Temporal Consistency as Pretext Task in Unsupervised Domain Adaptation for Semantic Segmentation
Intelligent and autonomous robots (and vehicles) largely adopt computer vision systems to help in localization, navigation and obstacle avoidance tasks. By integrating different deep learning techniques, such as Object Detection and Image Semantic Segmentation, these systems achieve high accuracy in...
Saved in:
Published in | Journal of intelligent & robotic systems Vol. 111; no. 1; p. 37 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
19.03.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Intelligent and autonomous robots (and vehicles) largely adopt computer vision systems to help in localization, navigation and obstacle avoidance tasks. By integrating different deep learning techniques, such as Object Detection and Image Semantic Segmentation, these systems achieve high accuracy in the domain they were trained on. Nonetheless, robustly operating in different domains still poses a major challenge to vision-based perception. In this sense, Unsupervised Domain Adaptation (UDA) has recently gained momentum due to its importance to real-world applications. Specifically, it leverages the prompt availability of unlabeled data to design auxiliary sources of supervision to guide the knowledge transfer between domains. The advantages of such an approach are two-fold: avoiding going through exhaustive labeling processes, and enhancing adaptation performance. In this scenario, exploring temporal correlations in unlabeled video data stands as an interesting alternative, which has not yet been explored to its full potential. In this work, we propose a Self-supervised learning framework that employs Temporal Consistency from unlabeled video sequences as a pretext task for improving UDA for Semantic Segmentation (UDASS). A simple yet effective strategy, it has shown promising results in a real-to-real adaptation setting. Our results and discussions are expected to benefit both new and experienced researchers on the subject. |
---|---|
AbstractList | Intelligent and autonomous robots (and vehicles) largely adopt computer vision systems to help in localization, navigation and obstacle avoidance tasks. By integrating different deep learning techniques, such as Object Detection and Image Semantic Segmentation, these systems achieve high accuracy in the domain they were trained on. Nonetheless, robustly operating in different domains still poses a major challenge to vision-based perception. In this sense, Unsupervised Domain Adaptation (UDA) has recently gained momentum due to its importance to real-world applications. Specifically, it leverages the prompt availability of unlabeled data to design auxiliary sources of supervision to guide the knowledge transfer between domains. The advantages of such an approach are two-fold: avoiding going through exhaustive labeling processes, and enhancing adaptation performance. In this scenario, exploring temporal correlations in unlabeled video data stands as an interesting alternative, which has not yet been explored to its full potential. In this work, we propose a Self-supervised learning framework that employs Temporal Consistency from unlabeled video sequences as a pretext task for improving UDA for Semantic Segmentation (UDASS). A simple yet effective strategy, it has shown promising results in a real-to-real adaptation setting. Our results and discussions are expected to benefit both new and experienced researchers on the subject. |
ArticleNumber | 37 |
Author | Barbosa, Felipe Osório, Fernando |
Author_xml | – sequence: 1 givenname: Felipe orcidid: 0009-0001-5081-5078 surname: Barbosa fullname: Barbosa, Felipe email: felipe.manfio.barbosa@usp.br organization: Institute of Mathematics and Computer Science, University of São Paulo – sequence: 2 givenname: Fernando surname: Osório fullname: Osório, Fernando organization: Institute of Mathematics and Computer Science, University of São Paulo |
BookMark | eNp9kE9PwzAMxSM0JLbBF-AUiXPBSdcmOU7jrzQJJLZzSFt36liTknSIfXsCRYITB8uW_d6z9JuQkXUWCTlncMkAxFVgIGd5AjyLxTkk6oiMWSbSBGagRn_mEzIJYQsASmZqTF5W2HbOmx1dOBua0KMtD9QE-uSxx4-erkx4pY2laxv2Hfr3JmBFr11r4m5ema43feMsrZ2nz9ga2zdlHDYt2uFySo5rswt49tOnZH17s1rcJ8vHu4fFfJmUHKBPipRDYapaiMrUJitFXhRQK1kJnGVQQi7zzIhacS4kU6ZiDJXAqjAK00wiS6fkYsjtvHvbY-j11u29jS91yoRUEhSIqOKDqvQuBI-17nzTGn_QDPQXST2Q1JGk_iapVTSlgylEsd2g_43-x_UJWf95iA |
Cites_doi | 10.1109/CVPR52729.2023.01015 10.1007/978-3-319-46475-6_7 10.1109/ICCV.2017.220 10.1109/ICCV51070.2023.00371 10.1007/s11263-014-0733-5 10.1109/ITSC.2018.8569387 10.1109/ICCV48922.2021.00795 10.1007/978-3-319-10602-1_48 10.1109/TIV.2023.3344754 10.1109/CVPRW63382.2024.00271 10.1109/CVPR.2009.5206848 10.1109/ICCV51070.2023.01058 10.1109/ICCV48922.2021.00842 10.1109/CVPR.2016.401 10.1007/978-3-031-20056-4_36 10.1109/CVPR.2017.179 10.1109/ICCV.2019.00218 10.1109/CVPR52688.2022.00694 10.1109/CVPR42600.2020.00271 10.48550/arXiv.2003.03773 10.1177/0278364916679498 10.1007/978-3-030-58568-6_38 10.1109/CVPR.2018.00780 10.1109/ICCV48922.2021.01059 10.1109/IJCNN55064.2022.9892322 10.1109/CVPR.2016.350 10.1007/978-3-030-01261-8_42 10.1109/TPAMI.2023.3237740 10.1109/CVPR.2017.544 10.1109/ICCV.2019.00747 10.1109/CVPRW53098.2021.00010 10.1007/978-3-030-01219-9_18 10.1109/CVPR.2016.352 10.1109/CVPR42600.2020.01265 10.1007/s11263-021-01515-2 10.1007/978-3-030-01261-8_20 10.1109/CVPR.2019.00262 10.1109/CVPR52729.2023.01128 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 Copyright Springer Nature B.V. Mar 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: Copyright Springer Nature B.V. Mar 2025 |
DBID | C6C AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1007/s10846-025-02220-9 |
DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Free (Free internet resource, activated by CARLI) url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-0409 |
ExternalDocumentID | 10_1007_s10846_025_02220_9 |
GroupedDBID | -~X .86 .DC .VR 06D 0R~ 0VY 1N0 203 29K 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAHNG AAIAL AAJKR AAJSJ AAKKN AANZL AARTL AASML AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABBBX ABBXA ABDBE ABDZT ABECU ABEEZ ABFTD ABFTV ABHLI ABHQN ABIVO ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACACY ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACULB ACZOJ ADHHG ADHIR ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGXO AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BENPR C24 C6C CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI ESBYG FEDTE FERAY FFXSO FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM MA- N9A NB0 NPVJJ NQJWS O9- O93 O9G O9I O9J OAM P19 P9P PF0 PT5 QOK QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S3B SAP SDH SDM SEG SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR Z45 ZMTXR ~A9 ~EX AAFWJ AAYXX ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP BGNMA CITATION M4Y NU0 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c200t-b320badf77dafa5c76bb0f98d7e450c06865a7f9227819ad11e97edba9e358e13 |
IEDL.DBID | C24 |
ISSN | 1573-0409 0921-0296 |
IngestDate | Wed Aug 13 07:35:22 EDT 2025 Sun Jul 06 05:06:17 EDT 2025 Sat Apr 05 01:12:49 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Unsupervised domain adaptation Temporal consistency Review Semantic segmentation Self-supervised learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c200t-b320badf77dafa5c76bb0f98d7e450c06865a7f9227819ad11e97edba9e358e13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0001-5081-5078 |
OpenAccessLink | https://link.springer.com/10.1007/s10846-025-02220-9 |
PQID | 3178980907 |
PQPubID | 326251 |
ParticipantIDs | proquest_journals_3178980907 crossref_primary_10_1007_s10846_025_02220_9 springer_journals_10_1007_s10846_025_02220_9 |
PublicationCentury | 2000 |
PublicationDate | 2025-03-19 |
PublicationDateYYYYMMDD | 2025-03-19 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationSubtitle | with a special section on Unmanned Systems |
PublicationTitle | Journal of intelligent & robotic systems |
PublicationTitleAbbrev | J Intell Robot Syst |
PublicationYear | 2025 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | 2220_CR25 C Yu (2220_CR36) 2021; 129 2220_CR24 2220_CR22 2220_CR29 2220_CR28 T-Y Lin (2220_CR3) 2014 2220_CR27 2220_CR26 C Sakaridis (2220_CR34) 2018 2220_CR21 2220_CR20 2220_CR42 2220_CR41 2220_CR40 2220_CR13 2220_CR35 2220_CR12 2220_CR11 S-Y Lo (2220_CR14) 2023 2220_CR33 2220_CR18 H Wang (2220_CR23) 2020 2220_CR17 2220_CR39 2220_CR16 2220_CR38 2220_CR15 2220_CR37 2220_CR19 2220_CR5 2220_CR4 2220_CR7 2220_CR6 2220_CR1 2220_CR2 D Guan (2220_CR8) 2021 B Xie (2220_CR30) 2023; 45 2220_CR9 2220_CR10 2220_CR32 2220_CR31 |
References_xml | – year: 2023 ident: 2220_CR14 publication-title: Spatio-Temporal Pixel-Level Contrastive Learning-based Source-Free Domain Adaptation for Video Semantic Segmentation doi: 10.1109/CVPR52729.2023.01015 – ident: 2220_CR7 doi: 10.1007/978-3-319-46475-6_7 – ident: 2220_CR24 doi: 10.1109/ICCV.2017.220 – ident: 2220_CR29 doi: 10.1109/ICCV51070.2023.00371 – ident: 2220_CR40 doi: 10.1007/s11263-014-0733-5 – ident: 2220_CR32 doi: 10.1109/ITSC.2018.8569387 – year: 2021 ident: 2220_CR8 publication-title: Domain Adaptive Video Segmentation via Temporal Consistency Regularization doi: 10.1109/ICCV48922.2021.00795 – ident: 2220_CR20 doi: 10.1109/ICCV.2017.220 – start-page: 740 volume-title: Computer Vision - ECCV 2014 year: 2014 ident: 2220_CR3 doi: 10.1007/978-3-319-10602-1_48 – ident: 2220_CR28 doi: 10.1109/TIV.2023.3344754 – ident: 2220_CR41 – ident: 2220_CR9 doi: 10.1109/CVPRW63382.2024.00271 – ident: 2220_CR2 doi: 10.1109/CVPR.2009.5206848 – ident: 2220_CR26 doi: 10.1109/ICCV51070.2023.01058 – ident: 2220_CR11 doi: 10.1109/ICCV48922.2021.00842 – ident: 2220_CR1 doi: 10.1109/CVPR.2016.401 – ident: 2220_CR10 doi: 10.1007/978-3-031-20056-4_36 – ident: 2220_CR38 – ident: 2220_CR39 doi: 10.1109/CVPR.2017.179 – ident: 2220_CR22 doi: 10.1109/ICCV.2019.00218 – ident: 2220_CR13 doi: 10.1109/CVPR52688.2022.00694 – ident: 2220_CR33 doi: 10.1109/CVPR42600.2020.00271 – ident: 2220_CR17 doi: 10.48550/arXiv.2003.03773 – ident: 2220_CR18 doi: 10.1177/0278364916679498 – start-page: 642 volume-title: Computer Vision - ECCV 2020 year: 2020 ident: 2220_CR23 doi: 10.1007/978-3-030-58568-6_38 – ident: 2220_CR21 doi: 10.1109/CVPR.2018.00780 – ident: 2220_CR27 doi: 10.1109/ICCV48922.2021.01059 – ident: 2220_CR12 doi: 10.1109/IJCNN55064.2022.9892322 – ident: 2220_CR5 doi: 10.1109/CVPR.2016.350 – start-page: 707 volume-title: Computer Vision - ECCV 2018 year: 2018 ident: 2220_CR34 doi: 10.1007/978-3-030-01261-8_42 – volume: 45 start-page: 9004 issue: 7 year: 2023 ident: 2220_CR30 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2023.3237740 – ident: 2220_CR4 doi: 10.1109/CVPR.2017.544 – ident: 2220_CR31 doi: 10.1109/ICCV.2019.00747 – ident: 2220_CR42 doi: 10.1109/CVPRW53098.2021.00010 – ident: 2220_CR19 doi: 10.1007/978-3-030-01219-9_18 – ident: 2220_CR6 doi: 10.1109/CVPR.2016.352 – ident: 2220_CR15 doi: 10.1109/CVPR42600.2020.01265 – ident: 2220_CR16 – volume: 129 start-page: 3051 issue: 11 year: 2021 ident: 2220_CR36 publication-title: Int. J. Comput. Vision doi: 10.1007/s11263-021-01515-2 – ident: 2220_CR37 doi: 10.1007/978-3-030-01261-8_20 – ident: 2220_CR25 doi: 10.1109/CVPR.2019.00262 – ident: 2220_CR35 doi: 10.1109/CVPR52729.2023.01128 |
SSID | ssj0009859 |
Score | 2.3859332 |
Snippet | Intelligent and autonomous robots (and vehicles) largely adopt computer vision systems to help in localization, navigation and obstacle avoidance tasks. By... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 37 |
SubjectTerms | Adaptation Artificial Intelligence Computer vision Control Deep learning Electrical Engineering Engineering Image segmentation Mechanical Engineering Mechatronics Object recognition Obstacle avoidance Regular Paper Robotics Self-supervised learning Semantic segmentation Semantics Unsupervised learning Video data Vision systems |
Title | Temporal Consistency as Pretext Task in Unsupervised Domain Adaptation for Semantic Segmentation |
URI | https://link.springer.com/article/10.1007/s10846-025-02220-9 https://www.proquest.com/docview/3178980907 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8DAo4AolMoDG0RKmjixx6i0VCAQEq1UpmDHDqqgadW0A_-ecx5qQTCwWFGceDjf-T7r7rsDuESn6jFl8sK0aWGGPtliFO0xDqQv0L9pmxm-88OjPxh5d2M6LklhWZXtXoUk85N6g-yGvtIy7VfNJcW2-DbUKd7djV53DcehKrXLKC_pMb__990FrXHlj1Bo7mH6B7BXQkMSFnt5CFs6bcB-1XaBlFbYgN2NGoJH8Dosikt9kLz3ZmYw8CcRGXlaaJPVQYYieyeTlIzSbDU3J0OmFbmZTQW-C5WYF7F4guCVPOspCnoS48PbtCQlpccw6veG3YFVtk2wYlT5pSXdji2FSoJAiUTQOPCltBPOVKA9aseGE0JFkHBDgnW4UI6jeaCVFFy7lGnHPYFaOkv1KRCXac8WCIJEnHhCxowbwKCUqfruSa6bcFVJMpoX1TGidR1kI_cI5R7lco94E1qVsKPSUrII8QuuauMdvQnX1Qasp_9e7ex_n5_DTifXAddyeAtqy8VKXyCeWMo21MPbl_teO1cjM_pdHEed8Atij8Z9 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oHtSDD9SIou7BmzZp6XOPBCWoQEwsCbd1t7s1RCmEwsF_72wfqRI9eGv62MPsTOeb7HzfAFxjUnUCqfvClB5hhjnZCFyMx8gXHsf8psxA850HQ683ch7H7riQydFcmLXze01xwwxp6KGrujQxDboJWw5Wyrp9r-N1KoHdwKUFKeb3734mngpNrh2AZnmlewB7BSAk7XwHD2FDJXXYL4ctkCL26rD7TTnwCF7DXFLqg2QTN1ONfD8JT8nzQuleDhLy9J1MEjJK0tVc_w9SJcndbMrxXlvyeX4CTxCykhc1RfNOIrx4mxZUpOQYRt37sNMzimEJRoSOvjSE3TIFl7HvSx5zN_I9IcyYBtJXjmtGmgnicj-mmvpqUS4tS1FfScGpst1AWfYJ1JJZok6B2IFyTI7Qh0exw0UUUA0TpNRa746gqgE3pSXZPNfEYJX6sbY7Q7uzzO6MNqBZGpsV8ZEyRC24qomVeQNuyw2oHv-92tn_Xr-C7V446LP-w_DpHHZamT_YhkWbUFsuVuoCEcVSXGau9AXeasI0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8JAEJ0oJEYPoqgRRd2DNy22tKXdIxEQRQmJkOCp7na3hiCloeWgv97dfqRI9GC8Nf3YtDs7nbeZeW8ALkVQNWwm68K4bGEmYrJim8IfXYs2iIhvXLUl3_mp3-iOjIexOV5h8cfV7llKMuE0SJUmP7oJmHezQnwTcVORrVjlhkVV8CYUDaltV4Bi8-6l186Fd20Tp2SZn5_8HpBylLmWGI3jTacEJHvTpMxkWltGtOZ-rok4_udT9mA3BaOomayefdjgfhlKWaMHlPp9GXZWVAsP4HWYyFm9o7jbZyhR9wciIRosuKwjQUMSTtHERyM_XAbyXxRyhlrzGRHnmowESfYfCbiMnvlMmHbiioO3WUqD8g9h1GkPb7tK2qhBcYWTRQrV6yolzLMsRjxiulaDUtXDNrO4YaquZKGYxPKwpN1qmDBN49jijBLMddPmmn4EBX_u82NAus0NlQjYRVzPINS1sYQojEmdeYNiXoGrzFpOkOhxOLnyspxKR0ylE0-lgytQzQzqpL4ZOgIxiVFVrFoVuM7sk1_-fbSTv91-AVuDVsd5vO_3TmG7HltYVzRchUK0WPIzAWYiep6u1y-Omuwq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal+Consistency+as+Pretext+Task+in+Unsupervised+Domain+Adaptation+for+Semantic+Segmentation&rft.jtitle=Journal+of+intelligent+%26+robotic+systems&rft.au=Barbosa%2C+Felipe&rft.au=Os%C3%B3rio%2C+Fernando&rft.date=2025-03-19&rft.pub=Springer+Netherlands&rft.eissn=1573-0409&rft.volume=111&rft.issue=1&rft_id=info:doi/10.1007%2Fs10846-025-02220-9&rft.externalDocID=10_1007_s10846_025_02220_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-0409&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-0409&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-0409&client=summon |