Multi-scale adaptive detail enhancement dehazing network for autonomous driving perception images

In hazy weather conditions, a significant accumulation of haze poses a severe challenge to the quality of image capture for autonomous driving systems, thereby heightening safety risks for autonomous vehicles. To solve this problem, we propose the multi-scale adaptive detail enhancement dehazing net...

Full description

Saved in:
Bibliographic Details
Published inPattern analysis and applications : PAA Vol. 28; no. 2
Main Authors Wang, Juan, Wang, Sheng, Wu, Minghu, Yang, Hao, Cao, Ye, Hu, Shuyao, Shao, Jixiang, Zeng, Chunyan
Format Journal Article
LanguageEnglish
Published London Springer London 01.06.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In hazy weather conditions, a significant accumulation of haze poses a severe challenge to the quality of image capture for autonomous driving systems, thereby heightening safety risks for autonomous vehicles. To solve this problem, we propose the multi-scale adaptive detail enhancement dehazing network, an innovative architecture comprising the initial feature extraction module, the multi-scale adaptive feature module, and the terminal detail enhancement module, specifically designed to eradicate haze with precision. To enhance the extraction of multi-scale features, the multi-scale adaptive feature module employs the squeeze-excitation residual dense block (SRD). It not only learns the intricate multi-scale features of the image but also adaptively recalibrates the feature response of each feature map, ultimately bolstering the network’s performance and resilience. The terminal detail enhancement module, crafted with the dilation refinement block (DRB), serves as a compensatory measure for any detail loss or pseudo-artifacts that might arise from the multi-scale adaptive feature module’s operations. By incorporating the terminal detail enhancement module, the overall dehazing effect is further optimized. Empirical evaluations reveal that the proposed multi-scale adaptive detail enhancement dehazing network achieves impressive results, with a PSNR value of 30.82, an SSIM value of 0.967, and an LPIPS value of 0.033. These figures indicate that the network is adept at removing haze from images while preserving intricate details, ensuring the efficacy and reliability of autonomous driving systems in hazy environments. Code is available at https://github.com/murong-carl/Adaptive-multi-scale-detail-enhancement-dehazing-network .
AbstractList In hazy weather conditions, a significant accumulation of haze poses a severe challenge to the quality of image capture for autonomous driving systems, thereby heightening safety risks for autonomous vehicles. To solve this problem, we propose the multi-scale adaptive detail enhancement dehazing network, an innovative architecture comprising the initial feature extraction module, the multi-scale adaptive feature module, and the terminal detail enhancement module, specifically designed to eradicate haze with precision. To enhance the extraction of multi-scale features, the multi-scale adaptive feature module employs the squeeze-excitation residual dense block (SRD). It not only learns the intricate multi-scale features of the image but also adaptively recalibrates the feature response of each feature map, ultimately bolstering the network’s performance and resilience. The terminal detail enhancement module, crafted with the dilation refinement block (DRB), serves as a compensatory measure for any detail loss or pseudo-artifacts that might arise from the multi-scale adaptive feature module’s operations. By incorporating the terminal detail enhancement module, the overall dehazing effect is further optimized. Empirical evaluations reveal that the proposed multi-scale adaptive detail enhancement dehazing network achieves impressive results, with a PSNR value of 30.82, an SSIM value of 0.967, and an LPIPS value of 0.033. These figures indicate that the network is adept at removing haze from images while preserving intricate details, ensuring the efficacy and reliability of autonomous driving systems in hazy environments. Code is available at https://github.com/murong-carl/Adaptive-multi-scale-detail-enhancement-dehazing-network .
In hazy weather conditions, a significant accumulation of haze poses a severe challenge to the quality of image capture for autonomous driving systems, thereby heightening safety risks for autonomous vehicles. To solve this problem, we propose the multi-scale adaptive detail enhancement dehazing network, an innovative architecture comprising the initial feature extraction module, the multi-scale adaptive feature module, and the terminal detail enhancement module, specifically designed to eradicate haze with precision. To enhance the extraction of multi-scale features, the multi-scale adaptive feature module employs the squeeze-excitation residual dense block (SRD). It not only learns the intricate multi-scale features of the image but also adaptively recalibrates the feature response of each feature map, ultimately bolstering the network’s performance and resilience. The terminal detail enhancement module, crafted with the dilation refinement block (DRB), serves as a compensatory measure for any detail loss or pseudo-artifacts that might arise from the multi-scale adaptive feature module’s operations. By incorporating the terminal detail enhancement module, the overall dehazing effect is further optimized. Empirical evaluations reveal that the proposed multi-scale adaptive detail enhancement dehazing network achieves impressive results, with a PSNR value of 30.82, an SSIM value of 0.967, and an LPIPS value of 0.033. These figures indicate that the network is adept at removing haze from images while preserving intricate details, ensuring the efficacy and reliability of autonomous driving systems in hazy environments. Code is available at https://github.com/murong-carl/Adaptive-multi-scale-detail-enhancement-dehazing-network.
ArticleNumber 51
Author Wu, Minghu
Hu, Shuyao
Shao, Jixiang
Yang, Hao
Cao, Ye
Wang, Juan
Zeng, Chunyan
Wang, Sheng
Author_xml – sequence: 1
  givenname: Juan
  surname: Wang
  fullname: Wang, Juan
  organization: School of Electrical and Electronic Engineering, Hubei University of Technology
– sequence: 2
  givenname: Sheng
  surname: Wang
  fullname: Wang, Sheng
  email: 1980522276@qq.com
  organization: School of Electrical and Electronic Engineering, Hubei University of Technology
– sequence: 3
  givenname: Minghu
  surname: Wu
  fullname: Wu, Minghu
  organization: School of Electrical and Electronic Engineering, Hubei University of Technology
– sequence: 4
  givenname: Hao
  surname: Yang
  fullname: Yang, Hao
  organization: School of Electrical and Electronic Engineering, Hubei University of Technology
– sequence: 5
  givenname: Ye
  surname: Cao
  fullname: Cao, Ye
  organization: School of Electrical and Electronic Engineering, Hubei University of Technology
– sequence: 6
  givenname: Shuyao
  surname: Hu
  fullname: Hu, Shuyao
  organization: School of Electrical and Electronic Engineering, Hubei University of Technology
– sequence: 7
  givenname: Jixiang
  surname: Shao
  fullname: Shao, Jixiang
  organization: School of Electrical and Electronic Engineering, Hubei University of Technology
– sequence: 8
  givenname: Chunyan
  surname: Zeng
  fullname: Zeng, Chunyan
  organization: School of Electrical and Electronic Engineering, Hubei University of Technology
BookMark eNp9UMtOwzAQtFCRaAs_wMkSZ8M6TprmiCpeUhEXkLhZjr1pU1I72EkR_XpcguDGZXe1OzM7mgkZWWeRkHMOlxwgvwqxpimDJGPAUwFsf0TGcRAsz7LX0e-c8hMyCWEDIIRI5mOiHvumq1nQqkGqjGq7eofUYKfqhqJdK6txi7aLq7Xa13ZFLXYfzr_Rynmq-s5Zt3V9oMbXu8O5Ra8xqjhL661aYTglx5VqAp799Cl5ub15Xtyz5dPdw-J6yXQC0DFtkmiIzwyKHAolTKlyLITSUHKd6jTBPC91WZgKVaar0phZBUmlocoMZsDFlFwMuq137z2GTm5c7218KQWfFfk8S9MkopIBpb0LwWMlWx99-k_JQR6ilEOUMkYpv6OU-0gSAylEsF2h_5P-h_UF6ZR8cg
Cites_doi 10.1109/CVPR52688.2022.00239
10.1109/TETCI.2024.3386838
10.1002/sdtp.16355
10.1007/s40747-021-00428-4
10.1063/1.3037551
10.1109/CVPR.2018.00745
10.1109/TIP.2021.3050643
10.1609/aaai.v34i07.6865
10.3233/JIFS-210733
10.1109/TIP.2024.3504298
10.1109/CVPRW.2019.00265
10.1109/CVPR.2018.00262
10.1109/TIP.2018.2867951
10.1109/CVPR.2018.00343
10.1117/12.56145
10.1109/CVPR52729.2023.02083
10.1109/ICCV.2019.00741
10.1109/ICCV51070.2023.01983
10.1109/TIP.2022.3140609
10.1109/CVPR.2018.00337
10.1109/TIP.2023.3256763
10.1109/ICAC54203.2021.9671099
10.1109/CVPR.2018.00068
10.3390/rs15245704
10.1109/TIP.2016.2598681
10.1109/ICPICS55264.2022.9873772
10.1109/TMM.2022.3225712
10.1007/978-3-319-46475-6_43
10.1587/transinf.E96.D.1793
10.1109/TIP.2017.2771158
10.1155/2020/4945214
10.1142/S0218126619500993
10.1155/2022/7030735
10.3390/s22145084
10.3390/app12136712
10.1109/ICME55011.2023.00276
10.1609/aaai.v32i1.12287
10.1142/S021812662150078X
10.1109/WACV.2019.00151
10.1109/TPAMI.2023.3238179
10.1109/ICCV.2017.511
10.1109/TIP.2024.3354108
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025.
DBID AAYXX
CITATION
DOI 10.1007/s10044-025-01430-z
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1433-755X
ExternalDocumentID 10_1007_s10044_025_01430_z
GrantInformation_xml – fundername: Outstanding Youth Program of Hubei Natural Science Foundation under Grant
  grantid: No. 2024AFA074; No. 2024AFA074; No. 2024AFA074; No. 2024AFA074; No. 2024AFA074; No. 2024AFA074; No. 2024AFA074; No. 2024AFA074
– fundername: National Natural Science Foundation of China
  grantid: No. 62006073; No. 62006073; No. 62006073; No. 62006073; No. 62006073; No. 62006073; No. 62006073; No. 62006073
– fundername: Hubei Provincial Science and Technology Project
  grantid: No. 2022BEC017; No. 2022BEC017; No. 2022BEC017; No. 2022BEC017; No. 2022BEC017; No. 2022BEC017; No. 2022BEC017; No. 2022BEC017
– fundername: Hubei Provincial Natural Science Foundation
  grantid: No. 2022CFA007; No. 2022CFA007; No. 2022CFA007; No. 2022CFA007; No. 2022CFA007; No. 2022CFA007; No. 2022CFA007; No. 2022CFA007
– fundername: Hubei Provincial Central Government Guided Local Science and Technology Development Special Project
  grantid: No. 2023GEA027; No. 2023GEA027; No. 2023GEA027; No. 2023GEA027; No. 2023GEA027; No. 2023GEA027; No. 2023GEA027; No. 2023GEA027
GroupedDBID -~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
203
29O
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BGNMA
BSONS
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9J
OAM
P2P
P9O
PF0
PT4
PT5
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~A9
-Y2
1SB
2P1
2VQ
AARHV
AAYXX
ABQSL
ABULA
ACBXY
ADHKG
AEBTG
AEKMD
AFGCZ
AGGDS
AGJBK
AGQPQ
AHSBF
AJBLW
BDATZ
CAG
CITATION
COF
EJD
FINBP
FSGXE
H13
N2Q
O9-
RIG
RNI
RZK
ID FETCH-LOGICAL-c200t-cd232816de3709a3dba7e93ac0b1c4c42e77bcb9dfea5cfbdd6f02fc0f5de5013
IEDL.DBID U2A
ISSN 1433-7541
IngestDate Fri Jul 25 09:06:32 EDT 2025
Thu Jul 10 07:43:41 EDT 2025
Mon Jul 21 06:06:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Image dehazing
Autonomous driving
Multi-scale features
Adaptive adjustment
Detail enhancement
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c200t-cd232816de3709a3dba7e93ac0b1c4c42e77bcb9dfea5cfbdd6f02fc0f5de5013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3169785442
PQPubID 2043691
ParticipantIDs proquest_journals_3169785442
crossref_primary_10_1007_s10044_025_01430_z
springer_journals_10_1007_s10044_025_01430_z
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Pattern analysis and applications : PAA
PublicationTitleAbbrev Pattern Anal Applic
PublicationYear 2025
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References 1430_CR18
W Luo (1430_CR41) 2016; 29
1430_CR17
1430_CR39
1430_CR16
TM Bui (1430_CR10) 2018; 27
Z Chen (1430_CR31) 2024; 33
LR Bissonnette (1430_CR4) 1992; 31
Y Song (1430_CR30) 2023; 32
O Özdenizci (1430_CR35) 2023; 45
1430_CR2
D Park (1430_CR7) 2013; 96
Z Liu (1430_CR8) 2022; 12
B Li (1430_CR13) 2018
X Qin (1430_CR24) 2020; 34
A Kulkarni (1430_CR32) 2023; 25
1430_CR1
B Cai (1430_CR15) 2016; 25
M Li (1430_CR38) 2025; 34
AE Ilesanmi (1430_CR11) 2021; 7
1430_CR34
1430_CR33
Z Wang (1430_CR3) 2023
1430_CR29
W Qian (1430_CR19) 2020; 2020
1430_CR28
1430_CR27
1430_CR26
1430_CR25
K Mondal (1430_CR9) 2021; 30
EJ McCartney (1430_CR14) 1977; 30
B Li (1430_CR44) 2019; 28
S Yoon (1430_CR5) 2022; 22
J Liao (1430_CR36) 2022; 2022
H Bai (1430_CR37) 2022; 31
X Wang (1430_CR21) 2024; 8
1430_CR23
1430_CR45
1430_CR22
R Song (1430_CR12) 2021; 41
1430_CR43
1430_CR42
M Ju (1430_CR20) 2021; 30
1430_CR40
UA Nnolim (1430_CR6) 2019; 28
References_xml – ident: 1430_CR27
  doi: 10.1109/CVPR52688.2022.00239
– volume: 8
  start-page: 2880
  issue: 4
  year: 2024
  ident: 1430_CR21
  publication-title: IEEE Trans Emerg Top Comput Intell
  doi: 10.1109/TETCI.2024.3386838
– ident: 1430_CR1
  doi: 10.1002/sdtp.16355
– volume: 7
  start-page: 2179
  issue: 5
  year: 2021
  ident: 1430_CR11
  publication-title: Complex Intell Syst
  doi: 10.1007/s40747-021-00428-4
– volume: 30
  start-page: 76
  issue: 5
  year: 1977
  ident: 1430_CR14
  publication-title: Phys Today
  doi: 10.1063/1.3037551
– ident: 1430_CR40
  doi: 10.1109/CVPR.2018.00745
– volume: 30
  start-page: 2180
  year: 2021
  ident: 1430_CR20
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2021.3050643
– ident: 1430_CR42
– volume: 34
  start-page: 11908
  issue: 07
  year: 2020
  ident: 1430_CR24
  publication-title: Proc AAAI Conf Artif Intel
  doi: 10.1609/aaai.v34i07.6865
– volume: 41
  start-page: 6815
  issue: 6
  year: 2021
  ident: 1430_CR12
  publication-title: J Intell Fuzzy Syst
  doi: 10.3233/JIFS-210733
– volume: 34
  start-page: 30
  year: 2025
  ident: 1430_CR38
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2024.3504298
– ident: 1430_CR18
  doi: 10.1109/CVPRW.2019.00265
– ident: 1430_CR39
  doi: 10.1109/CVPR.2018.00262
– volume: 28
  start-page: 492
  issue: 1
  year: 2019
  ident: 1430_CR44
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2018.2867951
– ident: 1430_CR26
  doi: 10.1109/CVPR.2018.00343
– volume: 31
  start-page: 1045
  issue: 5
  year: 1992
  ident: 1430_CR4
  publication-title: Opt Eng
  doi: 10.1117/12.56145
– ident: 1430_CR33
  doi: 10.1109/CVPR52729.2023.02083
– ident: 1430_CR22
  doi: 10.1109/ICCV.2019.00741
– ident: 1430_CR34
  doi: 10.1109/ICCV51070.2023.01983
– volume: 31
  start-page: 1217
  year: 2022
  ident: 1430_CR37
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2022.3140609
– ident: 1430_CR23
  doi: 10.1109/CVPR.2018.00337
– volume: 29
  start-page: 1
  year: 2016
  ident: 1430_CR41
  publication-title: Adv Neural Inf Process Syst
– volume: 32
  start-page: 1927
  year: 2023
  ident: 1430_CR30
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2023.3256763
– ident: 1430_CR2
  doi: 10.1109/ICAC54203.2021.9671099
– ident: 1430_CR45
  doi: 10.1109/CVPR.2018.00068
– year: 2023
  ident: 1430_CR3
  publication-title: Remote Sens
  doi: 10.3390/rs15245704
– volume: 25
  start-page: 5187
  issue: 11
  year: 2016
  ident: 1430_CR15
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2016.2598681
– ident: 1430_CR28
  doi: 10.1109/ICPICS55264.2022.9873772
– volume: 25
  start-page: 7686
  year: 2023
  ident: 1430_CR32
  publication-title: IEEE Trans Multimed
  doi: 10.1109/TMM.2022.3225712
– ident: 1430_CR43
  doi: 10.1007/978-3-319-46475-6_43
– volume: 96
  start-page: 1793
  issue: 8
  year: 2013
  ident: 1430_CR7
  publication-title: IEICE Trans Inf Syst
  doi: 10.1587/transinf.E96.D.1793
– volume: 27
  start-page: 999
  issue: 2
  year: 2018
  ident: 1430_CR10
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2017.2771158
– volume: 2020
  start-page: 4945214
  issue: 1
  year: 2020
  ident: 1430_CR19
  publication-title: Math Probl Eng
  doi: 10.1155/2020/4945214
– volume: 28
  start-page: 1950099
  issue: 06
  year: 2019
  ident: 1430_CR6
  publication-title: J Circuits Syst Comput
  doi: 10.1142/S0218126619500993
– volume: 2022
  start-page: 7030735
  issue: 1
  year: 2022
  ident: 1430_CR36
  publication-title: J Sens
  doi: 10.1155/2022/7030735
– volume: 22
  start-page: 5084
  issue: 14
  year: 2022
  ident: 1430_CR5
  publication-title: Sensors
  doi: 10.3390/s22145084
– volume: 12
  start-page: 6712
  issue: 13
  year: 2022
  ident: 1430_CR8
  publication-title: Appl Sci
  doi: 10.3390/app12136712
– ident: 1430_CR29
  doi: 10.1109/ICME55011.2023.00276
– year: 2018
  ident: 1430_CR13
  publication-title: Proc AAAI Conf Artif Intell
  doi: 10.1609/aaai.v32i1.12287
– ident: 1430_CR17
– volume: 30
  start-page: 2150078
  issue: 05
  year: 2021
  ident: 1430_CR9
  publication-title: J Circuits Syst Comput
  doi: 10.1142/S021812662150078X
– ident: 1430_CR25
  doi: 10.1109/WACV.2019.00151
– volume: 45
  start-page: 10346
  issue: 8
  year: 2023
  ident: 1430_CR35
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2023.3238179
– ident: 1430_CR16
  doi: 10.1109/ICCV.2017.511
– volume: 33
  start-page: 1002
  year: 2024
  ident: 1430_CR31
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2024.3354108
SSID ssj0033328
Score 2.3809454
Snippet In hazy weather conditions, a significant accumulation of haze poses a severe challenge to the quality of image capture for autonomous driving systems, thereby...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Computer Science
Feature extraction
Feature maps
Image quality
Modules
Original Article
Pattern Recognition
Weather
Title Multi-scale adaptive detail enhancement dehazing network for autonomous driving perception images
URI https://link.springer.com/article/10.1007/s10044-025-01430-z
https://www.proquest.com/docview/3169785442
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagXVh4Iwql8sAGlpzYTpqxQi0VCCYqlSnyk3YgrZp06a_nnAcFBAPr2fJw5zt_vidC1zJwACyYI0b7kpyYxkQKLYmiLNacCyfKiO7TczSe8IepmNZFYXmT7d6EJEtL_aXYjXJO_PhV35OOks0uagv_d4dbPAkHjf1ljJUTVWEPI7HgQV0q8_sZ35-jLcb8ERYtX5vRIdqvYSIeVHI9Qjs2O0YHNWTEtULmQGqmMjS0EyTLmlqSA_MtlkYuvUHDVaoottnMi9m7BIE0872l33BWpYJjwK9Yrgtf5rBY59is5t7bgJefuS94_g7mJz9Fk9Hw5W5M6kEKRIMSFEQbwE39IDKWxTSRzCgZ24RJTVWgueahjWOlVWKcBUE5ZUzkaOg0dcJYAbI8Q61skdlzhE0oAaMpsE2B4U5GfW4TpRJmE065jpIOumn4mS6rfhnptjOy534K3E9L7qebDuo2LE9r3clTFkTwtRWchx1024hhu_z3aRf_236J9sLyJniXShe1itXaXgHCKFQPtQf3r4_DXnmxPgAad8wv
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDLDwRhQKeGADS07sJM1YIaoCbadW6hb5SRlIqyZd-us5pzEFBAOrY3m4852_3N13h9CtCCwAC2aJVo6Sk9CEiEgJIilLFOeRjaqM7mAY98b8eRJNalJY4avdfUqy8tRfyG6Uc-LGr7qedJSsttEOgIG2K-Qahx3vfxlj1URV2MNIEvGgpsr8fsb352iDMX-kRavXpnuI9muYiDtrvR6hLZMfo4MaMuLaIAtY8lMZ_NoJEhWnlhQgfIOFFnPn0PC6VBSbfOrU7EKCsDR1vaVfcb4uBceAX7FYlo7mMFsWWC_eXLQBzz9rX_DbO7if4hSNu4-jhx6pBykQBUZQEqUBN7WDWBuW0FQwLUViUiYUlYHiiocmSaSSqbYGFGWl1rGloVXURtpEoMsz1MhnuTlHWIcCMJoE3xRobkXc5iaVMmUm5ZSrOG2iOy_PbL7ul5FtOiM76Wcg_aySfrZqopYXeVbbTpGxIIZf24jzsInuvRo2n_8-7eJ_22_Qbm806Gf9p-HLJdoLq1vhwist1CgXS3MFaKOU19Xl-gB02c2O
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagSIiFN6JQwAMbWDixkzRjBVTlVTFQqVvkJ-1AWjXp0l_POQ9aEAysF8vDne_85XzfHUKXwrMALJglWjlKTkQjIgIliKQsUpwHNihedF_6YW_AH4fBcIXFX1S710-SJafBdWlK85uptjcrxDfKOXGjWF1_OkoW62gDwrHnzvXA79SxmDFWTFeFNYxEAfcq2szve3y_mpZ488cTaXHzdHfRdgUZcae08R5aM-k-2qngI66cMwNRPaGhlh0gUfBrSQaGMFhoMXXBDZdlo9ikI2dylx4E0cj1mX7HaVkWjgHLYjHPHeVhMs-wno1d5gFPv-pg8PgDQlF2iAbd-7fbHqmGKhAFDpETpQFDtb1QGxbRWDAtRWRiJhSVnuKK-yaKpJKxtgaMZqXWoaW-VdQG2gRg1yPUSCepOUZY-wLwmoQ45WluRdjmJpYyZibmlKswbqKrWp_JtOydkSy7JDvtJ6D9pNB-smiiVq3ypPKjLGFeCL-5Aed-E13XZlh-_nu3k_8tv0Cbr3fd5Pmh_3SKtvziULhMSws18tncnAHwyOV5cbY-AVwS0co
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-scale+adaptive+detail+enhancement+dehazing+network+for+autonomous+driving+perception+images&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Wang%2C+Juan&rft.au=Wang%2C+Sheng&rft.au=Wu%2C+Minghu&rft.au=Yang%2C+Hao&rft.date=2025-06-01&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=28&rft.issue=2&rft_id=info:doi/10.1007%2Fs10044-025-01430-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10044_025_01430_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon