Guaranteed performance control for delayed Markov jump neural networks with output quantization and data-injection attacks

This paper considers guaranteed performance control for delayed Markov jump neural networks (DMJNNs) under output quantization and data-injection attacks. The objective is to design an asynchronous output-feedback controller (OFC) that takes into account both quantization and attacks to achieve stoc...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of machine learning and cybernetics Vol. 16; no. 1; pp. 173 - 188
Main Authors He, Lanlan, Zhang, Xiaoqing, Jiang, Taiping, Tang, Chaoying
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1868-8071
1868-808X
DOI10.1007/s13042-024-02195-3

Cover

Abstract This paper considers guaranteed performance control for delayed Markov jump neural networks (DMJNNs) under output quantization and data-injection attacks. The objective is to design an asynchronous output-feedback controller (OFC) that takes into account both quantization and attacks to achieve stochastic stability and ensure the boundedness of a predefined performance index. An exponential hidden Markov model is employed to represent the asynchrony between the modes of the OFC and the DMJNN. A sufficient condition for the desired performance is presented using free-weight matrix and Lyapunov–Krasovskii functional methods, integral inequalities, and Dynkin’s formula. Two distinct controller design approaches are proposed, depending on whether the coefficient matrix of the control input is a unit matrix while considering factors related to attacks and quantization. Optimization algorithms are developed based on the proposed controller design approaches, allowing for the determination of the minimum upper bound of the predefined performance index and the accompanying controller gains. Finally, a simulation example is provided to illustrate the applicability and effectiveness of the optimization algorithms developed.
AbstractList This paper considers guaranteed performance control for delayed Markov jump neural networks (DMJNNs) under output quantization and data-injection attacks. The objective is to design an asynchronous output-feedback controller (OFC) that takes into account both quantization and attacks to achieve stochastic stability and ensure the boundedness of a predefined performance index. An exponential hidden Markov model is employed to represent the asynchrony between the modes of the OFC and the DMJNN. A sufficient condition for the desired performance is presented using free-weight matrix and Lyapunov–Krasovskii functional methods, integral inequalities, and Dynkin’s formula. Two distinct controller design approaches are proposed, depending on whether the coefficient matrix of the control input is a unit matrix while considering factors related to attacks and quantization. Optimization algorithms are developed based on the proposed controller design approaches, allowing for the determination of the minimum upper bound of the predefined performance index and the accompanying controller gains. Finally, a simulation example is provided to illustrate the applicability and effectiveness of the optimization algorithms developed.
Author He, Lanlan
Zhang, Xiaoqing
Tang, Chaoying
Jiang, Taiping
Author_xml – sequence: 1
  givenname: Lanlan
  surname: He
  fullname: He, Lanlan
  organization: School of Computer Science and Technology, Anhui University of Technology
– sequence: 2
  givenname: Xiaoqing
  surname: Zhang
  fullname: Zhang, Xiaoqing
  organization: School of Computer Science and Technology, Anhui University of Technology
– sequence: 3
  givenname: Taiping
  surname: Jiang
  fullname: Jiang, Taiping
  email: tpjiang2008@163.com
  organization: School of Computer Science and Technology, Anhui University of Technology
– sequence: 4
  givenname: Chaoying
  surname: Tang
  fullname: Tang, Chaoying
  organization: College of Automation Engineering, Nanjing University of Aeronautics and Astronautics
BookMark eNp9UMtOwzAQtFCRKNAf4GSJc8CPxkmOqIKCVMSlB26W4wckTe3Udqjar8cQBDdWWu1qdmZWmnMwsc5qAK4wusEIFbcBUzQnGSLz1LjKM3oCprhkZVai8nXyuxf4DMxCaFEqhihFZAqOy0F4YaPWCvbaG-e3wkoNpbPRuw4mACrdiUO6Pwu_cR-wHbY9tHrwoksj7p3fBLhv4jt0Q-yHCHdDMmyOIjbOQmEVVCKKrLGtliMUo5CbcAlOjeiCnv3MC7B-uF8vHrPVy_JpcbfKJEEoZoqVuTFMUiUZZZIYiWiuUS1oTUllTEEEI0wypua5lBUzBpmiqDUpCMGqphfgerTtvdsNOkTeusHb9JFTnJeEVaysEouMLOldCF4b3vtmK_yBY8S_UuZjyjylzL9T5jSJ6CgKiWzftP-z_kf1CW5phMM
Cites_doi 10.1016/j.automatica.2015.07.017
10.1007/s11431-022-2173-7
10.1007/s13369-023-08332-4
10.1109/TNSE.2021.3058220
10.1109/TCYB.2022.3151709
10.1109/TNNLS.2014.2387434
10.1007/s13042-023-01899-2
10.1109/72.298231
10.1007/s13042-023-01938-y
10.1016/j.sysconle.2015.03.007
10.2514/3.56669
10.1109/TNNLS.2020.2984040
10.1109/TCYB.2021.3110792
10.1109/TFUZZ.2023.3262609
10.1109/LCSYS.2019.2920507
10.1109/TNSE.2023.3243095
10.1109/TNNLS.2020.3030638
10.1007/s00034-018-0971-9
10.1007/s12555-021-0231-9
10.1016/j.automatica.2016.11.001
10.1109/TSMC.2019.2958419
10.1016/j.ins.2023.03.011
10.1109/TSMC.2020.2964605
10.1016/j.chaos.2021.111212
10.1016/j.automatica.2010.10.014
10.1109/9.827358
10.1016/j.neunet.2020.04.002
10.1109/TSMC.2021.3100481
10.1016/j.automatica.2007.11.013
10.1007/978-3-319-56393-0
10.1016/j.knosys.2023.110751
10.1109/TNNLS.2018.2853650
10.1080/00207179.2015.1075175
10.1016/j.neunet.2022.08.022
10.1016/j.neunet.2018.03.008
10.1002/rnc.6561
10.1016/S0375-9601(02)00538-8
10.1109/TSMC.2021.3051352
10.1016/j.neunet.2023.03.031
10.1016/j.neunet.2020.02.015
10.1016/j.neunet.2022.02.013
10.1109/TII.2017.2774446
10.1007/s13042-022-01666-9
10.1109/TAC.2005.858689
10.1007/s10462-023-10552-x
10.1103/PhysRevA.39.347
10.1109/TNNLS.2018.2884954
10.1016/j.neunet.2023.05.046
10.1007/s13042-021-01475-6
10.1109/TNNLS.2021.3105449
10.1007/s13042-020-01140-4
10.1016/j.neunet.2018.05.004
10.1016/j.neunet.2021.02.004
10.1109/TFUZZ.2023.3271348
10.1109/LCSYS.2018.2847741
10.1109/TITS.2019.2924705
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Jan 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Jan 2025
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s13042-024-02195-3
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 1868-808X
EndPage 188
ExternalDocumentID 10_1007_s13042_024_02195_3
GroupedDBID -EM
06D
0R~
0VY
1N0
203
29~
2JY
2VQ
30V
4.4
406
408
409
40D
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ARAPS
AUKKA
AXYYD
AYJHY
BENPR
BGLVJ
BGNMA
CCPQU
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
H13
HCIFZ
HMJXF
HQYDN
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
IZIGR
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KOV
LLZTM
M4Y
M7S
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9P
PT4
PTHSS
QOS
R89
R9I
RLLFE
ROL
RSV
S27
S3B
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z7X
Z83
Z88
ZMTXR
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
JQ2
ID FETCH-LOGICAL-c200t-d685ff6c3dc636c2fc035e0ba3b329ff72a626c66d45cc96ff0f77be27221db3
IEDL.DBID U2A
ISSN 1868-8071
IngestDate Fri Jul 25 10:58:14 EDT 2025
Tue Jul 01 03:51:05 EDT 2025
Fri Feb 21 02:37:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Output quantization
Data-injection attack
Markov jump neural network
Output-feedback control
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c200t-d685ff6c3dc636c2fc035e0ba3b329ff72a626c66d45cc96ff0f77be27221db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3158269689
PQPubID 2043904
PageCount 16
ParticipantIDs proquest_journals_3158269689
crossref_primary_10_1007_s13042_024_02195_3
springer_journals_10_1007_s13042_024_02195_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250100
2025-01-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 1
  year: 2025
  text: 20250100
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle International journal of machine learning and cybernetics
PublicationTitleAbbrev Int. J. Mach. Learn. & Cyber
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References J Zhou (2195_CR17) 2020; 125
X Yang (2195_CR28) 2019; 30
I Manickam (2195_CR16) 2020; 25
H Lu (2195_CR58) 2002; 298
Y Luo (2195_CR7) 2021; 34
J Zhou (2195_CR30) 2023; 10
MLC Peixoto (2195_CR38) 2022; 143
Wei Li (2195_CR55) 2023; 33
Yuxin Guo (2195_CR14) 2023; 15
W Min (2195_CR56) 2010
PG Park (2195_CR50) 2011; 47
Y Lin (2195_CR20) 2022; 20
E Aktas (2195_CR39) 2023; 26
H Qiu (2195_CR26) 2023; 14
L Xiong (2195_CR27) 2023; 277
S Song (2195_CR24) 2022; 52
J Han (2195_CR37) 2020; 29
AT Nguyen (2195_CR62) 2020; 21
CM Marcus (2195_CR1) 1989; 39
EB Castelan (2195_CR57) 2008; 44
Z Xie (2195_CR60) 2023; 15
P Baldi (2195_CR2) 1994; 5
X Chang (2195_CR23) 2018; 14
A Kazemy (2195_CR43) 2022; 33
Z Wang (2195_CR40) 2015; 26
NT Nguyen (2195_CR46) 2018
L You (2195_CR63) 2020; 11
Z Yan (2195_CR12) 2021; 51
H Zeng (2195_CR49) 2015; 60
Y Luo (2195_CR59) 2023; 633
J Yang (2195_CR11) 2023; 163
R Sakthivel (2195_CR34) 2023; 165
X Qin (2195_CR21) 2023; 49
K Liu (2195_CR36) 2017; 76
IS Khalil (2195_CR51) 1996
M Chang (2195_CR61) 2022; 13
A Seuret (2195_CR48) 2015; 81
M Nallappan Gunasekaran (2195_CR54) 2022; 149
Y Cao (2195_CR47) 2000; 45
J Wang (2195_CR19) 2021; 139
Q Song (2195_CR5) 2018; 103
L Yao (2195_CR35) 2023; 66
O Lamrabet (2195_CR64) 2019; 38
Jinliang Wang (2195_CR4) 2019; 30
P Selvaraj (2195_CR15) 2018; 105
J Zhou (2195_CR25) 2023; 31
F Stadtmann (2195_CR44) 2018; 2
M Fu (2195_CR41) 2005; 50
X Song (2195_CR18) 2021; 51
G Franze (2195_CR33) 2019; 3
O Faydasicok (2195_CR3) 2022; 155
W Qi (2195_CR29) 2021; 32
X Han (2195_CR22) 2023; 53
S Dong (2195_CR13) 2022; 52
Y Luo (2195_CR32) 2023; 31
R Vadivel (2195_CR9) 2021; 150
Y Song (2195_CR45) 1995; 18
2195_CR52
G Bhuvaneshwari (2195_CR10) 2022; 35
J Zhou (2195_CR53) 2016; 89
Y Qi (2195_CR31) 2021; 52
Y Luo (2195_CR42) 2021; 8
Y Wang (2195_CR8) 2023; 14
Y Wang (2195_CR6) 2020; 127
References_xml – volume: 60
  start-page: 189
  year: 2015
  ident: 2195_CR49
  publication-title: Automatica
  doi: 10.1016/j.automatica.2015.07.017
– volume: 66
  start-page: 468
  issue: 2
  year: 2023
  ident: 2195_CR35
  publication-title: Sci China Technol Sci
  doi: 10.1007/s11431-022-2173-7
– volume: 49
  start-page: 7471
  year: 2023
  ident: 2195_CR21
  publication-title: Arab J Sci Eng.
  doi: 10.1007/s13369-023-08332-4
– volume: 8
  start-page: 1414
  issue: 2
  year: 2021
  ident: 2195_CR42
  publication-title: IEEE Trans Netw Sci Eng
  doi: 10.1109/TNSE.2021.3058220
– volume: 29
  issue: 11
  year: 2020
  ident: 2195_CR37
  publication-title: Chin Phys B
– volume: 53
  start-page: 4962
  issue: 8
  year: 2023
  ident: 2195_CR22
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2022.3151709
– volume: 26
  start-page: 2589
  issue: 10
  year: 2015
  ident: 2195_CR40
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2014.2387434
– volume: 14
  start-page: 4377
  year: 2023
  ident: 2195_CR8
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-023-01899-2
– volume: 5
  start-page: 612
  issue: 4
  year: 1994
  ident: 2195_CR2
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.298231
– volume: 15
  start-page: 775
  year: 2023
  ident: 2195_CR60
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-023-01938-y
– volume: 81
  start-page: 1
  year: 2015
  ident: 2195_CR48
  publication-title: Syst Control Lett
  doi: 10.1016/j.sysconle.2015.03.007
– volume: 18
  start-page: 143
  issue: 1
  year: 1995
  ident: 2195_CR45
  publication-title: J Guid Control Dyn
  doi: 10.2514/3.56669
– volume: 32
  start-page: 1264
  issue: 3
  year: 2021
  ident: 2195_CR29
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2020.2984040
– volume: 25
  start-page: 726
  issue: 5
  year: 2020
  ident: 2195_CR16
  publication-title: Nonlinear Anal Model Control
– volume: 52
  start-page: 9882
  issue: 9
  year: 2022
  ident: 2195_CR13
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2021.3110792
– volume: 143
  year: 2022
  ident: 2195_CR38
  publication-title: Automatica
– volume: 31
  start-page: 3624
  issue: 10
  year: 2023
  ident: 2195_CR32
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2023.3262609
– volume: 3
  start-page: 984
  issue: 4
  year: 2019
  ident: 2195_CR33
  publication-title: IEEE Control Syst Lett
  doi: 10.1109/LCSYS.2019.2920507
– volume: 10
  start-page: 2109
  issue: 4
  year: 2023
  ident: 2195_CR30
  publication-title: IEEE Trans Netw Sci Eng
  doi: 10.1109/TNSE.2023.3243095
– volume: 15
  start-page: 1343
  year: 2023
  ident: 2195_CR14
  publication-title: Int J Mach Learn Cybern
– volume: 33
  start-page: 952
  issue: 3
  year: 2022
  ident: 2195_CR43
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2020.3030638
– volume: 38
  start-page: 2055
  issue: 5
  year: 2019
  ident: 2195_CR64
  publication-title: Circ Syst Signal Process
  doi: 10.1007/s00034-018-0971-9
– volume: 20
  start-page: 909
  issue: 3
  year: 2022
  ident: 2195_CR20
  publication-title: Int J Control Autom Syst
  doi: 10.1007/s12555-021-0231-9
– volume: 76
  start-page: 138
  year: 2017
  ident: 2195_CR36
  publication-title: Automatica
  doi: 10.1016/j.automatica.2016.11.001
– volume: 51
  start-page: 3650
  issue: 6
  year: 2021
  ident: 2195_CR18
  publication-title: IEEE Trans Syst Man Cybern Syst
  doi: 10.1109/TSMC.2019.2958419
– volume: 633
  start-page: 305
  year: 2023
  ident: 2195_CR59
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2023.03.011
– volume: 51
  start-page: 6712
  issue: 11
  year: 2021
  ident: 2195_CR12
  publication-title: IEEE Trans Syst Man Cybern Syst
  doi: 10.1109/TSMC.2020.2964605
– volume: 150
  year: 2021
  ident: 2195_CR9
  publication-title: Chaos Solitons Fract
  doi: 10.1016/j.chaos.2021.111212
– volume: 47
  start-page: 235
  issue: 1
  year: 2011
  ident: 2195_CR50
  publication-title: Automatica
  doi: 10.1016/j.automatica.2010.10.014
– volume: 45
  start-page: 77
  year: 2000
  ident: 2195_CR47
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/9.827358
– volume: 127
  start-page: 38
  year: 2020
  ident: 2195_CR6
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2020.04.002
– volume: 52
  start-page: 4658
  issue: 7
  year: 2021
  ident: 2195_CR31
  publication-title: IEEE Trans Syst Man Cybern Syst
  doi: 10.1109/TSMC.2021.3100481
– volume-title: Robust and optimal control
  year: 1996
  ident: 2195_CR51
– volume: 44
  start-page: 2034
  issue: 8
  year: 2008
  ident: 2195_CR57
  publication-title: Automatica
  doi: 10.1016/j.automatica.2007.11.013
– volume-title: Model-reference adaptive control
  year: 2018
  ident: 2195_CR46
  doi: 10.1007/978-3-319-56393-0
– volume: 277
  year: 2023
  ident: 2195_CR27
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2023.110751
– volume: 30
  start-page: 951
  issue: 3
  year: 2019
  ident: 2195_CR28
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2018.2853650
– volume: 89
  start-page: 281
  issue: 2
  year: 2016
  ident: 2195_CR53
  publication-title: Int J Control
  doi: 10.1080/00207179.2015.1075175
– ident: 2195_CR52
– volume: 155
  start-page: 330
  year: 2022
  ident: 2195_CR3
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2022.08.022
– volume: 103
  start-page: 55
  year: 2018
  ident: 2195_CR5
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2018.03.008
– volume: 33
  start-page: 3185
  issue: 5
  year: 2023
  ident: 2195_CR55
  publication-title: Int J Robust Nonlinear Control
  doi: 10.1002/rnc.6561
– volume: 298
  start-page: 109
  issue: 2–3
  year: 2002
  ident: 2195_CR58
  publication-title: Phys Lett A
  doi: 10.1016/S0375-9601(02)00538-8
– volume: 52
  start-page: 2479
  issue: 4
  year: 2022
  ident: 2195_CR24
  publication-title: IEEE Trans Syst Man Cybern Syst
  doi: 10.1109/TSMC.2021.3051352
– volume: 163
  start-page: 53
  year: 2023
  ident: 2195_CR11
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2023.03.031
– volume: 125
  start-page: 194
  year: 2020
  ident: 2195_CR17
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2020.02.015
– volume: 149
  start-page: 137
  year: 2022
  ident: 2195_CR54
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2022.02.013
– volume: 14
  start-page: 3426
  issue: 8
  year: 2018
  ident: 2195_CR23
  publication-title: IEEE Trans Industr Inf
  doi: 10.1109/TII.2017.2774446
– volume: 14
  start-page: 833
  issue: 3
  year: 2023
  ident: 2195_CR26
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-022-01666-9
– volume: 50
  start-page: 1698
  issue: 11
  year: 2005
  ident: 2195_CR41
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.2005.858689
– volume-title: Stability analysis and robust control of time-delay systems
  year: 2010
  ident: 2195_CR56
– volume: 26
  start-page: 1647
  year: 2023
  ident: 2195_CR39
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-023-10552-x
– volume: 39
  start-page: 347
  issue: 1
  year: 1989
  ident: 2195_CR1
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.39.347
– volume: 30
  start-page: 2434
  issue: 8
  year: 2019
  ident: 2195_CR4
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2018.2884954
– volume: 165
  start-page: 611
  year: 2023
  ident: 2195_CR34
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2023.05.046
– volume: 13
  start-page: 1647
  year: 2022
  ident: 2195_CR61
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-021-01475-6
– volume: 34
  start-page: 1489
  issue: 3
  year: 2021
  ident: 2195_CR7
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2021.3105449
– volume: 11
  start-page: 2653
  issue: 12
  year: 2020
  ident: 2195_CR63
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-020-01140-4
– volume: 105
  start-page: 154
  year: 2018
  ident: 2195_CR15
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2018.05.004
– volume: 139
  start-page: 64
  year: 2021
  ident: 2195_CR19
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2021.02.004
– volume: 31
  start-page: 3906
  issue: 11
  year: 2023
  ident: 2195_CR25
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2023.3271348
– volume: 2
  start-page: 845
  issue: 4
  year: 2018
  ident: 2195_CR44
  publication-title: IEEE Control Syst Lett
  doi: 10.1109/LCSYS.2018.2847741
– volume: 35
  start-page: 5198
  issue: 4
  year: 2022
  ident: 2195_CR10
  publication-title: IEEE Trans Neural Netw Learn Syst.
– volume: 21
  start-page: 3069
  issue: 7
  year: 2020
  ident: 2195_CR62
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2019.2924705
SSID ssj0000603302
ssib031263576
ssib033405570
Score 2.335684
Snippet This paper considers guaranteed performance control for delayed Markov jump neural networks (DMJNNs) under output quantization and data-injection attacks. The...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 173
SubjectTerms Algorithms
Artificial Intelligence
Communication
Complex Systems
Computational Intelligence
Control
Control systems design
Controllers
Design factors
Design optimization
Engineering
Feedback control
Markov analysis
Markov chains
Mechatronics
Neural networks
Optimization algorithms
Original Article
Output feedback
Pattern Recognition
Performance indices
Robotics
Systems Biology
Upper bounds
Title Guaranteed performance control for delayed Markov jump neural networks with output quantization and data-injection attacks
URI https://link.springer.com/article/10.1007/s13042-024-02195-3
https://www.proquest.com/docview/3158269689
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED0BXWBAtIAoX_LAAIJIqR07yVgQpQLRqUgwRYkdSzCkhaZI8Ou5Sx0CCAaGKJId2ZLPl7uz770DODKRRrMXEtZJGS8Ile-lsU09FWspBfq8ghM4-XakhnfB9b28d6CwWZ3tXl9JVn_qBuxGkbeHNgUfqjAolqElMXYndbzj_XoXiR7xqzRGVoig4pn6PHnxFbYtkhEjFREbb8-haX6f5rvFatzQHzenlUEabMC68yRZfyH6NizlRQfWvvALdqDtNHfGjh299MkmvNOuoPXMDZs2sAHmktYZNjCijnzDfkLyTF7ZE8qcEfMlzlcs8sZnjE5w2WReTucle57jgA7RydLCMEo89R6LpyrRC5vKkrD8WzAeXI4vhp6rwOBp1J7SMyqS1iotjFZCaW61L2TuZ6nIBKfTXp5iQKSVMoHUOlbW-jYMs5yHnPdMJrZhpZgU-Q4wmxsjc2lTgw6FDk1EdddTDG5wdwRa6S6c1oucTBc8G0nDqEwiSVAkSSWSRHRhv5ZD4nRuloiexFgpVlHchbNaNk3336Pt_u_zPVjlVAS4OofZh5XyZZ4foGdSZofQ6g_Oz0f0vnq4uTysNuYHdzDbAA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGYABQQFRnh4YQBAptWMnGREClVenIrFFiR1LMKSFpEjw67lLHQIIBoYsTmRLvnPu4fu-Azg0kUazFxLWSRkvCJXvpbFNPRVrKQX6vIITOPluqAb3wfWDfHCgsLKpdm-uJOs_dQt2o8jbQ5uCD3UYFPOwgM5ARH0L7vlZo0WiT_wqrZEVIqh5pj4zL77CsVkxYqQiYuPtOzTN78t8t1itG_rj5rQ2SJersOI8SXY2E_0azOVFF5a_8At2Yc2d3JIdOXrp43V4J62g_cwNm7SwAeaK1hkOMKKOfMP3hOQZv7InlDkj5ktcr5jVjZeMMrhsPK0m04o9T3FCh-hkaWEYFZ56j8VTXeiFQ1VFWP4NGF1ejM4HnuvA4Gk8PZVnVCStVVoYrYTS3GpfyNzPUpEJTtlenmJApJUygdQ6Vtb6NgyznIec900mNqFTjIt8C5jNjZG5tKlBh0KHJqK-6ykGN6gdgVa6ByfNJieTGc9G0jIqk0gSFElSiyQRPdht5JC4M1cmoi8xVopVFPfgtJFN-_rv2bb_9_kBLA5Gd7fJ7dXwZgeWODUErnMyu9CpXqb5HnopVbZfK-UHNr3a4w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58gOhBXB-4PnPwoGixTZq0PYq6rE88KHgrbdKAe-iublfQX-9MH1ZFDx56SUsCmUnnkfm-AdgzoUazFxDWSRnHD5TrJJFNHBVpKQX6vIITOPnmVvUf_MtH-fgFxV9WuzdXkhWmgVia8uJ4ZOxxC3yjKNxB-4IPdRsU0zCLv2OPNP2BnzQaJTziWmkNrhB-yTn1mYVxFY5VhYmhComZ16uRNb8v8916tS7pj1vU0jj1lmCx9irZSaUGHZjK8mVY-MI1uAyd-hSP2X5NNX2wAu-kIbS3mWGjFkLA6gJ2hgOMaCTf8D2heoavbIDyZ8SCievlVQ35mFE2lw0nxWhSsOcJTlijO1mSG0ZFqM5TPiiLvnCoKAjXvwr3vfP7075Td2NwNJ6kwjEqlNYqLYxWQmlutStk5qaJSAWnzC9PMDjSShlfah0pa10bBGnGA849k4o1mMmHebYOzGbGyEzaxKBzoQMTUg_2BAMd1BRfK92Fw2aT41HFuRG37MokkhhFEpciiUUXtho5xPX5G8fCkxg3RSqMunDUyKZ9_fdsG__7fBfm7s568fXF7dUmzHPqDVymZ7ZgpniZZNvosBTpTqmTHwzD3x8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Guaranteed+performance+control+for+delayed+Markov+jump+neural+networks+with+output+quantization+and+data-injection+attacks&rft.jtitle=International+journal+of+machine+learning+and+cybernetics&rft.au=He%2C+Lanlan&rft.au=Zhang%2C+Xiaoqing&rft.au=Jiang%2C+Taiping&rft.au=Tang%2C+Chaoying&rft.date=2025-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1868-8071&rft.eissn=1868-808X&rft.volume=16&rft.issue=1&rft.spage=173&rft.epage=188&rft_id=info:doi/10.1007%2Fs13042-024-02195-3&rft.externalDocID=10_1007_s13042_024_02195_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-8071&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-8071&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-8071&client=summon