Automorphism group functors of algebraic superschemes
The famous theorem of Matsumura–Oort states that if X is a proper scheme, then the automorphism group functor Aut ( X ) of X is a locally algebraic group scheme. In this paper we generalize this theorem to the category of superschemes, that is if X is a proper superscheme, then the automorphism grou...
Saved in:
Published in | Mathematische Zeitschrift Vol. 308; no. 1 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The famous theorem of Matsumura–Oort states that if
X
is a proper scheme, then the automorphism group functor
Aut
(
X
)
of
X
is a locally algebraic group scheme. In this paper we generalize this theorem to the category of superschemes, that is if
X
is a proper superscheme, then the automorphism group functor
Aut
(
X
)
of
X
is a locally algebraic group superscheme. Moreover, we also show that if
H
1
(
X
,
T
X
)
=
0
, where
X
is the geometric counterpart of
X
and
T
X
is the tangent sheaf of
X
, then
Aut
(
X
)
is a smooth group superscheme. |
---|---|
AbstractList | The famous theorem of Matsumura–Oort states that if
X
is a proper scheme, then the automorphism group functor
Aut
(
X
)
of
X
is a locally algebraic group scheme. In this paper we generalize this theorem to the category of superschemes, that is if
X
is a proper superscheme, then the automorphism group functor
Aut
(
X
)
of
X
is a locally algebraic group superscheme. Moreover, we also show that if
H
1
(
X
,
T
X
)
=
0
, where
X
is the geometric counterpart of
X
and
T
X
is the tangent sheaf of
X
, then
Aut
(
X
)
is a smooth group superscheme. The famous theorem of Matsumura–Oort states that if X is a proper scheme, then the automorphism group functor Aut(X) of X is a locally algebraic group scheme. In this paper we generalize this theorem to the category of superschemes, that is if X is a proper superscheme, then the automorphism group functor Aut(X) of X is a locally algebraic group superscheme. Moreover, we also show that if H1(X,TX)=0, where X is the geometric counterpart of X and TX is the tangent sheaf of X, then Aut(X) is a smooth group superscheme. |
ArticleNumber | 4 |
Author | Zubkov, A. N. |
Author_xml | – sequence: 1 givenname: A. N. surname: Zubkov fullname: Zubkov, A. N. email: a.zubkov@yahoo.com organization: Department of Mathematical Science, UAEU, Sobolev Institute of Mathematics, Omsk Branch |
BookMark | eNp9kD1PwzAURS1UJNrCH2CKxGx4frYTd6wqvqRKLDBbjmunrZo42MnQf48hSGxMb7j33CedBZl1oXOE3DK4ZwDVQwJAWFFAQYHLCun5gsyZ4EiZQj4j85xLKlUlrsgipSNADisxJ3I9DqENsd8fUls0MYx94cfODiGmIvjCnBpXR3OwRRp7F5Pdu9ala3LpzSm5m9-7JB9Pj--bF7p9e37drLfUIsBA7apyRikOqxq9RKZKtsOS1-i4kN5ZKH2JfmdKqJQRpq6NA25ZZWurmBOGL8ndtNvH8Dm6NOhjGGOXX2oOSiKWACK3cGrZGFKKzus-HloTz5qB_tajJz0669E_evQ5Q3yCUi53jYt_0_9QX0V3anw |
Cites_doi | 10.1007/s00031-009-9055-z 10.1016/j.jpaa.2023.107404 10.1090/pspum/094/04 10.1007/BF01404615 10.1007/978-3-662-07386-5 10.1016/j.jalgebra.2022.04.027 10.1080/00927872.2022.2085286 10.1016/j.jalgebra.2020.06.019 10.1016/j.jpaa.2016.06.012 10.1016/j.aim.2023.108890 10.1007/BF01404578 10.1007/s10469-018-9485-6 10.1016/j.jalgebra.2018.02.002 10.1007/BF02684309 10.1016/j.jalgebra.2023.12.033 10.4171/097 10.1016/j.jalgebra.2011.08.038 10.2140/pjm.2018.295.385 10.1007/978-1-4757-3849-0 10.1016/j.jpaa.2019.106245 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s00209-024-03572-y |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1432-1823 |
ExternalDocumentID | 10_1007_s00209_024_03572_y |
GroupedDBID | --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 199 1N0 1SB 203 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2WC 2~H 30V 4.4 406 408 409 40D 40E 41~ 5GY 5QI 5VS 67Z 692 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAEOY AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABAKF ABBBX ABBXA ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIPQ ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACREN ACWMK ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEARS AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPOP AEPYU AESKC AESTI AETEA AETLH AEVLU AEVTX AEXYK AFBBN AFDYV AFEXP AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AIMYW AITGF AJBLW AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRJ FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM LPU M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OHT OK1 P19 P2P P9R PF- PT4 PT5 QOK QOS R4E R89 R9I REI RHV RIG RNI ROL RPX RSV RYB RZK RZZ S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TWZ U2A UG4 UNUBA UOJIU UQL UTJUX UZXMN VC2 VFIZW W23 W48 WK8 XJT XOL Y6R YLTOR YNT YQT Z45 ZMTXR ZWQNP ~EX AAYXX CITATION |
ID | FETCH-LOGICAL-c200t-c97ea88309b2f521861d263b2e345fec06f62fda6078a4abbae03c17cbc81e4a3 |
IEDL.DBID | U2A |
ISSN | 0025-5874 |
IngestDate | Thu Oct 10 22:10:15 EDT 2024 Thu Sep 26 20:36:11 EDT 2024 Wed Aug 21 03:25:41 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c200t-c97ea88309b2f521861d263b2e345fec06f62fda6078a4abbae03c17cbc81e4a3 |
PQID | 3085226004 |
PQPubID | 2043617 |
ParticipantIDs | proquest_journals_3085226004 crossref_primary_10_1007_s00209_024_03572_y springer_journals_10_1007_s00209_024_03572_y |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Mathematische Zeitschrift |
PublicationTitleAbbrev | Math. Z |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | MasuokaAZubkovANOn the notion of Krull super-dimensionJ. Pure Appl. Algebra20202245106245404624510.1016/j.jpaa.2019.106245 Grothendieck, A.: Technique de descente, I, II, III, IV. Seminaire Bourbaki, exposes 190 (1959), 195 (1960), 212 (1961), 221 (1961) GrothendieckARaynaudMRevetements etales et groupe fondamental (SGA1)2003ParisSoc. Math. de France MatsumuraHideyukiOortFransRepresentability of group functors, and automorphisms of algebraic schemesInvent. Math.1967412521709010.1007/BF01404578 Carmeli, C., Caston, L., Fioresi, R.: Mathematical Foundations of Supersymmetry. EMS Ser. Lect. Math., European Math. Soc., Zurich (2011) MasuokaAZubkovANSolvability and nilpotency for algebraic supergroupsJ. Pure Appl. Algebra20172212339365354526510.1016/j.jpaa.2016.06.012 BruzzoURuiperezDHPolishchukANotes on fundamental algebraic supergeometry. Hilbert and Picard superschemesAdv. Math.2023415454456210.1016/j.aim.2023.108890 MasuokaAZubkovANQuotient sheaves of algebraic supergroups are superschemesJ. Algebra2011348135170285223510.1016/j.jalgebra.2011.08.038 MasuokaAShibataTOn functor points of affine supergroupsJ. Algebra2018503534572378000710.1016/j.jalgebra.2018.02.002 Zubkov, A.N.: Some properties of Noetherian superschemes. Algebra Log. 57(2), 130–140 (2018) (Russian Original Vol. 57, No. 2, March–April, 2018) Various Authors: Stacks project. https://stacks.math.columbia.edu/browse. Accessed 8 July 2024 Brion, M.: Some structure theorems for algebraic groups. In: Proc. Sympos. Pure Math., 94, pp. 53–126, American Mathematical Society, Providence, RI (2017) Manin, Y.I.: Gauge Field Theory and Complex Geometry, Translated from the 1984 Russian original by N. Koblitz and J.R. King, With an appendix by Sergei Merkulov, second edition, Grundlehren der Mathematischen Wissenschaften (Fundamental Principlesof Mathematical Sciences), vol.289, Springer, Berlin, 1997, xii+346 pp Grothendieck, A.: Elements de geometrie algebrique (rediges avec la collaboration de Jean Dieudonne). I. Le langage des schemas. (French) Inst. Hautes Études Sci. Publ. Math. No. 4 (1960), pp. 5–228 Hartshorne, R.: Algebraic Geometry, Graduate Texts in Mathematics, No. 52. Springer, New York (1977) Jantzen, J.C.: Representations of algebraic groups, Second edition. Mathematical Surveys and Monographs, vol. 107. American Mathematical Society, Providence (2003) FioresiRKwokSDThe projective linear supergroup and the SUSYpreserving automorphisms of P1|1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P^{1|1}$$\end{document}Pac. J. Math.201829538540110.2140/pjm.2018.295.385 Demazure, M., Gabriel, P.: Algebraic Groups, Vol. I. Algebraic Geometry. Generalities. Commutative Groups. North-Holland, Amsterdam (1970) LeveltAHMFoncteurs exacts a gaucheInvent. Math.1969811414026084310.1007/BF01404615 MurreJPOn contravariant functors from the category of pre-schemes over a field into the category of abelian groups (with an application to the Picard functor)Inst. Hautes Études Sci. Publ. Math. No.19642354320601110.1007/BF02684309 VishnyakovaEAutomorphisms and real structures for a Π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Pi $$\end{document}-symmetric super-GrassmannianJ. Algebra2024644232286469562010.1016/j.jalgebra.2023.12.033 LangS Algebra, Graduate Texts in Mathematics20023LondonSpringer MasuokaAZubkovANGroup superschemesJ. Algebra202260589145441896210.1016/j.jalgebra.2022.04.027 Grothendieck, A.: Elements de geometrie algebrique (rediges avec la collaboration de Jean Dieudonne). III. Etude cohomologique des faisceaux coherentes. (French) Inst. Hautes Études Sci. Publ. Math. No. 11 (1961), pp. 5–167 HoshiMMasuokaATakahashiYHopf-algebraic techniques applied to super Lie groups over complete fieldsJ. Algebra20205622893412373310.1016/j.jalgebra.2020.06.019 Barbara Fantechi, ... [et al.]: Fundamental Algebraic Geometry: Grothendieck FGA Explained, Mathematical Surveys and Monographs, no. 123 BovdiVAZubkovANOrbits of actions of group superschemesJ. Pure Appl. Algebra2023227458045710.1016/j.jpaa.2023.107404 ZubkovANKolesnikovPSOn dimension theory of supermodules, super-rings and superschemesCommun. Algebra2022501253875409448472010.1080/00927872.2022.2085286 ZubkovANAffine quotients of supergroupsTransform. Groups2009143713745253480510.1007/s00031-009-9055-z U Bruzzo (3572_CR3) 2023; 415 VA Bovdi (3572_CR2) 2023; 227 S Lang (3572_CR15) 2002 R Fioresi (3572_CR7) 2018; 295 3572_CR25 A Grothendieck (3572_CR10) 2003 Hideyuki Matsumura (3572_CR19) 1967; 4 AHM Levelt (3572_CR16) 1969; 8 3572_CR29 M Hoshi (3572_CR13) 2020; 562 A Masuoka (3572_CR21) 2011; 348 3572_CR9 JP Murre (3572_CR18) 1964; 23 AN Zubkov (3572_CR27) 2022; 50 A Masuoka (3572_CR20) 2018; 503 3572_CR6 3572_CR5 3572_CR8 AN Zubkov (3572_CR28) 2009; 14 3572_CR1 A Masuoka (3572_CR24) 2020; 224 3572_CR4 3572_CR12 A Masuoka (3572_CR23) 2017; 221 3572_CR11 3572_CR17 3572_CR14 E Vishnyakova (3572_CR26) 2024; 644 A Masuoka (3572_CR22) 2022; 605 |
References_xml | – volume-title: Algebra, Graduate Texts in Mathematics year: 2002 ident: 3572_CR15 contributor: fullname: S Lang – volume: 14 start-page: 713 issue: 3 year: 2009 ident: 3572_CR28 publication-title: Transform. Groups doi: 10.1007/s00031-009-9055-z contributor: fullname: AN Zubkov – volume: 227 year: 2023 ident: 3572_CR2 publication-title: J. Pure Appl. Algebra doi: 10.1016/j.jpaa.2023.107404 contributor: fullname: VA Bovdi – ident: 3572_CR4 doi: 10.1090/pspum/094/04 – ident: 3572_CR1 – ident: 3572_CR14 – volume: 8 start-page: 114 year: 1969 ident: 3572_CR16 publication-title: Invent. Math. doi: 10.1007/BF01404615 contributor: fullname: AHM Levelt – ident: 3572_CR17 doi: 10.1007/978-3-662-07386-5 – volume: 605 start-page: 89 year: 2022 ident: 3572_CR22 publication-title: J. Algebra doi: 10.1016/j.jalgebra.2022.04.027 contributor: fullname: A Masuoka – volume: 50 start-page: 5387 issue: 12 year: 2022 ident: 3572_CR27 publication-title: Commun. Algebra doi: 10.1080/00927872.2022.2085286 contributor: fullname: AN Zubkov – volume: 562 start-page: 28 year: 2020 ident: 3572_CR13 publication-title: J. Algebra doi: 10.1016/j.jalgebra.2020.06.019 contributor: fullname: M Hoshi – volume: 221 start-page: 339 issue: 2 year: 2017 ident: 3572_CR23 publication-title: J. Pure Appl. Algebra doi: 10.1016/j.jpaa.2016.06.012 contributor: fullname: A Masuoka – volume: 415 year: 2023 ident: 3572_CR3 publication-title: Adv. Math. doi: 10.1016/j.aim.2023.108890 contributor: fullname: U Bruzzo – volume: 4 start-page: 1 year: 1967 ident: 3572_CR19 publication-title: Invent. Math. doi: 10.1007/BF01404578 contributor: fullname: Hideyuki Matsumura – ident: 3572_CR29 doi: 10.1007/s10469-018-9485-6 – ident: 3572_CR9 – volume: 503 start-page: 534 year: 2018 ident: 3572_CR20 publication-title: J. Algebra doi: 10.1016/j.jalgebra.2018.02.002 contributor: fullname: A Masuoka – volume-title: Revetements etales et groupe fondamental (SGA1) year: 2003 ident: 3572_CR10 contributor: fullname: A Grothendieck – volume: 23 start-page: 5 year: 1964 ident: 3572_CR18 publication-title: Inst. Hautes Études Sci. Publ. Math. No. doi: 10.1007/BF02684309 contributor: fullname: JP Murre – ident: 3572_CR11 – volume: 644 start-page: 232 year: 2024 ident: 3572_CR26 publication-title: J. Algebra doi: 10.1016/j.jalgebra.2023.12.033 contributor: fullname: E Vishnyakova – ident: 3572_CR5 doi: 10.4171/097 – volume: 348 start-page: 135 year: 2011 ident: 3572_CR21 publication-title: J. Algebra doi: 10.1016/j.jalgebra.2011.08.038 contributor: fullname: A Masuoka – volume: 295 start-page: 385 year: 2018 ident: 3572_CR7 publication-title: Pac. J. Math. doi: 10.2140/pjm.2018.295.385 contributor: fullname: R Fioresi – ident: 3572_CR12 doi: 10.1007/978-1-4757-3849-0 – ident: 3572_CR6 – ident: 3572_CR8 – volume: 224 start-page: 106245 issue: 5 year: 2020 ident: 3572_CR24 publication-title: J. Pure Appl. Algebra doi: 10.1016/j.jpaa.2019.106245 contributor: fullname: A Masuoka – ident: 3572_CR25 |
SSID | ssj0014374 |
Score | 2.406263 |
Snippet | The famous theorem of Matsumura–Oort states that if
X
is a proper scheme, then the automorphism group functor
Aut
(
X
)
of
X
is a locally algebraic group... The famous theorem of Matsumura–Oort states that if X is a proper scheme, then the automorphism group functor Aut(X) of X is a locally algebraic group scheme.... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
SubjectTerms | Automorphisms Mathematics Mathematics and Statistics Theorems |
Title | Automorphism group functors of algebraic superschemes |
URI | https://link.springer.com/article/10.1007/s00209-024-03572-y https://www.proquest.com/docview/3085226004 |
Volume | 308 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1Bu8CA-BSFUmVgA0uJv5KMKWqpQO1EpTJFtutIHdpUTTr032O7SSoQDEweYnl4d8q90929A3iU2qTJnHIU6jlDlAuJpCYY-bFWEc6E9N3c2njCR1P6NmOzwxy3a3avK5LuR93MulliEyMTUpBPWIjR7hjahjxQ28c1xUlTOqCkll5miEUhrSZlfn_jezQ6UMwfVVEXbIbncFaxRC_Zm_UCjvTqEk7HjcRqcQUs2Zb5MjcwLYql54YzPBuk7PYcL888u7_DZMIL5RXbteF4xjhLXVzDdDj4eBmhagcCUsZ_S6TiUIsoIn4sccbsAqlgjjmRWBPKMq18nnGczQU3oV5QIaXQPlFBqKSKAk0FuYHWKl_pW_CEyaxiYSgTV9QkZToOlVBcBpEUXAoRdOCpxiJd76Uu0kbU2CGXGuRSh1y660C3hiut3L5IiSFw2Ere0w481xAePv_92t3_rt_DCXZWtL1eXWiVm61-MOSglD1oJ8N-f2LP18_3Qc85xxfx-bRY |
link.rule.ids | 315,783,787,27938,27939,41095,41537,42164,42606,52125,52248 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BGYAB8SkKBTKwgaXEX0nGClEVaDu1UjfLdh2pQ5uKpEP_PbabpALBwBzLw7tT3jud7x3AozK2TOaUo9jMGKJcKqQMwShMjU5wJlXo59aGI96f0Pcpm1ZDYUX92r1uSfo_dTPs5pRNiiynoJCwGKPNPhw4f3WX1xPcbXoHlNTeywyxJKbVqMzvd3yno53G_NEW9WzTO4WTSiYG3W1cz2DPLM_heNh4rBYXwLrrMl_kFqd5sQj8dEbgWMqtzwnyLHALPGwpPNdBsV5ZkWejszDFJUx6r-OXPqqWICBtE7hEOo2NTBISpgpnzG2QimaYE4UNoSwzOuQZx9lMcsv1kkqlpAmJjmKtdBIZKskVtJb50lxDIG1plUqrmbimtiozaayl5ipKlORKyqgNTzUWYrX1uhCNq7FHTljkhEdObNrQqeESVd4XglgFh53nPW3Dcw3h7vPft9387_gDHPbHw4EYvI0-buEI-4i6h18daJWfa3NnlUKp7n1ifAFMDbSj |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8JAEJ0oJEYPfhtR1B686WK7u922R6IgihAPkuCp2d1uE2IoxJYD_nq3X6BED8Zzm007M5t5k5n3BuBSKF0mM8qQowIbUcYFEopgZHpKujjkwsx4a70-6wzo49AefmHxZ9PuZUsy5zSkKk1RcjMNwpsF8S1FOR7S-QWZxHYwmq9DlVoaLlSg2rx_7bYWnQRKSiVmG9muQwvizM-nfE9OS8S50iTNck97B3j51fnIyVtjloiG_FgRdPzPb-3CdgFMjWYeSXuwpqJ92OotVF3jA7Cbs2QynmjPjOKxkfFBjDQvpgt7jElopCtDdPE9kkY8m2pYqeNhrOJDGLRbL7cdVKxdQFJfmQRJz1HcdYnpCRza6c4qK8CMCKwItUMlTRYyHAacaXTBKReCK5NIy5FCupainBxBJZpE6hgMros5j2uUxiTVdaDyHMklE5YrOBOcWzW4Ku3tT3N1DX-ho5wZw9fG8DNj-PMa1EuX-MVNi32iMSNOVfZpDa5LCy8f_37ayd9ev4CN57u2__TQ757CJs58lE6a1aGSvM_UmYYmiTgvou8TGLLaug |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automorphism+group+functors+of+algebraic+superschemes&rft.jtitle=Mathematische+Zeitschrift&rft.au=Zubkov%2C+A.+N.&rft.date=2024-09-01&rft.issn=0025-5874&rft.eissn=1432-1823&rft.volume=308&rft.issue=1&rft_id=info:doi/10.1007%2Fs00209-024-03572-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00209_024_03572_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5874&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5874&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5874&client=summon |