Guaranteed performance control for delayed Markov jump neural networks with output quantization and data-injection attacks
This paper considers guaranteed performance control for delayed Markov jump neural networks (DMJNNs) under output quantization and data-injection attacks. The objective is to design an asynchronous output-feedback controller (OFC) that takes into account both quantization and attacks to achieve stoc...
Saved in:
Published in | International journal of machine learning and cybernetics Vol. 16; no. 1; pp. 173 - 188 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.01.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1868-8071 1868-808X |
DOI | 10.1007/s13042-024-02195-3 |
Cover
Abstract | This paper considers guaranteed performance control for delayed Markov jump neural networks (DMJNNs) under output quantization and data-injection attacks. The objective is to design an asynchronous output-feedback controller (OFC) that takes into account both quantization and attacks to achieve stochastic stability and ensure the boundedness of a predefined performance index. An exponential hidden Markov model is employed to represent the asynchrony between the modes of the OFC and the DMJNN. A sufficient condition for the desired performance is presented using free-weight matrix and Lyapunov–Krasovskii functional methods, integral inequalities, and Dynkin’s formula. Two distinct controller design approaches are proposed, depending on whether the coefficient matrix of the control input is a unit matrix while considering factors related to attacks and quantization. Optimization algorithms are developed based on the proposed controller design approaches, allowing for the determination of the minimum upper bound of the predefined performance index and the accompanying controller gains. Finally, a simulation example is provided to illustrate the applicability and effectiveness of the optimization algorithms developed. |
---|---|
AbstractList | This paper considers guaranteed performance control for delayed Markov jump neural networks (DMJNNs) under output quantization and data-injection attacks. The objective is to design an asynchronous output-feedback controller (OFC) that takes into account both quantization and attacks to achieve stochastic stability and ensure the boundedness of a predefined performance index. An exponential hidden Markov model is employed to represent the asynchrony between the modes of the OFC and the DMJNN. A sufficient condition for the desired performance is presented using free-weight matrix and Lyapunov–Krasovskii functional methods, integral inequalities, and Dynkin’s formula. Two distinct controller design approaches are proposed, depending on whether the coefficient matrix of the control input is a unit matrix while considering factors related to attacks and quantization. Optimization algorithms are developed based on the proposed controller design approaches, allowing for the determination of the minimum upper bound of the predefined performance index and the accompanying controller gains. Finally, a simulation example is provided to illustrate the applicability and effectiveness of the optimization algorithms developed. |
Author | He, Lanlan Zhang, Xiaoqing Tang, Chaoying Jiang, Taiping |
Author_xml | – sequence: 1 givenname: Lanlan surname: He fullname: He, Lanlan organization: School of Computer Science and Technology, Anhui University of Technology – sequence: 2 givenname: Xiaoqing surname: Zhang fullname: Zhang, Xiaoqing organization: School of Computer Science and Technology, Anhui University of Technology – sequence: 3 givenname: Taiping surname: Jiang fullname: Jiang, Taiping email: tpjiang2008@163.com organization: School of Computer Science and Technology, Anhui University of Technology – sequence: 4 givenname: Chaoying surname: Tang fullname: Tang, Chaoying organization: College of Automation Engineering, Nanjing University of Aeronautics and Astronautics |
BookMark | eNp9UMtOwzAQtFCRKNAf4GSJc8CPxkmOqIKCVMSlB26W4wckTe3Udqjar8cQBDdWWu1qdmZWmnMwsc5qAK4wusEIFbcBUzQnGSLz1LjKM3oCprhkZVai8nXyuxf4DMxCaFEqhihFZAqOy0F4YaPWCvbaG-e3wkoNpbPRuw4mACrdiUO6Pwu_cR-wHbY9tHrwoksj7p3fBLhv4jt0Q-yHCHdDMmyOIjbOQmEVVCKKrLGtliMUo5CbcAlOjeiCnv3MC7B-uF8vHrPVy_JpcbfKJEEoZoqVuTFMUiUZZZIYiWiuUS1oTUllTEEEI0wypua5lBUzBpmiqDUpCMGqphfgerTtvdsNOkTeusHb9JFTnJeEVaysEouMLOldCF4b3vtmK_yBY8S_UuZjyjylzL9T5jSJ6CgKiWzftP-z_kf1CW5phMM |
Cites_doi | 10.1016/j.automatica.2015.07.017 10.1007/s11431-022-2173-7 10.1007/s13369-023-08332-4 10.1109/TNSE.2021.3058220 10.1109/TCYB.2022.3151709 10.1109/TNNLS.2014.2387434 10.1007/s13042-023-01899-2 10.1109/72.298231 10.1007/s13042-023-01938-y 10.1016/j.sysconle.2015.03.007 10.2514/3.56669 10.1109/TNNLS.2020.2984040 10.1109/TCYB.2021.3110792 10.1109/TFUZZ.2023.3262609 10.1109/LCSYS.2019.2920507 10.1109/TNSE.2023.3243095 10.1109/TNNLS.2020.3030638 10.1007/s00034-018-0971-9 10.1007/s12555-021-0231-9 10.1016/j.automatica.2016.11.001 10.1109/TSMC.2019.2958419 10.1016/j.ins.2023.03.011 10.1109/TSMC.2020.2964605 10.1016/j.chaos.2021.111212 10.1016/j.automatica.2010.10.014 10.1109/9.827358 10.1016/j.neunet.2020.04.002 10.1109/TSMC.2021.3100481 10.1016/j.automatica.2007.11.013 10.1007/978-3-319-56393-0 10.1016/j.knosys.2023.110751 10.1109/TNNLS.2018.2853650 10.1080/00207179.2015.1075175 10.1016/j.neunet.2022.08.022 10.1016/j.neunet.2018.03.008 10.1002/rnc.6561 10.1016/S0375-9601(02)00538-8 10.1109/TSMC.2021.3051352 10.1016/j.neunet.2023.03.031 10.1016/j.neunet.2020.02.015 10.1016/j.neunet.2022.02.013 10.1109/TII.2017.2774446 10.1007/s13042-022-01666-9 10.1109/TAC.2005.858689 10.1007/s10462-023-10552-x 10.1103/PhysRevA.39.347 10.1109/TNNLS.2018.2884954 10.1016/j.neunet.2023.05.046 10.1007/s13042-021-01475-6 10.1109/TNNLS.2021.3105449 10.1007/s13042-020-01140-4 10.1016/j.neunet.2018.05.004 10.1016/j.neunet.2021.02.004 10.1109/TFUZZ.2023.3271348 10.1109/LCSYS.2018.2847741 10.1109/TITS.2019.2924705 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Jan 2025 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Jan 2025 |
DBID | AAYXX CITATION JQ2 |
DOI | 10.1007/s13042-024-02195-3 |
DatabaseName | CrossRef ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 1868-808X |
EndPage | 188 |
ExternalDocumentID | 10_1007_s13042_024_02195_3 |
GroupedDBID | -EM 06D 0R~ 0VY 1N0 203 29~ 2JY 2VQ 30V 4.4 406 408 409 40D 96X AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ARAPS AUKKA AXYYD AYJHY BENPR BGLVJ BGNMA CCPQU CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 H13 HCIFZ HMJXF HQYDN HRMNR HZ~ I0C IKXTQ IWAJR IXD IZIGR J-C J0Z JBSCW JCJTX JZLTJ K7- KOV LLZTM M4Y M7S NPVJJ NQJWS NU0 O9- O93 O9J P2P P9P PT4 PTHSS QOS R89 R9I RLLFE ROL RSV S27 S3B SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z7X Z83 Z88 ZMTXR ~A9 AAYXX ABBRH ABDBE ABFSG ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ JQ2 |
ID | FETCH-LOGICAL-c200t-d685ff6c3dc636c2fc035e0ba3b329ff72a626c66d45cc96ff0f77be27221db3 |
IEDL.DBID | U2A |
ISSN | 1868-8071 |
IngestDate | Fri Jul 25 10:58:14 EDT 2025 Tue Jul 01 03:51:05 EDT 2025 Fri Feb 21 02:37:17 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Output quantization Data-injection attack Markov jump neural network Output-feedback control |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c200t-d685ff6c3dc636c2fc035e0ba3b329ff72a626c66d45cc96ff0f77be27221db3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3158269689 |
PQPubID | 2043904 |
PageCount | 16 |
ParticipantIDs | proquest_journals_3158269689 crossref_primary_10_1007_s13042_024_02195_3 springer_journals_10_1007_s13042_024_02195_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250100 2025-01-00 20250101 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 1 year: 2025 text: 20250100 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | International journal of machine learning and cybernetics |
PublicationTitleAbbrev | Int. J. Mach. Learn. & Cyber |
PublicationYear | 2025 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | J Zhou (2195_CR17) 2020; 125 X Yang (2195_CR28) 2019; 30 I Manickam (2195_CR16) 2020; 25 H Lu (2195_CR58) 2002; 298 Y Luo (2195_CR7) 2021; 34 J Zhou (2195_CR30) 2023; 10 MLC Peixoto (2195_CR38) 2022; 143 Wei Li (2195_CR55) 2023; 33 Yuxin Guo (2195_CR14) 2023; 15 W Min (2195_CR56) 2010 PG Park (2195_CR50) 2011; 47 Y Lin (2195_CR20) 2022; 20 E Aktas (2195_CR39) 2023; 26 H Qiu (2195_CR26) 2023; 14 L Xiong (2195_CR27) 2023; 277 S Song (2195_CR24) 2022; 52 J Han (2195_CR37) 2020; 29 AT Nguyen (2195_CR62) 2020; 21 CM Marcus (2195_CR1) 1989; 39 EB Castelan (2195_CR57) 2008; 44 Z Xie (2195_CR60) 2023; 15 P Baldi (2195_CR2) 1994; 5 X Chang (2195_CR23) 2018; 14 A Kazemy (2195_CR43) 2022; 33 Z Wang (2195_CR40) 2015; 26 NT Nguyen (2195_CR46) 2018 L You (2195_CR63) 2020; 11 Z Yan (2195_CR12) 2021; 51 H Zeng (2195_CR49) 2015; 60 Y Luo (2195_CR59) 2023; 633 J Yang (2195_CR11) 2023; 163 R Sakthivel (2195_CR34) 2023; 165 X Qin (2195_CR21) 2023; 49 K Liu (2195_CR36) 2017; 76 IS Khalil (2195_CR51) 1996 M Chang (2195_CR61) 2022; 13 A Seuret (2195_CR48) 2015; 81 M Nallappan Gunasekaran (2195_CR54) 2022; 149 Y Cao (2195_CR47) 2000; 45 J Wang (2195_CR19) 2021; 139 Q Song (2195_CR5) 2018; 103 L Yao (2195_CR35) 2023; 66 O Lamrabet (2195_CR64) 2019; 38 Jinliang Wang (2195_CR4) 2019; 30 P Selvaraj (2195_CR15) 2018; 105 J Zhou (2195_CR25) 2023; 31 F Stadtmann (2195_CR44) 2018; 2 M Fu (2195_CR41) 2005; 50 X Song (2195_CR18) 2021; 51 G Franze (2195_CR33) 2019; 3 O Faydasicok (2195_CR3) 2022; 155 W Qi (2195_CR29) 2021; 32 X Han (2195_CR22) 2023; 53 S Dong (2195_CR13) 2022; 52 Y Luo (2195_CR32) 2023; 31 R Vadivel (2195_CR9) 2021; 150 Y Song (2195_CR45) 1995; 18 2195_CR52 G Bhuvaneshwari (2195_CR10) 2022; 35 J Zhou (2195_CR53) 2016; 89 Y Qi (2195_CR31) 2021; 52 Y Luo (2195_CR42) 2021; 8 Y Wang (2195_CR8) 2023; 14 Y Wang (2195_CR6) 2020; 127 |
References_xml | – volume: 60 start-page: 189 year: 2015 ident: 2195_CR49 publication-title: Automatica doi: 10.1016/j.automatica.2015.07.017 – volume: 66 start-page: 468 issue: 2 year: 2023 ident: 2195_CR35 publication-title: Sci China Technol Sci doi: 10.1007/s11431-022-2173-7 – volume: 49 start-page: 7471 year: 2023 ident: 2195_CR21 publication-title: Arab J Sci Eng. doi: 10.1007/s13369-023-08332-4 – volume: 8 start-page: 1414 issue: 2 year: 2021 ident: 2195_CR42 publication-title: IEEE Trans Netw Sci Eng doi: 10.1109/TNSE.2021.3058220 – volume: 29 issue: 11 year: 2020 ident: 2195_CR37 publication-title: Chin Phys B – volume: 53 start-page: 4962 issue: 8 year: 2023 ident: 2195_CR22 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2022.3151709 – volume: 26 start-page: 2589 issue: 10 year: 2015 ident: 2195_CR40 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2014.2387434 – volume: 14 start-page: 4377 year: 2023 ident: 2195_CR8 publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-023-01899-2 – volume: 5 start-page: 612 issue: 4 year: 1994 ident: 2195_CR2 publication-title: IEEE Trans Neural Netw doi: 10.1109/72.298231 – volume: 15 start-page: 775 year: 2023 ident: 2195_CR60 publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-023-01938-y – volume: 81 start-page: 1 year: 2015 ident: 2195_CR48 publication-title: Syst Control Lett doi: 10.1016/j.sysconle.2015.03.007 – volume: 18 start-page: 143 issue: 1 year: 1995 ident: 2195_CR45 publication-title: J Guid Control Dyn doi: 10.2514/3.56669 – volume: 32 start-page: 1264 issue: 3 year: 2021 ident: 2195_CR29 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2020.2984040 – volume: 25 start-page: 726 issue: 5 year: 2020 ident: 2195_CR16 publication-title: Nonlinear Anal Model Control – volume: 52 start-page: 9882 issue: 9 year: 2022 ident: 2195_CR13 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2021.3110792 – volume: 143 year: 2022 ident: 2195_CR38 publication-title: Automatica – volume: 31 start-page: 3624 issue: 10 year: 2023 ident: 2195_CR32 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2023.3262609 – volume: 3 start-page: 984 issue: 4 year: 2019 ident: 2195_CR33 publication-title: IEEE Control Syst Lett doi: 10.1109/LCSYS.2019.2920507 – volume: 10 start-page: 2109 issue: 4 year: 2023 ident: 2195_CR30 publication-title: IEEE Trans Netw Sci Eng doi: 10.1109/TNSE.2023.3243095 – volume: 15 start-page: 1343 year: 2023 ident: 2195_CR14 publication-title: Int J Mach Learn Cybern – volume: 33 start-page: 952 issue: 3 year: 2022 ident: 2195_CR43 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2020.3030638 – volume: 38 start-page: 2055 issue: 5 year: 2019 ident: 2195_CR64 publication-title: Circ Syst Signal Process doi: 10.1007/s00034-018-0971-9 – volume: 20 start-page: 909 issue: 3 year: 2022 ident: 2195_CR20 publication-title: Int J Control Autom Syst doi: 10.1007/s12555-021-0231-9 – volume: 76 start-page: 138 year: 2017 ident: 2195_CR36 publication-title: Automatica doi: 10.1016/j.automatica.2016.11.001 – volume: 51 start-page: 3650 issue: 6 year: 2021 ident: 2195_CR18 publication-title: IEEE Trans Syst Man Cybern Syst doi: 10.1109/TSMC.2019.2958419 – volume: 633 start-page: 305 year: 2023 ident: 2195_CR59 publication-title: Inf Sci doi: 10.1016/j.ins.2023.03.011 – volume: 51 start-page: 6712 issue: 11 year: 2021 ident: 2195_CR12 publication-title: IEEE Trans Syst Man Cybern Syst doi: 10.1109/TSMC.2020.2964605 – volume: 150 year: 2021 ident: 2195_CR9 publication-title: Chaos Solitons Fract doi: 10.1016/j.chaos.2021.111212 – volume: 47 start-page: 235 issue: 1 year: 2011 ident: 2195_CR50 publication-title: Automatica doi: 10.1016/j.automatica.2010.10.014 – volume: 45 start-page: 77 year: 2000 ident: 2195_CR47 publication-title: IEEE Trans Autom Control doi: 10.1109/9.827358 – volume: 127 start-page: 38 year: 2020 ident: 2195_CR6 publication-title: Neural Netw doi: 10.1016/j.neunet.2020.04.002 – volume: 52 start-page: 4658 issue: 7 year: 2021 ident: 2195_CR31 publication-title: IEEE Trans Syst Man Cybern Syst doi: 10.1109/TSMC.2021.3100481 – volume-title: Robust and optimal control year: 1996 ident: 2195_CR51 – volume: 44 start-page: 2034 issue: 8 year: 2008 ident: 2195_CR57 publication-title: Automatica doi: 10.1016/j.automatica.2007.11.013 – volume-title: Model-reference adaptive control year: 2018 ident: 2195_CR46 doi: 10.1007/978-3-319-56393-0 – volume: 277 year: 2023 ident: 2195_CR27 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2023.110751 – volume: 30 start-page: 951 issue: 3 year: 2019 ident: 2195_CR28 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2018.2853650 – volume: 89 start-page: 281 issue: 2 year: 2016 ident: 2195_CR53 publication-title: Int J Control doi: 10.1080/00207179.2015.1075175 – ident: 2195_CR52 – volume: 155 start-page: 330 year: 2022 ident: 2195_CR3 publication-title: Neural Netw doi: 10.1016/j.neunet.2022.08.022 – volume: 103 start-page: 55 year: 2018 ident: 2195_CR5 publication-title: Neural Netw doi: 10.1016/j.neunet.2018.03.008 – volume: 33 start-page: 3185 issue: 5 year: 2023 ident: 2195_CR55 publication-title: Int J Robust Nonlinear Control doi: 10.1002/rnc.6561 – volume: 298 start-page: 109 issue: 2–3 year: 2002 ident: 2195_CR58 publication-title: Phys Lett A doi: 10.1016/S0375-9601(02)00538-8 – volume: 52 start-page: 2479 issue: 4 year: 2022 ident: 2195_CR24 publication-title: IEEE Trans Syst Man Cybern Syst doi: 10.1109/TSMC.2021.3051352 – volume: 163 start-page: 53 year: 2023 ident: 2195_CR11 publication-title: Neural Netw doi: 10.1016/j.neunet.2023.03.031 – volume: 125 start-page: 194 year: 2020 ident: 2195_CR17 publication-title: Neural Netw doi: 10.1016/j.neunet.2020.02.015 – volume: 149 start-page: 137 year: 2022 ident: 2195_CR54 publication-title: Neural Netw doi: 10.1016/j.neunet.2022.02.013 – volume: 14 start-page: 3426 issue: 8 year: 2018 ident: 2195_CR23 publication-title: IEEE Trans Industr Inf doi: 10.1109/TII.2017.2774446 – volume: 14 start-page: 833 issue: 3 year: 2023 ident: 2195_CR26 publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-022-01666-9 – volume: 50 start-page: 1698 issue: 11 year: 2005 ident: 2195_CR41 publication-title: IEEE Trans Autom Control doi: 10.1109/TAC.2005.858689 – volume-title: Stability analysis and robust control of time-delay systems year: 2010 ident: 2195_CR56 – volume: 26 start-page: 1647 year: 2023 ident: 2195_CR39 publication-title: Artif Intell Rev doi: 10.1007/s10462-023-10552-x – volume: 39 start-page: 347 issue: 1 year: 1989 ident: 2195_CR1 publication-title: Phys Rev A doi: 10.1103/PhysRevA.39.347 – volume: 30 start-page: 2434 issue: 8 year: 2019 ident: 2195_CR4 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2018.2884954 – volume: 165 start-page: 611 year: 2023 ident: 2195_CR34 publication-title: Neural Netw doi: 10.1016/j.neunet.2023.05.046 – volume: 13 start-page: 1647 year: 2022 ident: 2195_CR61 publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-021-01475-6 – volume: 34 start-page: 1489 issue: 3 year: 2021 ident: 2195_CR7 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2021.3105449 – volume: 11 start-page: 2653 issue: 12 year: 2020 ident: 2195_CR63 publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-020-01140-4 – volume: 105 start-page: 154 year: 2018 ident: 2195_CR15 publication-title: Neural Netw doi: 10.1016/j.neunet.2018.05.004 – volume: 139 start-page: 64 year: 2021 ident: 2195_CR19 publication-title: Neural Netw doi: 10.1016/j.neunet.2021.02.004 – volume: 31 start-page: 3906 issue: 11 year: 2023 ident: 2195_CR25 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2023.3271348 – volume: 2 start-page: 845 issue: 4 year: 2018 ident: 2195_CR44 publication-title: IEEE Control Syst Lett doi: 10.1109/LCSYS.2018.2847741 – volume: 35 start-page: 5198 issue: 4 year: 2022 ident: 2195_CR10 publication-title: IEEE Trans Neural Netw Learn Syst. – volume: 21 start-page: 3069 issue: 7 year: 2020 ident: 2195_CR62 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2019.2924705 |
SSID | ssj0000603302 ssib031263576 ssib033405570 |
Score | 2.335684 |
Snippet | This paper considers guaranteed performance control for delayed Markov jump neural networks (DMJNNs) under output quantization and data-injection attacks. The... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 173 |
SubjectTerms | Algorithms Artificial Intelligence Communication Complex Systems Computational Intelligence Control Control systems design Controllers Design factors Design optimization Engineering Feedback control Markov analysis Markov chains Mechatronics Neural networks Optimization algorithms Original Article Output feedback Pattern Recognition Performance indices Robotics Systems Biology Upper bounds |
Title | Guaranteed performance control for delayed Markov jump neural networks with output quantization and data-injection attacks |
URI | https://link.springer.com/article/10.1007/s13042-024-02195-3 https://www.proquest.com/docview/3158269689 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED0BXWBAtIAoX_LAAIJIqR07yVgQpQLRqUgwRYkdSzCkhaZI8Ou5Sx0CCAaGKJId2ZLPl7uz770DODKRRrMXEtZJGS8Ile-lsU09FWspBfq8ghM4-XakhnfB9b28d6CwWZ3tXl9JVn_qBuxGkbeHNgUfqjAolqElMXYndbzj_XoXiR7xqzRGVoig4pn6PHnxFbYtkhEjFREbb8-haX6f5rvFatzQHzenlUEabMC68yRZfyH6NizlRQfWvvALdqDtNHfGjh299MkmvNOuoPXMDZs2sAHmktYZNjCijnzDfkLyTF7ZE8qcEfMlzlcs8sZnjE5w2WReTucle57jgA7RydLCMEo89R6LpyrRC5vKkrD8WzAeXI4vhp6rwOBp1J7SMyqS1iotjFZCaW61L2TuZ6nIBKfTXp5iQKSVMoHUOlbW-jYMs5yHnPdMJrZhpZgU-Q4wmxsjc2lTgw6FDk1EdddTDG5wdwRa6S6c1oucTBc8G0nDqEwiSVAkSSWSRHRhv5ZD4nRuloiexFgpVlHchbNaNk3336Pt_u_zPVjlVAS4OofZh5XyZZ4foGdSZofQ6g_Oz0f0vnq4uTysNuYHdzDbAA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGYABQQFRnh4YQBAptWMnGREClVenIrFFiR1LMKSFpEjw67lLHQIIBoYsTmRLvnPu4fu-Azg0kUazFxLWSRkvCJXvpbFNPRVrKQX6vIITOPluqAb3wfWDfHCgsLKpdm-uJOs_dQt2o8jbQ5uCD3UYFPOwgM5ARH0L7vlZo0WiT_wqrZEVIqh5pj4zL77CsVkxYqQiYuPtOzTN78t8t1itG_rj5rQ2SJersOI8SXY2E_0azOVFF5a_8At2Yc2d3JIdOXrp43V4J62g_cwNm7SwAeaK1hkOMKKOfMP3hOQZv7InlDkj5ktcr5jVjZeMMrhsPK0m04o9T3FCh-hkaWEYFZ56j8VTXeiFQ1VFWP4NGF1ejM4HnuvA4Gk8PZVnVCStVVoYrYTS3GpfyNzPUpEJTtlenmJApJUygdQ6Vtb6NgyznIec900mNqFTjIt8C5jNjZG5tKlBh0KHJqK-6ykGN6gdgVa6ByfNJieTGc9G0jIqk0gSFElSiyQRPdht5JC4M1cmoi8xVopVFPfgtJFN-_rv2bb_9_kBLA5Gd7fJ7dXwZgeWODUErnMyu9CpXqb5HnopVbZfK-UHNr3a4w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58gOhBXB-4PnPwoGixTZq0PYq6rE88KHgrbdKAe-iublfQX-9MH1ZFDx56SUsCmUnnkfm-AdgzoUazFxDWSRnHD5TrJJFNHBVpKQX6vIITOPnmVvUf_MtH-fgFxV9WuzdXkhWmgVia8uJ4ZOxxC3yjKNxB-4IPdRsU0zCLv2OPNP2BnzQaJTziWmkNrhB-yTn1mYVxFY5VhYmhComZ16uRNb8v8916tS7pj1vU0jj1lmCx9irZSaUGHZjK8mVY-MI1uAyd-hSP2X5NNX2wAu-kIbS3mWGjFkLA6gJ2hgOMaCTf8D2heoavbIDyZ8SCievlVQ35mFE2lw0nxWhSsOcJTlijO1mSG0ZFqM5TPiiLvnCoKAjXvwr3vfP7075Td2NwNJ6kwjEqlNYqLYxWQmlutStk5qaJSAWnzC9PMDjSShlfah0pa10bBGnGA849k4o1mMmHebYOzGbGyEzaxKBzoQMTUg_2BAMd1BRfK92Fw2aT41HFuRG37MokkhhFEpciiUUXtho5xPX5G8fCkxg3RSqMunDUyKZ9_fdsG__7fBfm7s568fXF7dUmzHPqDVymZ7ZgpniZZNvosBTpTqmTHwzD3x8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Guaranteed+performance+control+for+delayed+Markov+jump+neural+networks+with+output+quantization+and+data-injection+attacks&rft.jtitle=International+journal+of+machine+learning+and+cybernetics&rft.au=He%2C+Lanlan&rft.au=Zhang%2C+Xiaoqing&rft.au=Jiang%2C+Taiping&rft.au=Tang%2C+Chaoying&rft.date=2025-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1868-8071&rft.eissn=1868-808X&rft.volume=16&rft.issue=1&rft.spage=173&rft.epage=188&rft_id=info:doi/10.1007%2Fs13042-024-02195-3&rft.externalDocID=10_1007_s13042_024_02195_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-8071&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-8071&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-8071&client=summon |