Automorphism group functors of algebraic superschemes

The famous theorem of Matsumura–Oort states that if X is a proper scheme, then the automorphism group functor Aut ( X ) of X is a locally algebraic group scheme. In this paper we generalize this theorem to the category of superschemes, that is if X is a proper superscheme, then the automorphism grou...

Full description

Saved in:
Bibliographic Details
Published inMathematische Zeitschrift Vol. 308; no. 1
Main Author Zubkov, A. N.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The famous theorem of Matsumura–Oort states that if X is a proper scheme, then the automorphism group functor Aut ( X ) of X is a locally algebraic group scheme. In this paper we generalize this theorem to the category of superschemes, that is if X is a proper superscheme, then the automorphism group functor Aut ( X ) of X is a locally algebraic group superscheme. Moreover, we also show that if H 1 ( X , T X ) = 0 , where X is the geometric counterpart of X and T X is the tangent sheaf of X , then Aut ( X ) is a smooth group superscheme.
AbstractList The famous theorem of Matsumura–Oort states that if X is a proper scheme, then the automorphism group functor Aut ( X ) of X is a locally algebraic group scheme. In this paper we generalize this theorem to the category of superschemes, that is if X is a proper superscheme, then the automorphism group functor Aut ( X ) of X is a locally algebraic group superscheme. Moreover, we also show that if H 1 ( X , T X ) = 0 , where X is the geometric counterpart of X and T X is the tangent sheaf of X , then Aut ( X ) is a smooth group superscheme.
The famous theorem of Matsumura–Oort states that if X is a proper scheme, then the automorphism group functor Aut(X) of X is a locally algebraic group scheme. In this paper we generalize this theorem to the category of superschemes, that is if X is a proper superscheme, then the automorphism group functor Aut(X) of X is a locally algebraic group superscheme. Moreover, we also show that if H1(X,TX)=0, where X is the geometric counterpart of X and TX is the tangent sheaf of X, then Aut(X) is a smooth group superscheme.
ArticleNumber 4
Author Zubkov, A. N.
Author_xml – sequence: 1
  givenname: A. N.
  surname: Zubkov
  fullname: Zubkov, A. N.
  email: a.zubkov@yahoo.com
  organization: Department of Mathematical Science, UAEU, Sobolev Institute of Mathematics, Omsk Branch
BookMark eNp9kD1PwzAURS1UJNrCH2CKxGx4frYTd6wqvqRKLDBbjmunrZo42MnQf48hSGxMb7j33CedBZl1oXOE3DK4ZwDVQwJAWFFAQYHLCun5gsyZ4EiZQj4j85xLKlUlrsgipSNADisxJ3I9DqENsd8fUls0MYx94cfODiGmIvjCnBpXR3OwRRp7F5Pdu9ala3LpzSm5m9-7JB9Pj--bF7p9e37drLfUIsBA7apyRikOqxq9RKZKtsOS1-i4kN5ZKH2JfmdKqJQRpq6NA25ZZWurmBOGL8ndtNvH8Dm6NOhjGGOXX2oOSiKWACK3cGrZGFKKzus-HloTz5qB_tajJz0669E_evQ5Q3yCUi53jYt_0_9QX0V3anw
Cites_doi 10.1007/s00031-009-9055-z
10.1016/j.jpaa.2023.107404
10.1090/pspum/094/04
10.1007/BF01404615
10.1007/978-3-662-07386-5
10.1016/j.jalgebra.2022.04.027
10.1080/00927872.2022.2085286
10.1016/j.jalgebra.2020.06.019
10.1016/j.jpaa.2016.06.012
10.1016/j.aim.2023.108890
10.1007/BF01404578
10.1007/s10469-018-9485-6
10.1016/j.jalgebra.2018.02.002
10.1007/BF02684309
10.1016/j.jalgebra.2023.12.033
10.4171/097
10.1016/j.jalgebra.2011.08.038
10.2140/pjm.2018.295.385
10.1007/978-1-4757-3849-0
10.1016/j.jpaa.2019.106245
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s00209-024-03572-y
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1432-1823
ExternalDocumentID 10_1007_s00209_024_03572_y
GroupedDBID --Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
1SB
203
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
4.4
406
408
409
40D
40E
41~
5GY
5QI
5VS
67Z
692
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEOY
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACREN
ACWMK
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEARS
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPOP
AEPYU
AESKC
AESTI
AETEA
AETLH
AEVLU
AEVTX
AEXYK
AFBBN
AFDYV
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRJ
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
LPU
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OHT
OK1
P19
P2P
P9R
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
REI
RHV
RIG
RNI
ROL
RPX
RSV
RYB
RZK
RZZ
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TWZ
U2A
UG4
UNUBA
UOJIU
UQL
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XJT
XOL
Y6R
YLTOR
YNT
YQT
Z45
ZMTXR
ZWQNP
~EX
AAYXX
CITATION
ID FETCH-LOGICAL-c200t-c97ea88309b2f521861d263b2e345fec06f62fda6078a4abbae03c17cbc81e4a3
IEDL.DBID U2A
ISSN 0025-5874
IngestDate Thu Oct 10 22:10:15 EDT 2024
Thu Sep 26 20:36:11 EDT 2024
Wed Aug 21 03:25:41 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c200t-c97ea88309b2f521861d263b2e345fec06f62fda6078a4abbae03c17cbc81e4a3
PQID 3085226004
PQPubID 2043617
ParticipantIDs proquest_journals_3085226004
crossref_primary_10_1007_s00209_024_03572_y
springer_journals_10_1007_s00209_024_03572_y
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Mathematische Zeitschrift
PublicationTitleAbbrev Math. Z
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References MasuokaAZubkovANOn the notion of Krull super-dimensionJ. Pure Appl. Algebra20202245106245404624510.1016/j.jpaa.2019.106245
Grothendieck, A.: Technique de descente, I, II, III, IV. Seminaire Bourbaki, exposes 190 (1959), 195 (1960), 212 (1961), 221 (1961)
GrothendieckARaynaudMRevetements etales et groupe fondamental (SGA1)2003ParisSoc. Math. de France
MatsumuraHideyukiOortFransRepresentability of group functors, and automorphisms of algebraic schemesInvent. Math.1967412521709010.1007/BF01404578
Carmeli, C., Caston, L., Fioresi, R.: Mathematical Foundations of Supersymmetry. EMS Ser. Lect. Math., European Math. Soc., Zurich (2011)
MasuokaAZubkovANSolvability and nilpotency for algebraic supergroupsJ. Pure Appl. Algebra20172212339365354526510.1016/j.jpaa.2016.06.012
BruzzoURuiperezDHPolishchukANotes on fundamental algebraic supergeometry. Hilbert and Picard superschemesAdv. Math.2023415454456210.1016/j.aim.2023.108890
MasuokaAZubkovANQuotient sheaves of algebraic supergroups are superschemesJ. Algebra2011348135170285223510.1016/j.jalgebra.2011.08.038
MasuokaAShibataTOn functor points of affine supergroupsJ. Algebra2018503534572378000710.1016/j.jalgebra.2018.02.002
Zubkov, A.N.: Some properties of Noetherian superschemes. Algebra Log. 57(2), 130–140 (2018) (Russian Original Vol. 57, No. 2, March–April, 2018)
Various Authors: Stacks project. https://stacks.math.columbia.edu/browse. Accessed 8 July 2024
Brion, M.: Some structure theorems for algebraic groups. In: Proc. Sympos. Pure Math., 94, pp. 53–126, American Mathematical Society, Providence, RI (2017)
Manin, Y.I.: Gauge Field Theory and Complex Geometry, Translated from the 1984 Russian original by N. Koblitz and J.R. King, With an appendix by Sergei Merkulov, second edition, Grundlehren der Mathematischen Wissenschaften (Fundamental Principlesof Mathematical Sciences), vol.289, Springer, Berlin, 1997, xii+346 pp
Grothendieck, A.: Elements de geometrie algebrique (rediges avec la collaboration de Jean Dieudonne). I. Le langage des schemas. (French) Inst. Hautes Études Sci. Publ. Math. No. 4 (1960), pp. 5–228
Hartshorne, R.: Algebraic Geometry, Graduate Texts in Mathematics, No. 52. Springer, New York (1977)
Jantzen, J.C.: Representations of algebraic groups, Second edition. Mathematical Surveys and Monographs, vol. 107. American Mathematical Society, Providence (2003)
FioresiRKwokSDThe projective linear supergroup and the SUSYpreserving automorphisms of P1|1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P^{1|1}$$\end{document}Pac. J. Math.201829538540110.2140/pjm.2018.295.385
Demazure, M., Gabriel, P.: Algebraic Groups, Vol. I. Algebraic Geometry. Generalities. Commutative Groups. North-Holland, Amsterdam (1970)
LeveltAHMFoncteurs exacts a gaucheInvent. Math.1969811414026084310.1007/BF01404615
MurreJPOn contravariant functors from the category of pre-schemes over a field into the category of abelian groups (with an application to the Picard functor)Inst. Hautes Études Sci. Publ. Math. No.19642354320601110.1007/BF02684309
VishnyakovaEAutomorphisms and real structures for a Π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Pi $$\end{document}-symmetric super-GrassmannianJ. Algebra2024644232286469562010.1016/j.jalgebra.2023.12.033
LangS Algebra, Graduate Texts in Mathematics20023LondonSpringer
MasuokaAZubkovANGroup superschemesJ. Algebra202260589145441896210.1016/j.jalgebra.2022.04.027
Grothendieck, A.: Elements de geometrie algebrique (rediges avec la collaboration de Jean Dieudonne). III. Etude cohomologique des faisceaux coherentes. (French) Inst. Hautes Études Sci. Publ. Math. No. 11 (1961), pp. 5–167
HoshiMMasuokaATakahashiYHopf-algebraic techniques applied to super Lie groups over complete fieldsJ. Algebra20205622893412373310.1016/j.jalgebra.2020.06.019
Barbara Fantechi, ... [et al.]: Fundamental Algebraic Geometry: Grothendieck FGA Explained, Mathematical Surveys and Monographs, no. 123
BovdiVAZubkovANOrbits of actions of group superschemesJ. Pure Appl. Algebra2023227458045710.1016/j.jpaa.2023.107404
ZubkovANKolesnikovPSOn dimension theory of supermodules, super-rings and superschemesCommun. Algebra2022501253875409448472010.1080/00927872.2022.2085286
ZubkovANAffine quotients of supergroupsTransform. Groups2009143713745253480510.1007/s00031-009-9055-z
U Bruzzo (3572_CR3) 2023; 415
VA Bovdi (3572_CR2) 2023; 227
S Lang (3572_CR15) 2002
R Fioresi (3572_CR7) 2018; 295
3572_CR25
A Grothendieck (3572_CR10) 2003
Hideyuki Matsumura (3572_CR19) 1967; 4
AHM Levelt (3572_CR16) 1969; 8
3572_CR29
M Hoshi (3572_CR13) 2020; 562
A Masuoka (3572_CR21) 2011; 348
3572_CR9
JP Murre (3572_CR18) 1964; 23
AN Zubkov (3572_CR27) 2022; 50
A Masuoka (3572_CR20) 2018; 503
3572_CR6
3572_CR5
3572_CR8
AN Zubkov (3572_CR28) 2009; 14
3572_CR1
A Masuoka (3572_CR24) 2020; 224
3572_CR4
3572_CR12
A Masuoka (3572_CR23) 2017; 221
3572_CR11
3572_CR17
3572_CR14
E Vishnyakova (3572_CR26) 2024; 644
A Masuoka (3572_CR22) 2022; 605
References_xml – volume-title: Algebra, Graduate Texts in Mathematics
  year: 2002
  ident: 3572_CR15
  contributor:
    fullname: S Lang
– volume: 14
  start-page: 713
  issue: 3
  year: 2009
  ident: 3572_CR28
  publication-title: Transform. Groups
  doi: 10.1007/s00031-009-9055-z
  contributor:
    fullname: AN Zubkov
– volume: 227
  year: 2023
  ident: 3572_CR2
  publication-title: J. Pure Appl. Algebra
  doi: 10.1016/j.jpaa.2023.107404
  contributor:
    fullname: VA Bovdi
– ident: 3572_CR4
  doi: 10.1090/pspum/094/04
– ident: 3572_CR1
– ident: 3572_CR14
– volume: 8
  start-page: 114
  year: 1969
  ident: 3572_CR16
  publication-title: Invent. Math.
  doi: 10.1007/BF01404615
  contributor:
    fullname: AHM Levelt
– ident: 3572_CR17
  doi: 10.1007/978-3-662-07386-5
– volume: 605
  start-page: 89
  year: 2022
  ident: 3572_CR22
  publication-title: J. Algebra
  doi: 10.1016/j.jalgebra.2022.04.027
  contributor:
    fullname: A Masuoka
– volume: 50
  start-page: 5387
  issue: 12
  year: 2022
  ident: 3572_CR27
  publication-title: Commun. Algebra
  doi: 10.1080/00927872.2022.2085286
  contributor:
    fullname: AN Zubkov
– volume: 562
  start-page: 28
  year: 2020
  ident: 3572_CR13
  publication-title: J. Algebra
  doi: 10.1016/j.jalgebra.2020.06.019
  contributor:
    fullname: M Hoshi
– volume: 221
  start-page: 339
  issue: 2
  year: 2017
  ident: 3572_CR23
  publication-title: J. Pure Appl. Algebra
  doi: 10.1016/j.jpaa.2016.06.012
  contributor:
    fullname: A Masuoka
– volume: 415
  year: 2023
  ident: 3572_CR3
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2023.108890
  contributor:
    fullname: U Bruzzo
– volume: 4
  start-page: 1
  year: 1967
  ident: 3572_CR19
  publication-title: Invent. Math.
  doi: 10.1007/BF01404578
  contributor:
    fullname: Hideyuki Matsumura
– ident: 3572_CR29
  doi: 10.1007/s10469-018-9485-6
– ident: 3572_CR9
– volume: 503
  start-page: 534
  year: 2018
  ident: 3572_CR20
  publication-title: J. Algebra
  doi: 10.1016/j.jalgebra.2018.02.002
  contributor:
    fullname: A Masuoka
– volume-title: Revetements etales et groupe fondamental (SGA1)
  year: 2003
  ident: 3572_CR10
  contributor:
    fullname: A Grothendieck
– volume: 23
  start-page: 5
  year: 1964
  ident: 3572_CR18
  publication-title: Inst. Hautes Études Sci. Publ. Math. No.
  doi: 10.1007/BF02684309
  contributor:
    fullname: JP Murre
– ident: 3572_CR11
– volume: 644
  start-page: 232
  year: 2024
  ident: 3572_CR26
  publication-title: J. Algebra
  doi: 10.1016/j.jalgebra.2023.12.033
  contributor:
    fullname: E Vishnyakova
– ident: 3572_CR5
  doi: 10.4171/097
– volume: 348
  start-page: 135
  year: 2011
  ident: 3572_CR21
  publication-title: J. Algebra
  doi: 10.1016/j.jalgebra.2011.08.038
  contributor:
    fullname: A Masuoka
– volume: 295
  start-page: 385
  year: 2018
  ident: 3572_CR7
  publication-title: Pac. J. Math.
  doi: 10.2140/pjm.2018.295.385
  contributor:
    fullname: R Fioresi
– ident: 3572_CR12
  doi: 10.1007/978-1-4757-3849-0
– ident: 3572_CR6
– ident: 3572_CR8
– volume: 224
  start-page: 106245
  issue: 5
  year: 2020
  ident: 3572_CR24
  publication-title: J. Pure Appl. Algebra
  doi: 10.1016/j.jpaa.2019.106245
  contributor:
    fullname: A Masuoka
– ident: 3572_CR25
SSID ssj0014374
Score 2.406263
Snippet The famous theorem of Matsumura–Oort states that if X is a proper scheme, then the automorphism group functor Aut ( X ) of X is a locally algebraic group...
The famous theorem of Matsumura–Oort states that if X is a proper scheme, then the automorphism group functor Aut(X) of X is a locally algebraic group scheme....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
SubjectTerms Automorphisms
Mathematics
Mathematics and Statistics
Theorems
Title Automorphism group functors of algebraic superschemes
URI https://link.springer.com/article/10.1007/s00209-024-03572-y
https://www.proquest.com/docview/3085226004
Volume 308
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1Bu8CA-BSFUmVgA0uJv5KMKWqpQO1EpTJFtutIHdpUTTr032O7SSoQDEweYnl4d8q90929A3iU2qTJnHIU6jlDlAuJpCYY-bFWEc6E9N3c2njCR1P6NmOzwxy3a3avK5LuR93MulliEyMTUpBPWIjR7hjahjxQ28c1xUlTOqCkll5miEUhrSZlfn_jezQ6UMwfVVEXbIbncFaxRC_Zm_UCjvTqEk7HjcRqcQUs2Zb5MjcwLYql54YzPBuk7PYcL888u7_DZMIL5RXbteF4xjhLXVzDdDj4eBmhagcCUsZ_S6TiUIsoIn4sccbsAqlgjjmRWBPKMq18nnGczQU3oV5QIaXQPlFBqKSKAk0FuYHWKl_pW_CEyaxiYSgTV9QkZToOlVBcBpEUXAoRdOCpxiJd76Uu0kbU2CGXGuRSh1y660C3hiut3L5IiSFw2Ere0w481xAePv_92t3_rt_DCXZWtL1eXWiVm61-MOSglD1oJ8N-f2LP18_3Qc85xxfx-bRY
link.rule.ids 315,783,787,27938,27939,41095,41537,42164,42606,52125,52248
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BGYAB8SkKBTKwgaXEX0nGClEVaDu1UjfLdh2pQ5uKpEP_PbabpALBwBzLw7tT3jud7x3AozK2TOaUo9jMGKJcKqQMwShMjU5wJlXo59aGI96f0Pcpm1ZDYUX92r1uSfo_dTPs5pRNiiynoJCwGKPNPhw4f3WX1xPcbXoHlNTeywyxJKbVqMzvd3yno53G_NEW9WzTO4WTSiYG3W1cz2DPLM_heNh4rBYXwLrrMl_kFqd5sQj8dEbgWMqtzwnyLHALPGwpPNdBsV5ZkWejszDFJUx6r-OXPqqWICBtE7hEOo2NTBISpgpnzG2QimaYE4UNoSwzOuQZx9lMcsv1kkqlpAmJjmKtdBIZKskVtJb50lxDIG1plUqrmbimtiozaayl5ipKlORKyqgNTzUWYrX1uhCNq7FHTljkhEdObNrQqeESVd4XglgFh53nPW3Dcw3h7vPft9387_gDHPbHw4EYvI0-buEI-4i6h18daJWfa3NnlUKp7n1ifAFMDbSj
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8JAEJ0oJEYPfhtR1B686WK7u922R6IgihAPkuCp2d1uE2IoxJYD_nq3X6BED8Zzm007M5t5k5n3BuBSKF0mM8qQowIbUcYFEopgZHpKujjkwsx4a70-6wzo49AefmHxZ9PuZUsy5zSkKk1RcjMNwpsF8S1FOR7S-QWZxHYwmq9DlVoaLlSg2rx_7bYWnQRKSiVmG9muQwvizM-nfE9OS8S50iTNck97B3j51fnIyVtjloiG_FgRdPzPb-3CdgFMjWYeSXuwpqJ92OotVF3jA7Cbs2QynmjPjOKxkfFBjDQvpgt7jElopCtDdPE9kkY8m2pYqeNhrOJDGLRbL7cdVKxdQFJfmQRJz1HcdYnpCRza6c4qK8CMCKwItUMlTRYyHAacaXTBKReCK5NIy5FCupainBxBJZpE6hgMros5j2uUxiTVdaDyHMklE5YrOBOcWzW4Ku3tT3N1DX-ho5wZw9fG8DNj-PMa1EuX-MVNi32iMSNOVfZpDa5LCy8f_37ayd9ev4CN57u2__TQ757CJs58lE6a1aGSvM_UmYYmiTgvou8TGLLaug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automorphism+group+functors+of+algebraic+superschemes&rft.jtitle=Mathematische+Zeitschrift&rft.au=Zubkov%2C+A.+N.&rft.date=2024-09-01&rft.issn=0025-5874&rft.eissn=1432-1823&rft.volume=308&rft.issue=1&rft_id=info:doi/10.1007%2Fs00209-024-03572-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00209_024_03572_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5874&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5874&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5874&client=summon