) 2020; 39 |
References_xml | – volume: 79 start-page: 2379 year: 2018 ident: 1437_CR27 publication-title: Magn Reson Med doi: 10.1002/mrm.26841 – ident: 1437_CR9 doi: 10.1007/978-3-642-40763-5_31 – volume: 214 start-page: 119105 year: 2023 ident: 1437_CR22 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.119105 – ident: 1437_CR16 doi: 10.1007/978-1-4471-3201-1_28 – volume: 19 start-page: 1 issue: 1 year: 2024 ident: 1437_CR1 publication-title: J Orthop Surg Res doi: 10.1186/s13018-023-04392-2 – volume: 73 start-page: 1323 year: 2014 ident: 1437_CR2 publication-title: Ann Rheum Dis doi: 10.1136/annrheumdis-2013-204763 – volume: 122 start-page: 102213 year: 2021 ident: 1437_CR11 publication-title: Artif Intell Med doi: 10.1016/j.artmed.2021.102213 – volume: 80 start-page: 2759 year: 2018 ident: 1437_CR26 publication-title: Magn Reson Med doi: 10.1002/mrm.27229 – year: 2002 ident: 1437_CR12 publication-title: SPIE Proc Med Imaging 2002: Image Process doi: 10.1117/12.467113 – volume: 43 start-page: 3349 year: 2021 ident: 1437_CR10 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/tpami.2020.2983686 – volume: 39 start-page: 1856 year: 2020 ident: 1437_CR30 publication-title: IEEE Trans Med Imaging doi: 10.1109/tmi.2019.2959609 – volume: 51 start-page: 1 year: 2019 ident: 1437_CR35 publication-title: ACM-CSUR doi: 10.1145/3230631 – volume: 4 start-page: 77 year: 2012 ident: 1437_CR3 publication-title: Therapeutic Adv Musculoskelet Disease doi: 10.1177/1759720x11431005 – volume: 109 start-page: 820 year: 2021 ident: 1437_CR18 publication-title: Proc IEEE doi: 10.1109/jproc.2021.3054390 – volume: 68 start-page: 102684 year: 2021 ident: 1437_CR20 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.102684 – volume: 15 start-page: 1333 year: 2021 ident: 1437_CR19 publication-title: Inverse Probl Imaging doi: 10.3934/ipi.2020057 – volume: 106 start-page: 101851 year: 2020 ident: 1437_CR4 publication-title: Artif Intell Med doi: 10.1016/j.artmed.2020.101851 – volume: 34 start-page: 833 year: 2021 ident: 1437_CR5 publication-title: J Digit Imaging doi: 10.1007/s10278-021-00464-z – volume: 49 start-page: 1413 year: 2011 ident: 1437_CR14 publication-title: Med Biol Eng Comput doi: 10.1007/s11517-011-0838-8 – volume: 25 start-page: 2665 year: 2021 ident: 1437_CR21 publication-title: IEEE J Biomedical Health Inf doi: 10.1109/jbhi.2020.3038847 – ident: 1437_CR34 doi: 10.1109/3DV.2016.79 – volume: 14 start-page: 914 year: 2006 ident: 1437_CR7 publication-title: Osteoarthr Cartil doi: 10.1016/j.joca.2006.03.004 – ident: 1437_CR17 doi: 10.1109/embc.2013.6610787 – volume: 18 start-page: 203 year: 2021 ident: 1437_CR36 publication-title: Nat Methods doi: 10.1038/s41592-020-01008-z – ident: 1437_CR32 doi: 10.1109/cvpr52688.2022.01167 – ident: 1437_CR23 doi: 10.1007/978-3-642-40763-5_31 – volume: 288 start-page: 177 year: 2018 ident: 1437_CR24 publication-title: Radiology doi: 10.1148/radiol.2018172322 – year: 2021 ident: 1437_CR31 doi: 10.1007/s10334-021-00934-z – volume: 17 start-page: 228 year: 2018 ident: 1437_CR6 publication-title: IEEE Trans Nanobiosci doi: 10.1109/tnb.2018.2840082 – volume: 32 start-page: 4036 year: 2023 ident: 1437_CR37 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2023.3293771 – year: 2002 ident: 1437_CR13 publication-title: Proc 22nd Annual Int Conf IEEE Eng Med Biology Soc (Cat No 00CH37143) doi: 10.1109/iembs.2000.901563 – volume: 86 start-page: 101793 year: 2020 ident: 1437_CR28 publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2020.101793 – ident: 1437_CR25 doi: 10.1007/978-3-319-24574-4_28 – volume: 22 start-page: 642 year: 2018 ident: 1437_CR8 publication-title: IEEE J Biomedical Health Inf doi: 10.1109/jbhi.2017.2727218 – year: 2018 ident: 1437_CR29 doi: 10.1016/j.media.2018.11.009 – ident: 1437_CR38 doi: 10.1109/wacv51458.2022.00181 – volume: 53 start-page: 896 year: 2006 ident: 1437_CR15 publication-title: IEEE Trans Biomed Eng doi: 10.1109/tbme.2006.872816 – volume: 14 start-page: 4621 year: 2021 ident: 1437_CR33 publication-title: IEEE J Sel Top Appl Earth Observations Remote Sens doi: 10.1109/jstars.2021.3073661 – ident: 1437_CR39 doi: 10.1007/978-3-031-08999-2_22 |
SSID | ssj0033328 |
Score | 2.3808882 |
Snippet | Accurate and automatic segmentation of knee magnetic resonance (MR) images plays a vital role in the diagnosis of osteoarthritis and knee bone diseases.... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Computer Science Feature extraction Image segmentation Joints (anatomy) Knee Magnetic resonance imaging Medical imaging Modules Original Article Pattern Recognition |
Title | MPFCNet: multi-scale parallel feature fusion convolutional network for 3D knee segmentation from MR images |
URI | https://link.springer.com/article/10.1007/s10044-025-01437-6 https://www.proquest.com/docview/3175955865 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwGP_Q7eLFtzidIwdvWkib1-ptzE1RNkQczFNJ21TUrYrt_n-TLGEqevCSQxpSyPf6Jd8L4DRO89Q0HAhokeqhS7VIGf97iDMso5RyYovpjMb8ekJvpmzqksIqH-3uXZJWU39JdsOUBqb9qqlJJwK-Dk1m7u6aiydRz-tfQojtqKrXkEAwGrpUmd_3-G6OVhjzh1vUWpvhNmw6mIh6S7ruwJoqd2HLQUbkBLLSU74rg5_bg5fR3bA_VvUFssGCQaWpoJAp8T2bqRkqlC3liYqFeSdDJurccZ_-X7kMCkcaySJyiV5LpVClnuYuQalEJhsFje7R81zroWofJsPBQ_86cB0VgkxLQx0oDXCEjELOsczDrOA8zgU3o77XcRIWWGaC0CxiUgpVhEyGMozTjAsS4UwKcgCN8q1Uh4BSQTMhcqykMXCcSxzjbhopKXKpYVXegjN_sMn7snBGsiqRbMiQaDIklgwJb0Hbn33ihKhKDLSJGety1oJzT4_V5793O_rf8mPYiCxLmLeVNjTqj4U60VCjTjvQ7F093g46lsM-AQ5byls |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LT8MgGCc6D3rxbZxO5eBNSaBQaL0t02XqthizJbs1tKVG3aqx3f8vMMjU6MELB0og4Xv9yvcC4DxO89Q0HECsSPUQMS1Sxv9OcIZlkDJObTGdwZD3xuxuEk5cUljlo929S9Jq6i_JbpgxZNqvmpp0AvFVsKbBQGQCucZB2-tfSqntqKrXUCRCRlyqzO97fDdHS4z5wy1qrU13G2w6mAjbC7rugBVV7oItBxmhE8hKT_muDH5uD7wMHrqdoaqvoA0WRJWmgoKmxPd0qqawULaUJyzm5p0Mmqhzx336vHIRFA41koX0Gr6WSsFKPc1cglIJTTYKHDzC55nWQ9U-GHdvRp0ech0VUKaloUZKAxwhA8I5ljnJCs7jXHAz6v86TkmBZSYoy4JQSqEKEkoiSZxmXNAAZ1LQA9Ao30p1CGAqWCZEjpU0Bo5ziWMcpYGSIpcaVuVNcOEvNnlfFM5IliWSDRkSTYbEkiHhTdDyd584IaoSA23iMIx42ASXnh7Lz3_vdvS_5WdgvTca9JP-7fD-GGwElj3MO0sLNOqPuTrRsKNOTy2XfQJhvsu6 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8MgFCc6E-PFb-N0Kgdv2gwKhdXbsrnMjy2LccluBFpq1K0utvv_Bdpm0-jBCwdKIOG9B7_y3vs9AC5DFStbcMCjiTJNixqTsv53jCIkfUUZcWQ6gyHrj-n9JJisZPG7aPfKJVnkNFiWpjRvzuOkuZL4hij1bClWy0_HPbYONsxxjK1ej_12dRYTQlx1VTOGeDyguEyb-X2O71fTEm_-cJG6m6e3C7ZLyAjbhYz3wJpO98FOCR9haZyZ6aoqNFR9B-BtMOp1hjq_gS5w0MuMRDS0dN_TqZ7CRDtaT5gs7JsZtBHopSaa9dIiQBwaVAtJF76nWsNMv8zKZKUU2swUOHiCrzNzJmWHYNy7fe70vbK6ghcZy8g9bcAOlz5mDMkYRwljYcyZbc0_HiM4QTLihEZ-ICXXCQ4kljhUEePER5Hk5AjU0o9UHwOoOI04j5GW9rJjTKIQtZSvJY-lgVhxHVxVGyvmBYmGWNIlWzEIIwbhxCBYHTSqvRelQWXCwpwwCFosqIPrSh7Lz3_PdvK_4Rdgc9Ttice74cMp2PKddtgnlwao5Z8LfWYQSK7OnZJ9AW2fz_Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MPFCNet%3A+multi-scale+parallel+feature+fusion+convolutional+network+for+3D+knee+segmentation+from+MR+images&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Zhang+Hanzheng&rft.au=Wu%2C+Qing&rft.au=Zhao%2C+Xing&rft.au=Wang%2C+Yuanquan&rft.date=2025-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=28&rft.issue=2&rft_id=info:doi/10.1007%2Fs10044-025-01437-6&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon |