Multi-scale adaptive detail enhancement dehazing network for autonomous driving perception images
In hazy weather conditions, a significant accumulation of haze poses a severe challenge to the quality of image capture for autonomous driving systems, thereby heightening safety risks for autonomous vehicles. To solve this problem, we propose the multi-scale adaptive detail enhancement dehazing net...
Saved in:
Published in | Pattern analysis and applications : PAA Vol. 28; no. 2 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.06.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In hazy weather conditions, a significant accumulation of haze poses a severe challenge to the quality of image capture for autonomous driving systems, thereby heightening safety risks for autonomous vehicles. To solve this problem, we propose the multi-scale adaptive detail enhancement dehazing network, an innovative architecture comprising the initial feature extraction module, the multi-scale adaptive feature module, and the terminal detail enhancement module, specifically designed to eradicate haze with precision. To enhance the extraction of multi-scale features, the multi-scale adaptive feature module employs the squeeze-excitation residual dense block (SRD). It not only learns the intricate multi-scale features of the image but also adaptively recalibrates the feature response of each feature map, ultimately bolstering the network’s performance and resilience. The terminal detail enhancement module, crafted with the dilation refinement block (DRB), serves as a compensatory measure for any detail loss or pseudo-artifacts that might arise from the multi-scale adaptive feature module’s operations. By incorporating the terminal detail enhancement module, the overall dehazing effect is further optimized. Empirical evaluations reveal that the proposed multi-scale adaptive detail enhancement dehazing network achieves impressive results, with a PSNR value of 30.82, an SSIM value of 0.967, and an LPIPS value of 0.033. These figures indicate that the network is adept at removing haze from images while preserving intricate details, ensuring the efficacy and reliability of autonomous driving systems in hazy environments. Code is available at
https://github.com/murong-carl/Adaptive-multi-scale-detail-enhancement-dehazing-network
. |
---|---|
AbstractList | In hazy weather conditions, a significant accumulation of haze poses a severe challenge to the quality of image capture for autonomous driving systems, thereby heightening safety risks for autonomous vehicles. To solve this problem, we propose the multi-scale adaptive detail enhancement dehazing network, an innovative architecture comprising the initial feature extraction module, the multi-scale adaptive feature module, and the terminal detail enhancement module, specifically designed to eradicate haze with precision. To enhance the extraction of multi-scale features, the multi-scale adaptive feature module employs the squeeze-excitation residual dense block (SRD). It not only learns the intricate multi-scale features of the image but also adaptively recalibrates the feature response of each feature map, ultimately bolstering the network’s performance and resilience. The terminal detail enhancement module, crafted with the dilation refinement block (DRB), serves as a compensatory measure for any detail loss or pseudo-artifacts that might arise from the multi-scale adaptive feature module’s operations. By incorporating the terminal detail enhancement module, the overall dehazing effect is further optimized. Empirical evaluations reveal that the proposed multi-scale adaptive detail enhancement dehazing network achieves impressive results, with a PSNR value of 30.82, an SSIM value of 0.967, and an LPIPS value of 0.033. These figures indicate that the network is adept at removing haze from images while preserving intricate details, ensuring the efficacy and reliability of autonomous driving systems in hazy environments. Code is available at
https://github.com/murong-carl/Adaptive-multi-scale-detail-enhancement-dehazing-network
. In hazy weather conditions, a significant accumulation of haze poses a severe challenge to the quality of image capture for autonomous driving systems, thereby heightening safety risks for autonomous vehicles. To solve this problem, we propose the multi-scale adaptive detail enhancement dehazing network, an innovative architecture comprising the initial feature extraction module, the multi-scale adaptive feature module, and the terminal detail enhancement module, specifically designed to eradicate haze with precision. To enhance the extraction of multi-scale features, the multi-scale adaptive feature module employs the squeeze-excitation residual dense block (SRD). It not only learns the intricate multi-scale features of the image but also adaptively recalibrates the feature response of each feature map, ultimately bolstering the network’s performance and resilience. The terminal detail enhancement module, crafted with the dilation refinement block (DRB), serves as a compensatory measure for any detail loss or pseudo-artifacts that might arise from the multi-scale adaptive feature module’s operations. By incorporating the terminal detail enhancement module, the overall dehazing effect is further optimized. Empirical evaluations reveal that the proposed multi-scale adaptive detail enhancement dehazing network achieves impressive results, with a PSNR value of 30.82, an SSIM value of 0.967, and an LPIPS value of 0.033. These figures indicate that the network is adept at removing haze from images while preserving intricate details, ensuring the efficacy and reliability of autonomous driving systems in hazy environments. Code is available at https://github.com/murong-carl/Adaptive-multi-scale-detail-enhancement-dehazing-network. |
ArticleNumber | 51 |
Author | Wu, Minghu Hu, Shuyao Shao, Jixiang Yang, Hao Cao, Ye Wang, Juan Zeng, Chunyan Wang, Sheng |
Author_xml | – sequence: 1 givenname: Juan surname: Wang fullname: Wang, Juan organization: School of Electrical and Electronic Engineering, Hubei University of Technology – sequence: 2 givenname: Sheng surname: Wang fullname: Wang, Sheng email: 1980522276@qq.com organization: School of Electrical and Electronic Engineering, Hubei University of Technology – sequence: 3 givenname: Minghu surname: Wu fullname: Wu, Minghu organization: School of Electrical and Electronic Engineering, Hubei University of Technology – sequence: 4 givenname: Hao surname: Yang fullname: Yang, Hao organization: School of Electrical and Electronic Engineering, Hubei University of Technology – sequence: 5 givenname: Ye surname: Cao fullname: Cao, Ye organization: School of Electrical and Electronic Engineering, Hubei University of Technology – sequence: 6 givenname: Shuyao surname: Hu fullname: Hu, Shuyao organization: School of Electrical and Electronic Engineering, Hubei University of Technology – sequence: 7 givenname: Jixiang surname: Shao fullname: Shao, Jixiang organization: School of Electrical and Electronic Engineering, Hubei University of Technology – sequence: 8 givenname: Chunyan surname: Zeng fullname: Zeng, Chunyan organization: School of Electrical and Electronic Engineering, Hubei University of Technology |
BookMark | eNp9UMtOwzAQtFCRaAs_wMkSZ8M6TprmiCpeUhEXkLhZjr1pU1I72EkR_XpcguDGZXe1OzM7mgkZWWeRkHMOlxwgvwqxpimDJGPAUwFsf0TGcRAsz7LX0e-c8hMyCWEDIIRI5mOiHvumq1nQqkGqjGq7eofUYKfqhqJdK6txi7aLq7Xa13ZFLXYfzr_Rynmq-s5Zt3V9oMbXu8O5Ra8xqjhL661aYTglx5VqAp799Cl5ub15Xtyz5dPdw-J6yXQC0DFtkmiIzwyKHAolTKlyLITSUHKd6jTBPC91WZgKVaar0phZBUmlocoMZsDFlFwMuq137z2GTm5c7218KQWfFfk8S9MkopIBpb0LwWMlWx99-k_JQR6ilEOUMkYpv6OU-0gSAylEsF2h_5P-h_UF6ZR8cg |
Cites_doi | 10.1109/CVPR52688.2022.00239 10.1109/TETCI.2024.3386838 10.1002/sdtp.16355 10.1007/s40747-021-00428-4 10.1063/1.3037551 10.1109/CVPR.2018.00745 10.1109/TIP.2021.3050643 10.1609/aaai.v34i07.6865 10.3233/JIFS-210733 10.1109/TIP.2024.3504298 10.1109/CVPRW.2019.00265 10.1109/CVPR.2018.00262 10.1109/TIP.2018.2867951 10.1109/CVPR.2018.00343 10.1117/12.56145 10.1109/CVPR52729.2023.02083 10.1109/ICCV.2019.00741 10.1109/ICCV51070.2023.01983 10.1109/TIP.2022.3140609 10.1109/CVPR.2018.00337 10.1109/TIP.2023.3256763 10.1109/ICAC54203.2021.9671099 10.1109/CVPR.2018.00068 10.3390/rs15245704 10.1109/TIP.2016.2598681 10.1109/ICPICS55264.2022.9873772 10.1109/TMM.2022.3225712 10.1007/978-3-319-46475-6_43 10.1587/transinf.E96.D.1793 10.1109/TIP.2017.2771158 10.1155/2020/4945214 10.1142/S0218126619500993 10.1155/2022/7030735 10.3390/s22145084 10.3390/app12136712 10.1109/ICME55011.2023.00276 10.1609/aaai.v32i1.12287 10.1142/S021812662150078X 10.1109/WACV.2019.00151 10.1109/TPAMI.2023.3238179 10.1109/ICCV.2017.511 10.1109/TIP.2024.3354108 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025. |
DBID | AAYXX CITATION |
DOI | 10.1007/s10044-025-01430-z |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1433-755X |
ExternalDocumentID | 10_1007_s10044_025_01430_z |
GrantInformation_xml | – fundername: Outstanding Youth Program of Hubei Natural Science Foundation under Grant grantid: No. 2024AFA074; No. 2024AFA074; No. 2024AFA074; No. 2024AFA074; No. 2024AFA074; No. 2024AFA074; No. 2024AFA074; No. 2024AFA074 – fundername: National Natural Science Foundation of China grantid: No. 62006073; No. 62006073; No. 62006073; No. 62006073; No. 62006073; No. 62006073; No. 62006073; No. 62006073 – fundername: Hubei Provincial Science and Technology Project grantid: No. 2022BEC017; No. 2022BEC017; No. 2022BEC017; No. 2022BEC017; No. 2022BEC017; No. 2022BEC017; No. 2022BEC017; No. 2022BEC017 – fundername: Hubei Provincial Natural Science Foundation grantid: No. 2022CFA007; No. 2022CFA007; No. 2022CFA007; No. 2022CFA007; No. 2022CFA007; No. 2022CFA007; No. 2022CFA007; No. 2022CFA007 – fundername: Hubei Provincial Central Government Guided Local Science and Technology Development Special Project grantid: No. 2023GEA027; No. 2023GEA027; No. 2023GEA027; No. 2023GEA027; No. 2023GEA027; No. 2023GEA027; No. 2023GEA027; No. 2023GEA027 |
GroupedDBID | -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 203 29O 2J2 2JN 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACSTC ACZOJ ADHHG ADHIR ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BGNMA BSONS CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI ESBYG F5P FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9J OAM P2P P9O PF0 PT4 PT5 QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~A9 -Y2 1SB 2P1 2VQ AARHV AAYXX ABQSL ABULA ACBXY ADHKG AEBTG AEKMD AFGCZ AGGDS AGJBK AGQPQ AHSBF AJBLW BDATZ CAG CITATION COF EJD FINBP FSGXE H13 N2Q O9- RIG RNI RZK |
ID | FETCH-LOGICAL-c200t-cd232816de3709a3dba7e93ac0b1c4c42e77bcb9dfea5cfbdd6f02fc0f5de5013 |
IEDL.DBID | U2A |
ISSN | 1433-7541 |
IngestDate | Fri Jul 25 09:06:32 EDT 2025 Thu Jul 10 07:43:41 EDT 2025 Mon Jul 21 06:06:32 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Image dehazing Autonomous driving Multi-scale features Adaptive adjustment Detail enhancement |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c200t-cd232816de3709a3dba7e93ac0b1c4c42e77bcb9dfea5cfbdd6f02fc0f5de5013 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3169785442 |
PQPubID | 2043691 |
ParticipantIDs | proquest_journals_3169785442 crossref_primary_10_1007_s10044_025_01430_z springer_journals_10_1007_s10044_025_01430_z |
PublicationCentury | 2000 |
PublicationDate | 2025-06-01 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Pattern analysis and applications : PAA |
PublicationTitleAbbrev | Pattern Anal Applic |
PublicationYear | 2025 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | 1430_CR18 W Luo (1430_CR41) 2016; 29 1430_CR17 1430_CR39 1430_CR16 TM Bui (1430_CR10) 2018; 27 Z Chen (1430_CR31) 2024; 33 LR Bissonnette (1430_CR4) 1992; 31 Y Song (1430_CR30) 2023; 32 O Özdenizci (1430_CR35) 2023; 45 1430_CR2 D Park (1430_CR7) 2013; 96 Z Liu (1430_CR8) 2022; 12 B Li (1430_CR13) 2018 X Qin (1430_CR24) 2020; 34 A Kulkarni (1430_CR32) 2023; 25 1430_CR1 B Cai (1430_CR15) 2016; 25 M Li (1430_CR38) 2025; 34 AE Ilesanmi (1430_CR11) 2021; 7 1430_CR34 1430_CR33 Z Wang (1430_CR3) 2023 1430_CR29 W Qian (1430_CR19) 2020; 2020 1430_CR28 1430_CR27 1430_CR26 1430_CR25 K Mondal (1430_CR9) 2021; 30 EJ McCartney (1430_CR14) 1977; 30 B Li (1430_CR44) 2019; 28 S Yoon (1430_CR5) 2022; 22 J Liao (1430_CR36) 2022; 2022 H Bai (1430_CR37) 2022; 31 X Wang (1430_CR21) 2024; 8 1430_CR23 1430_CR45 1430_CR22 R Song (1430_CR12) 2021; 41 1430_CR43 1430_CR42 M Ju (1430_CR20) 2021; 30 1430_CR40 UA Nnolim (1430_CR6) 2019; 28 |
References_xml | – ident: 1430_CR27 doi: 10.1109/CVPR52688.2022.00239 – volume: 8 start-page: 2880 issue: 4 year: 2024 ident: 1430_CR21 publication-title: IEEE Trans Emerg Top Comput Intell doi: 10.1109/TETCI.2024.3386838 – ident: 1430_CR1 doi: 10.1002/sdtp.16355 – volume: 7 start-page: 2179 issue: 5 year: 2021 ident: 1430_CR11 publication-title: Complex Intell Syst doi: 10.1007/s40747-021-00428-4 – volume: 30 start-page: 76 issue: 5 year: 1977 ident: 1430_CR14 publication-title: Phys Today doi: 10.1063/1.3037551 – ident: 1430_CR40 doi: 10.1109/CVPR.2018.00745 – volume: 30 start-page: 2180 year: 2021 ident: 1430_CR20 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2021.3050643 – ident: 1430_CR42 – volume: 34 start-page: 11908 issue: 07 year: 2020 ident: 1430_CR24 publication-title: Proc AAAI Conf Artif Intel doi: 10.1609/aaai.v34i07.6865 – volume: 41 start-page: 6815 issue: 6 year: 2021 ident: 1430_CR12 publication-title: J Intell Fuzzy Syst doi: 10.3233/JIFS-210733 – volume: 34 start-page: 30 year: 2025 ident: 1430_CR38 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2024.3504298 – ident: 1430_CR18 doi: 10.1109/CVPRW.2019.00265 – ident: 1430_CR39 doi: 10.1109/CVPR.2018.00262 – volume: 28 start-page: 492 issue: 1 year: 2019 ident: 1430_CR44 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2018.2867951 – ident: 1430_CR26 doi: 10.1109/CVPR.2018.00343 – volume: 31 start-page: 1045 issue: 5 year: 1992 ident: 1430_CR4 publication-title: Opt Eng doi: 10.1117/12.56145 – ident: 1430_CR33 doi: 10.1109/CVPR52729.2023.02083 – ident: 1430_CR22 doi: 10.1109/ICCV.2019.00741 – ident: 1430_CR34 doi: 10.1109/ICCV51070.2023.01983 – volume: 31 start-page: 1217 year: 2022 ident: 1430_CR37 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2022.3140609 – ident: 1430_CR23 doi: 10.1109/CVPR.2018.00337 – volume: 29 start-page: 1 year: 2016 ident: 1430_CR41 publication-title: Adv Neural Inf Process Syst – volume: 32 start-page: 1927 year: 2023 ident: 1430_CR30 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2023.3256763 – ident: 1430_CR2 doi: 10.1109/ICAC54203.2021.9671099 – ident: 1430_CR45 doi: 10.1109/CVPR.2018.00068 – year: 2023 ident: 1430_CR3 publication-title: Remote Sens doi: 10.3390/rs15245704 – volume: 25 start-page: 5187 issue: 11 year: 2016 ident: 1430_CR15 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2016.2598681 – ident: 1430_CR28 doi: 10.1109/ICPICS55264.2022.9873772 – volume: 25 start-page: 7686 year: 2023 ident: 1430_CR32 publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2022.3225712 – ident: 1430_CR43 doi: 10.1007/978-3-319-46475-6_43 – volume: 96 start-page: 1793 issue: 8 year: 2013 ident: 1430_CR7 publication-title: IEICE Trans Inf Syst doi: 10.1587/transinf.E96.D.1793 – volume: 27 start-page: 999 issue: 2 year: 2018 ident: 1430_CR10 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2017.2771158 – volume: 2020 start-page: 4945214 issue: 1 year: 2020 ident: 1430_CR19 publication-title: Math Probl Eng doi: 10.1155/2020/4945214 – volume: 28 start-page: 1950099 issue: 06 year: 2019 ident: 1430_CR6 publication-title: J Circuits Syst Comput doi: 10.1142/S0218126619500993 – volume: 2022 start-page: 7030735 issue: 1 year: 2022 ident: 1430_CR36 publication-title: J Sens doi: 10.1155/2022/7030735 – volume: 22 start-page: 5084 issue: 14 year: 2022 ident: 1430_CR5 publication-title: Sensors doi: 10.3390/s22145084 – volume: 12 start-page: 6712 issue: 13 year: 2022 ident: 1430_CR8 publication-title: Appl Sci doi: 10.3390/app12136712 – ident: 1430_CR29 doi: 10.1109/ICME55011.2023.00276 – year: 2018 ident: 1430_CR13 publication-title: Proc AAAI Conf Artif Intell doi: 10.1609/aaai.v32i1.12287 – ident: 1430_CR17 – volume: 30 start-page: 2150078 issue: 05 year: 2021 ident: 1430_CR9 publication-title: J Circuits Syst Comput doi: 10.1142/S021812662150078X – ident: 1430_CR25 doi: 10.1109/WACV.2019.00151 – volume: 45 start-page: 10346 issue: 8 year: 2023 ident: 1430_CR35 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2023.3238179 – ident: 1430_CR16 doi: 10.1109/ICCV.2017.511 – volume: 33 start-page: 1002 year: 2024 ident: 1430_CR31 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2024.3354108 |
SSID | ssj0033328 |
Score | 2.3809454 |
Snippet | In hazy weather conditions, a significant accumulation of haze poses a severe challenge to the quality of image capture for autonomous driving systems, thereby... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Computer Science Feature extraction Feature maps Image quality Modules Original Article Pattern Recognition Weather |
Title | Multi-scale adaptive detail enhancement dehazing network for autonomous driving perception images |
URI | https://link.springer.com/article/10.1007/s10044-025-01430-z https://www.proquest.com/docview/3169785442 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagXVh4Iwql8sAGlpzYTpqxQi0VCCYqlSnyk3YgrZp06a_nnAcFBAPr2fJw5zt_vidC1zJwACyYI0b7kpyYxkQKLYmiLNacCyfKiO7TczSe8IepmNZFYXmT7d6EJEtL_aXYjXJO_PhV35OOks0uagv_d4dbPAkHjf1ljJUTVWEPI7HgQV0q8_sZ35-jLcb8ERYtX5vRIdqvYSIeVHI9Qjs2O0YHNWTEtULmQGqmMjS0EyTLmlqSA_MtlkYuvUHDVaoottnMi9m7BIE0872l33BWpYJjwK9Yrgtf5rBY59is5t7bgJefuS94_g7mJz9Fk9Hw5W5M6kEKRIMSFEQbwE39IDKWxTSRzCgZ24RJTVWgueahjWOlVWKcBUE5ZUzkaOg0dcJYAbI8Q61skdlzhE0oAaMpsE2B4U5GfW4TpRJmE065jpIOumn4mS6rfhnptjOy534K3E9L7qebDuo2LE9r3clTFkTwtRWchx1024hhu_z3aRf_236J9sLyJniXShe1itXaXgHCKFQPtQf3r4_DXnmxPgAad8wv |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDLDwRhQKeGADS07sJM1YIaoCbadW6hb5SRlIqyZd-us5pzEFBAOrY3m4852_3N13h9CtCCwAC2aJVo6Sk9CEiEgJIilLFOeRjaqM7mAY98b8eRJNalJY4avdfUqy8tRfyG6Uc-LGr7qedJSsttEOgIG2K-Qahx3vfxlj1URV2MNIEvGgpsr8fsb352iDMX-kRavXpnuI9muYiDtrvR6hLZMfo4MaMuLaIAtY8lMZ_NoJEhWnlhQgfIOFFnPn0PC6VBSbfOrU7EKCsDR1vaVfcb4uBceAX7FYlo7mMFsWWC_eXLQBzz9rX_DbO7if4hSNu4-jhx6pBykQBUZQEqUBN7WDWBuW0FQwLUViUiYUlYHiiocmSaSSqbYGFGWl1rGloVXURtpEoMsz1MhnuTlHWIcCMJoE3xRobkXc5iaVMmUm5ZSrOG2iOy_PbL7ul5FtOiM76Wcg_aySfrZqopYXeVbbTpGxIIZf24jzsInuvRo2n_8-7eJ_22_Qbm806Gf9p-HLJdoLq1vhwist1CgXS3MFaKOU19Xl-gB02c2O |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagSIiFN6JQwAMbWDixkzRjBVTlVTFQqVvkJ-1AWjXp0l_POQ9aEAysF8vDne_85XzfHUKXwrMALJglWjlKTkQjIgIliKQsUpwHNihedF_6YW_AH4fBcIXFX1S710-SJafBdWlK85uptjcrxDfKOXGjWF1_OkoW62gDwrHnzvXA79SxmDFWTFeFNYxEAfcq2szve3y_mpZ488cTaXHzdHfRdgUZcae08R5aM-k-2qngI66cMwNRPaGhlh0gUfBrSQaGMFhoMXXBDZdlo9ikI2dylx4E0cj1mX7HaVkWjgHLYjHPHeVhMs-wno1d5gFPv-pg8PgDQlF2iAbd-7fbHqmGKhAFDpETpQFDtb1QGxbRWDAtRWRiJhSVnuKK-yaKpJKxtgaMZqXWoaW-VdQG2gRg1yPUSCepOUZY-wLwmoQ45WluRdjmJpYyZibmlKswbqKrWp_JtOydkSy7JDvtJ6D9pNB-smiiVq3ypPKjLGFeCL-5Aed-E13XZlh-_nu3k_8tv0Cbr3fd5Pmh_3SKtvziULhMSws18tncnAHwyOV5cbY-AVwS0co |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-scale+adaptive+detail+enhancement+dehazing+network+for+autonomous+driving+perception+images&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Wang%2C+Juan&rft.au=Wang%2C+Sheng&rft.au=Wu%2C+Minghu&rft.au=Yang%2C+Hao&rft.date=2025-06-01&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=28&rft.issue=2&rft_id=info:doi/10.1007%2Fs10044-025-01430-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10044_025_01430_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon |