Temporal Consistency as Pretext Task in Unsupervised Domain Adaptation for Semantic Segmentation

Intelligent and autonomous robots (and vehicles) largely adopt computer vision systems to help in localization, navigation and obstacle avoidance tasks. By integrating different deep learning techniques, such as Object Detection and Image Semantic Segmentation, these systems achieve high accuracy in...

Full description

Saved in:
Bibliographic Details
Published inJournal of intelligent & robotic systems Vol. 111; no. 1; p. 37
Main Authors Barbosa, Felipe, Osório, Fernando
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 19.03.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Intelligent and autonomous robots (and vehicles) largely adopt computer vision systems to help in localization, navigation and obstacle avoidance tasks. By integrating different deep learning techniques, such as Object Detection and Image Semantic Segmentation, these systems achieve high accuracy in the domain they were trained on. Nonetheless, robustly operating in different domains still poses a major challenge to vision-based perception. In this sense, Unsupervised Domain Adaptation (UDA) has recently gained momentum due to its importance to real-world applications. Specifically, it leverages the prompt availability of unlabeled data to design auxiliary sources of supervision to guide the knowledge transfer between domains. The advantages of such an approach are two-fold: avoiding going through exhaustive labeling processes, and enhancing adaptation performance. In this scenario, exploring temporal correlations in unlabeled video data stands as an interesting alternative, which has not yet been explored to its full potential. In this work, we propose a Self-supervised learning framework that employs Temporal Consistency from unlabeled video sequences as a pretext task for improving UDA for Semantic Segmentation (UDASS). A simple yet effective strategy, it has shown promising results in a real-to-real adaptation setting. Our results and discussions are expected to benefit both new and experienced researchers on the subject.
AbstractList Intelligent and autonomous robots (and vehicles) largely adopt computer vision systems to help in localization, navigation and obstacle avoidance tasks. By integrating different deep learning techniques, such as Object Detection and Image Semantic Segmentation, these systems achieve high accuracy in the domain they were trained on. Nonetheless, robustly operating in different domains still poses a major challenge to vision-based perception. In this sense, Unsupervised Domain Adaptation (UDA) has recently gained momentum due to its importance to real-world applications. Specifically, it leverages the prompt availability of unlabeled data to design auxiliary sources of supervision to guide the knowledge transfer between domains. The advantages of such an approach are two-fold: avoiding going through exhaustive labeling processes, and enhancing adaptation performance. In this scenario, exploring temporal correlations in unlabeled video data stands as an interesting alternative, which has not yet been explored to its full potential. In this work, we propose a Self-supervised learning framework that employs Temporal Consistency from unlabeled video sequences as a pretext task for improving UDA for Semantic Segmentation (UDASS). A simple yet effective strategy, it has shown promising results in a real-to-real adaptation setting. Our results and discussions are expected to benefit both new and experienced researchers on the subject.
ArticleNumber 37
Author Barbosa, Felipe
Osório, Fernando
Author_xml – sequence: 1
  givenname: Felipe
  orcidid: 0009-0001-5081-5078
  surname: Barbosa
  fullname: Barbosa, Felipe
  email: felipe.manfio.barbosa@usp.br
  organization: Institute of Mathematics and Computer Science, University of São Paulo
– sequence: 2
  givenname: Fernando
  surname: Osório
  fullname: Osório, Fernando
  organization: Institute of Mathematics and Computer Science, University of São Paulo
BookMark eNp9kE9PwzAMxSM0JLbBF-AUiXPBSdcmOU7jrzQJJLZzSFt36liTknSIfXsCRYITB8uW_d6z9JuQkXUWCTlncMkAxFVgIGd5AjyLxTkk6oiMWSbSBGagRn_mEzIJYQsASmZqTF5W2HbOmx1dOBua0KMtD9QE-uSxx4-erkx4pY2laxv2Hfr3JmBFr11r4m5ema43feMsrZ2nz9ga2zdlHDYt2uFySo5rswt49tOnZH17s1rcJ8vHu4fFfJmUHKBPipRDYapaiMrUJitFXhRQK1kJnGVQQi7zzIhacS4kU6ZiDJXAqjAK00wiS6fkYsjtvHvbY-j11u29jS91yoRUEhSIqOKDqvQuBI-17nzTGn_QDPQXST2Q1JGk_iapVTSlgylEsd2g_43-x_UJWf95iA
Cites_doi 10.1109/CVPR52729.2023.01015
10.1007/978-3-319-46475-6_7
10.1109/ICCV.2017.220
10.1109/ICCV51070.2023.00371
10.1007/s11263-014-0733-5
10.1109/ITSC.2018.8569387
10.1109/ICCV48922.2021.00795
10.1007/978-3-319-10602-1_48
10.1109/TIV.2023.3344754
10.1109/CVPRW63382.2024.00271
10.1109/CVPR.2009.5206848
10.1109/ICCV51070.2023.01058
10.1109/ICCV48922.2021.00842
10.1109/CVPR.2016.401
10.1007/978-3-031-20056-4_36
10.1109/CVPR.2017.179
10.1109/ICCV.2019.00218
10.1109/CVPR52688.2022.00694
10.1109/CVPR42600.2020.00271
10.48550/arXiv.2003.03773
10.1177/0278364916679498
10.1007/978-3-030-58568-6_38
10.1109/CVPR.2018.00780
10.1109/ICCV48922.2021.01059
10.1109/IJCNN55064.2022.9892322
10.1109/CVPR.2016.350
10.1007/978-3-030-01261-8_42
10.1109/TPAMI.2023.3237740
10.1109/CVPR.2017.544
10.1109/ICCV.2019.00747
10.1109/CVPRW53098.2021.00010
10.1007/978-3-030-01219-9_18
10.1109/CVPR.2016.352
10.1109/CVPR42600.2020.01265
10.1007/s11263-021-01515-2
10.1007/978-3-030-01261-8_20
10.1109/CVPR.2019.00262
10.1109/CVPR52729.2023.01128
ContentType Journal Article
Copyright The Author(s) 2025
Copyright Springer Nature B.V. Mar 2025
Copyright_xml – notice: The Author(s) 2025
– notice: Copyright Springer Nature B.V. Mar 2025
DBID C6C
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1007/s10846-025-02220-9
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-0409
ExternalDocumentID 10_1007_s10846_025_02220_9
GroupedDBID -~X
.86
.DC
.VR
06D
0R~
0VY
1N0
203
29K
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AARTL
AASML
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABBBX
ABBXA
ABDBE
ABDZT
ABECU
ABEEZ
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACACY
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACULB
ACZOJ
ADHHG
ADHIR
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGXO
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BENPR
C24
C6C
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
ESBYG
FEDTE
FERAY
FFXSO
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
MA-
N9A
NB0
NPVJJ
NQJWS
O9-
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PT5
QOK
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SDM
SEG
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
ZMTXR
~A9
~EX
AAFWJ
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
BGNMA
CITATION
M4Y
NU0
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c200t-b320badf77dafa5c76bb0f98d7e450c06865a7f9227819ad11e97edba9e358e13
IEDL.DBID C24
ISSN 1573-0409
0921-0296
IngestDate Wed Aug 13 07:35:22 EDT 2025
Sun Jul 06 05:06:17 EDT 2025
Sat Apr 05 01:12:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Unsupervised domain adaptation
Temporal consistency
Review
Semantic segmentation
Self-supervised learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c200t-b320badf77dafa5c76bb0f98d7e450c06865a7f9227819ad11e97edba9e358e13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0001-5081-5078
OpenAccessLink https://link.springer.com/10.1007/s10846-025-02220-9
PQID 3178980907
PQPubID 326251
ParticipantIDs proquest_journals_3178980907
crossref_primary_10_1007_s10846_025_02220_9
springer_journals_10_1007_s10846_025_02220_9
PublicationCentury 2000
PublicationDate 2025-03-19
PublicationDateYYYYMMDD 2025-03-19
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-19
  day: 19
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle with a special section on Unmanned Systems
PublicationTitle Journal of intelligent & robotic systems
PublicationTitleAbbrev J Intell Robot Syst
PublicationYear 2025
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References 2220_CR25
C Yu (2220_CR36) 2021; 129
2220_CR24
2220_CR22
2220_CR29
2220_CR28
T-Y Lin (2220_CR3) 2014
2220_CR27
2220_CR26
C Sakaridis (2220_CR34) 2018
2220_CR21
2220_CR20
2220_CR42
2220_CR41
2220_CR40
2220_CR13
2220_CR35
2220_CR12
2220_CR11
S-Y Lo (2220_CR14) 2023
2220_CR33
2220_CR18
H Wang (2220_CR23) 2020
2220_CR17
2220_CR39
2220_CR16
2220_CR38
2220_CR15
2220_CR37
2220_CR19
2220_CR5
2220_CR4
2220_CR7
2220_CR6
2220_CR1
2220_CR2
D Guan (2220_CR8) 2021
B Xie (2220_CR30) 2023; 45
2220_CR9
2220_CR10
2220_CR32
2220_CR31
References_xml – year: 2023
  ident: 2220_CR14
  publication-title: Spatio-Temporal Pixel-Level Contrastive Learning-based Source-Free Domain Adaptation for Video Semantic Segmentation
  doi: 10.1109/CVPR52729.2023.01015
– ident: 2220_CR7
  doi: 10.1007/978-3-319-46475-6_7
– ident: 2220_CR24
  doi: 10.1109/ICCV.2017.220
– ident: 2220_CR29
  doi: 10.1109/ICCV51070.2023.00371
– ident: 2220_CR40
  doi: 10.1007/s11263-014-0733-5
– ident: 2220_CR32
  doi: 10.1109/ITSC.2018.8569387
– year: 2021
  ident: 2220_CR8
  publication-title: Domain Adaptive Video Segmentation via Temporal Consistency Regularization
  doi: 10.1109/ICCV48922.2021.00795
– ident: 2220_CR20
  doi: 10.1109/ICCV.2017.220
– start-page: 740
  volume-title: Computer Vision - ECCV 2014
  year: 2014
  ident: 2220_CR3
  doi: 10.1007/978-3-319-10602-1_48
– ident: 2220_CR28
  doi: 10.1109/TIV.2023.3344754
– ident: 2220_CR41
– ident: 2220_CR9
  doi: 10.1109/CVPRW63382.2024.00271
– ident: 2220_CR2
  doi: 10.1109/CVPR.2009.5206848
– ident: 2220_CR26
  doi: 10.1109/ICCV51070.2023.01058
– ident: 2220_CR11
  doi: 10.1109/ICCV48922.2021.00842
– ident: 2220_CR1
  doi: 10.1109/CVPR.2016.401
– ident: 2220_CR10
  doi: 10.1007/978-3-031-20056-4_36
– ident: 2220_CR38
– ident: 2220_CR39
  doi: 10.1109/CVPR.2017.179
– ident: 2220_CR22
  doi: 10.1109/ICCV.2019.00218
– ident: 2220_CR13
  doi: 10.1109/CVPR52688.2022.00694
– ident: 2220_CR33
  doi: 10.1109/CVPR42600.2020.00271
– ident: 2220_CR17
  doi: 10.48550/arXiv.2003.03773
– ident: 2220_CR18
  doi: 10.1177/0278364916679498
– start-page: 642
  volume-title: Computer Vision - ECCV 2020
  year: 2020
  ident: 2220_CR23
  doi: 10.1007/978-3-030-58568-6_38
– ident: 2220_CR21
  doi: 10.1109/CVPR.2018.00780
– ident: 2220_CR27
  doi: 10.1109/ICCV48922.2021.01059
– ident: 2220_CR12
  doi: 10.1109/IJCNN55064.2022.9892322
– ident: 2220_CR5
  doi: 10.1109/CVPR.2016.350
– start-page: 707
  volume-title: Computer Vision - ECCV 2018
  year: 2018
  ident: 2220_CR34
  doi: 10.1007/978-3-030-01261-8_42
– volume: 45
  start-page: 9004
  issue: 7
  year: 2023
  ident: 2220_CR30
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2023.3237740
– ident: 2220_CR4
  doi: 10.1109/CVPR.2017.544
– ident: 2220_CR31
  doi: 10.1109/ICCV.2019.00747
– ident: 2220_CR42
  doi: 10.1109/CVPRW53098.2021.00010
– ident: 2220_CR19
  doi: 10.1007/978-3-030-01219-9_18
– ident: 2220_CR6
  doi: 10.1109/CVPR.2016.352
– ident: 2220_CR15
  doi: 10.1109/CVPR42600.2020.01265
– ident: 2220_CR16
– volume: 129
  start-page: 3051
  issue: 11
  year: 2021
  ident: 2220_CR36
  publication-title: Int. J. Comput. Vision
  doi: 10.1007/s11263-021-01515-2
– ident: 2220_CR37
  doi: 10.1007/978-3-030-01261-8_20
– ident: 2220_CR25
  doi: 10.1109/CVPR.2019.00262
– ident: 2220_CR35
  doi: 10.1109/CVPR52729.2023.01128
SSID ssj0009859
Score 2.3859332
Snippet Intelligent and autonomous robots (and vehicles) largely adopt computer vision systems to help in localization, navigation and obstacle avoidance tasks. By...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 37
SubjectTerms Adaptation
Artificial Intelligence
Computer vision
Control
Deep learning
Electrical Engineering
Engineering
Image segmentation
Mechanical Engineering
Mechatronics
Object recognition
Obstacle avoidance
Regular Paper
Robotics
Self-supervised learning
Semantic segmentation
Semantics
Unsupervised learning
Video data
Vision systems
Title Temporal Consistency as Pretext Task in Unsupervised Domain Adaptation for Semantic Segmentation
URI https://link.springer.com/article/10.1007/s10846-025-02220-9
https://www.proquest.com/docview/3178980907
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8DAo4AolMoDG0RKmjixx6i0VCAQEq1UpmDHDqqgadW0A_-ecx5qQTCwWFGceDjf-T7r7rsDuESn6jFl8sK0aWGGPtliFO0xDqQv0L9pmxm-88OjPxh5d2M6LklhWZXtXoUk85N6g-yGvtIy7VfNJcW2-DbUKd7djV53DcehKrXLKC_pMb__990FrXHlj1Bo7mH6B7BXQkMSFnt5CFs6bcB-1XaBlFbYgN2NGoJH8Dosikt9kLz3ZmYw8CcRGXlaaJPVQYYieyeTlIzSbDU3J0OmFbmZTQW-C5WYF7F4guCVPOspCnoS48PbtCQlpccw6veG3YFVtk2wYlT5pSXdji2FSoJAiUTQOPCltBPOVKA9aseGE0JFkHBDgnW4UI6jeaCVFFy7lGnHPYFaOkv1KRCXac8WCIJEnHhCxowbwKCUqfruSa6bcFVJMpoX1TGidR1kI_cI5R7lco94E1qVsKPSUrII8QuuauMdvQnX1Qasp_9e7ex_n5_DTifXAddyeAtqy8VKXyCeWMo21MPbl_teO1cjM_pdHEed8Atij8Z9
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oHtSDD9SIou7BmzZp6XOPBCWoQEwsCbd1t7s1RCmEwsF_72wfqRI9eGv62MPsTOeb7HzfAFxjUnUCqfvClB5hhjnZCFyMx8gXHsf8psxA850HQ683ch7H7riQydFcmLXze01xwwxp6KGrujQxDboJWw5Wyrp9r-N1KoHdwKUFKeb3734mngpNrh2AZnmlewB7BSAk7XwHD2FDJXXYL4ctkCL26rD7TTnwCF7DXFLqg2QTN1ONfD8JT8nzQuleDhLy9J1MEjJK0tVc_w9SJcndbMrxXlvyeX4CTxCykhc1RfNOIrx4mxZUpOQYRt37sNMzimEJRoSOvjSE3TIFl7HvSx5zN_I9IcyYBtJXjmtGmgnicj-mmvpqUS4tS1FfScGpst1AWfYJ1JJZok6B2IFyTI7Qh0exw0UUUA0TpNRa746gqgE3pSXZPNfEYJX6sbY7Q7uzzO6MNqBZGpsV8ZEyRC24qomVeQNuyw2oHv-92tn_Xr-C7V446LP-w_DpHHZamT_YhkWbUFsuVuoCEcVSXGau9AXeasI0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8JAEJ0oJEYPoqgRRd2DNy22tKXdIxEQRQmJkOCp7na3hiCloeWgv97dfqRI9GC8Nf3YtDs7nbeZeW8ALkVQNWwm68K4bGEmYrJim8IfXYs2iIhvXLUl3_mp3-iOjIexOV5h8cfV7llKMuE0SJUmP7oJmHezQnwTcVORrVjlhkVV8CYUDaltV4Bi8-6l186Fd20Tp2SZn5_8HpBylLmWGI3jTacEJHvTpMxkWltGtOZ-rok4_udT9mA3BaOomayefdjgfhlKWaMHlPp9GXZWVAsP4HWYyFm9o7jbZyhR9wciIRosuKwjQUMSTtHERyM_XAbyXxRyhlrzGRHnmowESfYfCbiMnvlMmHbiioO3WUqD8g9h1GkPb7tK2qhBcYWTRQrV6yolzLMsRjxiulaDUtXDNrO4YaquZKGYxPKwpN1qmDBN49jijBLMddPmmn4EBX_u82NAus0NlQjYRVzPINS1sYQojEmdeYNiXoGrzFpOkOhxOLnyspxKR0ylE0-lgytQzQzqpL4ZOgIxiVFVrFoVuM7sk1_-fbSTv91-AVuDVsd5vO_3TmG7HltYVzRchUK0WPIzAWYiep6u1y-Omuwq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal+Consistency+as+Pretext+Task+in+Unsupervised+Domain+Adaptation+for+Semantic+Segmentation&rft.jtitle=Journal+of+intelligent+%26+robotic+systems&rft.au=Barbosa%2C+Felipe&rft.au=Os%C3%B3rio%2C+Fernando&rft.date=2025-03-19&rft.pub=Springer+Netherlands&rft.eissn=1573-0409&rft.volume=111&rft.issue=1&rft_id=info:doi/10.1007%2Fs10846-025-02220-9&rft.externalDocID=10_1007_s10846_025_02220_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-0409&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-0409&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-0409&client=summon