Multi-task model with attribute-specific heads for person re-identification
Person re-identification (ReID) has become an important task in digital surveillance for enhancing security, efficient monitoring, and enabling various applications in smart cities and public safety systems. Person ReID with attributes is a challenging task due to different camera views create signi...
Saved in:
Published in | Pattern analysis and applications : PAA Vol. 28; no. 1 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.03.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Person re-identification (ReID) has become an important task in digital surveillance for enhancing security, efficient monitoring, and enabling various applications in smart cities and public safety systems. Person ReID with attributes is a challenging task due to different camera views create significant difficulties in capturing each person’s unique identity and detailed attributes. In this work, we propose a multi-task model that not only performs unique person ReID but also simultaneously predicts attributes. Our model jointly utilizes a shared backbone network, which can be either ResNet50 or EfficientNet, along with generalized mean (GeM) pooling to achieve efficient feature extraction. It also applies attribute-specific heads to predict various characteristics such as gender, age, type of clothes, color, and alongside the ReID classification. This multi-task approach utilizes the shared features across tasks, gives comprehensive attribute predictions, and may further contribute to identification in surveillance scenarios. We evaluate our model on two commonly used publicly available datasets, Market1501 and DukeMTMC-reID, demonstrating how our approach can improve both in ReID accuracy and give reliable attribute predictions. These results reveal that our multi-task model can be competitive, providing a holistic solution for practical applications in surveillance where both identification and attributes are important. The approach has shown the potential of unifying ReID with attribute prediction to develop more robust and advanced surveillance systems. The code of this experiment is publicly accessible at
https://github.com/TripleTheGreatDali/ReIDMTMASH
. |
---|---|
AbstractList | Person re-identification (ReID) has become an important task in digital surveillance for enhancing security, efficient monitoring, and enabling various applications in smart cities and public safety systems. Person ReID with attributes is a challenging task due to different camera views create significant difficulties in capturing each person’s unique identity and detailed attributes. In this work, we propose a multi-task model that not only performs unique person ReID but also simultaneously predicts attributes. Our model jointly utilizes a shared backbone network, which can be either ResNet50 or EfficientNet, along with generalized mean (GeM) pooling to achieve efficient feature extraction. It also applies attribute-specific heads to predict various characteristics such as gender, age, type of clothes, color, and alongside the ReID classification. This multi-task approach utilizes the shared features across tasks, gives comprehensive attribute predictions, and may further contribute to identification in surveillance scenarios. We evaluate our model on two commonly used publicly available datasets, Market1501 and DukeMTMC-reID, demonstrating how our approach can improve both in ReID accuracy and give reliable attribute predictions. These results reveal that our multi-task model can be competitive, providing a holistic solution for practical applications in surveillance where both identification and attributes are important. The approach has shown the potential of unifying ReID with attribute prediction to develop more robust and advanced surveillance systems. The code of this experiment is publicly accessible at
https://github.com/TripleTheGreatDali/ReIDMTMASH
. Person re-identification (ReID) has become an important task in digital surveillance for enhancing security, efficient monitoring, and enabling various applications in smart cities and public safety systems. Person ReID with attributes is a challenging task due to different camera views create significant difficulties in capturing each person’s unique identity and detailed attributes. In this work, we propose a multi-task model that not only performs unique person ReID but also simultaneously predicts attributes. Our model jointly utilizes a shared backbone network, which can be either ResNet50 or EfficientNet, along with generalized mean (GeM) pooling to achieve efficient feature extraction. It also applies attribute-specific heads to predict various characteristics such as gender, age, type of clothes, color, and alongside the ReID classification. This multi-task approach utilizes the shared features across tasks, gives comprehensive attribute predictions, and may further contribute to identification in surveillance scenarios. We evaluate our model on two commonly used publicly available datasets, Market1501 and DukeMTMC-reID, demonstrating how our approach can improve both in ReID accuracy and give reliable attribute predictions. These results reveal that our multi-task model can be competitive, providing a holistic solution for practical applications in surveillance where both identification and attributes are important. The approach has shown the potential of unifying ReID with attribute prediction to develop more robust and advanced surveillance systems. The code of this experiment is publicly accessible at https://github.com/TripleTheGreatDali/ReIDMTMASH. |
ArticleNumber | 38 |
Author | Oyshee, Adiba An Nur Ahmed, Md Foysal |
Author_xml | – sequence: 1 givenname: Md Foysal surname: Ahmed fullname: Ahmed, Md Foysal email: foysal.dali.fd@hotmail.com organization: School of Computer Science and Technology, Southwest University of Science and Technology – sequence: 2 givenname: Adiba An Nur surname: Oyshee fullname: Oyshee, Adiba An Nur organization: Department of Computer Science and Engineering, Daffodil International University |
BookMark | eNp9kE9LxDAQxYOs4O7qF_AU8BydNG2aHmXxH654UfAW0jRxs3abmqSI396uFb15mTcw772B3wLNOt8ZhE4pnFOA8iKOM88JZAUBmmeUwAGa05wxUhbFy-x3z-kRWsS4BWCMZWKO7h-GNjmSVHzDO9-YFn-4tMEqpeDqIRkSe6OddRpvjGoitj7g3oToOxwMcY3p0v6qkvPdMTq0qo3m5EeX6Pn66ml1S9aPN3eryzXRGUAiikOuBFQUGs610ZQrXdZGK6XZqLVg1la6LjUTiue8gqqoGLWMidIKmwm2RGdTbx_8-2Bikls_hG58KRnlGeWCltXoyiaXDj7GYKzsg9up8CkpyD00OUGTIzT5DU3CGGJTKI7m7tWEv-p_Ul_v6nGB |
Cites_doi | 10.1007/978-3-030-01225-0_3 10.1109/TPAMI.2020.3024900 10.1007/s40747-023-01229-7 10.1109/ACCESS.2019.2914670 10.1016/j.patcog.2019.06.006 10.1109/ICCV.2017.405 10.1109/MIPR51284.2021.00077 10.1109/TBIOM.2022.3184525 10.1007/s00530-024-01269-0 10.1109/TCSVT.2023.3296680 10.1145/3343031.3350574 10.3390/math10193530 10.1109/TMM.2022.3174414 10.1109/CVPR42600.2020.01339 10.1007/s11760-023-02913-4 10.1109/ICCVW.2017.304 10.1016/j.neucom.2019.01.027 10.1109/WACV.2016.7477681 10.1109/ICCV.2015.133 10.1109/JSTSP.2023.3260627 10.1007/s11042-023-16286-w 10.48550/arXiv.1512.03385 10.1109/APSIPAASC47483.2019.9023340 10.1109/TIP.2016.2523340 10.1007/978-3-319-46466-4_41 10.1109/ACCESS.2019.2912844 10.1109/TPAMI.2018.2846566 10.1007/s44267-023-00025-8 10.1016/j.patcog.2021.108239 10.48550/arXiv.1711.08184 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. 2025 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. 2025 |
DBID | AAYXX CITATION |
DOI | 10.1007/s10044-025-01421-0 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1433-755X |
ExternalDocumentID | 10_1007_s10044_025_01421_0 |
GroupedDBID | -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 203 29O 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADHKG ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDZB AFGCZ AFLOW AFOHR AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9O PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~A9 AAYXX ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP ATHPR CITATION ABRTQ |
ID | FETCH-LOGICAL-c200t-a604a80910d66cec16ac7becaac37beb83ff9cb7c38a6469095931f3387f8f283 |
IEDL.DBID | U2A |
ISSN | 1433-7541 |
IngestDate | Fri Jul 25 22:05:49 EDT 2025 Tue Jul 01 01:15:19 EDT 2025 Thu Apr 24 03:40:04 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Digital surveillance Attribute head Person re-identification Multi-task learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c200t-a604a80910d66cec16ac7becaac37beb83ff9cb7c38a6469095931f3387f8f283 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3162168179 |
PQPubID | 2043691 |
ParticipantIDs | proquest_journals_3162168179 crossref_primary_10_1007_s10044_025_01421_0 springer_journals_10_1007_s10044_025_01421_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-03-01 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Pattern analysis and applications : PAA |
PublicationTitleAbbrev | Pattern Anal Applic |
PublicationYear | 2025 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | 1421_CR8 1421_CR9 Y Zhang (1421_CR16) 2019; 7 JK Kang (1421_CR13) 2019; 7 P Yan (1421_CR6) 2023; 1 1421_CR2 1421_CR12 1421_CR3 Z Sun (1421_CR1) 2024; 10 1421_CR14 1421_CR31 1421_CR19 SU Khan (1421_CR25) 2023; 17 T Si (1421_CR22) 2022; 25 C Ding (1421_CR24) 2020; 44 Z Gao (1421_CR5) 2023 1421_CR15 1421_CR17 HJ Mohammed (1421_CR20) 2022; 10 H Tu (1421_CR7) 2024; 18 Y Lin (1421_CR32) 2019 Z Wu (1421_CR4) 2024; 30 A Yadav (1421_CR10) 2024; 83 F Radenović (1421_CR28) 2018; 41 Y Lin (1421_CR30) 2019 G Wu (1421_CR21) 2022; 121 H Ling (1421_CR23) 2019; 347 1421_CR27 1421_CR26 1421_CR29 W Wang (1421_CR18) 2016; 25 Y Wu (1421_CR11) 2022; 5 |
References_xml | – ident: 1421_CR14 doi: 10.1007/978-3-030-01225-0_3 – volume: 44 start-page: 1474 issue: 3 year: 2020 ident: 1421_CR24 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2020.3024900 – volume: 10 start-page: 1733 issue: 2 year: 2024 ident: 1421_CR1 publication-title: Complex Intell Syst doi: 10.1007/s40747-023-01229-7 – volume: 7 start-page: 57972 year: 2019 ident: 1421_CR13 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2914670 – year: 2019 ident: 1421_CR32 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2019.06.006 – ident: 1421_CR31 doi: 10.1109/ICCV.2017.405 – ident: 1421_CR17 doi: 10.1109/MIPR51284.2021.00077 – volume: 5 start-page: 1 issue: 1 year: 2022 ident: 1421_CR11 publication-title: IEEE Trans Biom Behav Identity Sci doi: 10.1109/TBIOM.2022.3184525 – volume: 30 start-page: 70 issue: 2 year: 2024 ident: 1421_CR4 publication-title: Multimed Syst doi: 10.1007/s00530-024-01269-0 – year: 2023 ident: 1421_CR5 publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1109/TCSVT.2023.3296680 – ident: 1421_CR19 doi: 10.1145/3343031.3350574 – volume: 10 start-page: 3530 issue: 19 year: 2022 ident: 1421_CR20 publication-title: Mathematics doi: 10.3390/math10193530 – volume: 25 start-page: 4323 year: 2022 ident: 1421_CR22 publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2022.3174414 – ident: 1421_CR9 doi: 10.1109/CVPR42600.2020.01339 – volume: 18 start-page: 2367 issue: 3 year: 2024 ident: 1421_CR7 publication-title: Signal, Image Video Process doi: 10.1007/s11760-023-02913-4 – ident: 1421_CR27 – ident: 1421_CR2 doi: 10.1109/ICCVW.2017.304 – volume: 347 start-page: 109 year: 2019 ident: 1421_CR23 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.01.027 – ident: 1421_CR8 doi: 10.1109/WACV.2016.7477681 – year: 2019 ident: 1421_CR30 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2019.06.006 – ident: 1421_CR29 doi: 10.1109/ICCV.2015.133 – volume: 17 start-page: 575 issue: 3 year: 2023 ident: 1421_CR25 publication-title: IEEE J Sel Top Signal Process doi: 10.1109/JSTSP.2023.3260627 – volume: 83 start-page: 22005 issue: 8 year: 2024 ident: 1421_CR10 publication-title: Multimed Tools Appl doi: 10.1007/s11042-023-16286-w – ident: 1421_CR26 doi: 10.48550/arXiv.1512.03385 – ident: 1421_CR12 doi: 10.1109/APSIPAASC47483.2019.9023340 – volume: 25 start-page: 1465 issue: 3 year: 2016 ident: 1421_CR18 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2016.2523340 – ident: 1421_CR3 doi: 10.1007/978-3-319-46466-4_41 – volume: 7 start-page: 53585 year: 2019 ident: 1421_CR16 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2912844 – volume: 41 start-page: 1655 issue: 7 year: 2018 ident: 1421_CR28 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2018.2846566 – volume: 1 start-page: 24 issue: 1 year: 2023 ident: 1421_CR6 publication-title: Vis Intell doi: 10.1007/s44267-023-00025-8 – volume: 121 year: 2022 ident: 1421_CR21 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2021.108239 – ident: 1421_CR15 doi: 10.48550/arXiv.1711.08184 |
SSID | ssj0033328 |
Score | 2.3787081 |
Snippet | Person re-identification (ReID) has become an important task in digital surveillance for enhancing security, efficient monitoring, and enabling various... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Computer Science Original Article Pattern Recognition Public safety Surveillance Surveillance systems Uniqueness |
Title | Multi-task model with attribute-specific heads for person re-identification |
URI | https://link.springer.com/article/10.1007/s10044-025-01421-0 https://www.proquest.com/docview/3162168179 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8MwDLVgu3DhGzEYUw7cIFLbtGl6nNDGxAQnJo1TlSaNhJDGtJb_j5MmGiA4cKqUVjnYjv3c2M8A14hQK0uyQo22pNpRoqjEyEQVL2KT60wpx9P9-MRni_RhmS19U1gTqt3DlaTz1F-a3aI0pXb8KsL6BJPgXehnNndHK14k4-B_GWNuoioCAUbzLI19q8zve3wPR1uM-eNa1EWb6SHse5hIxp1ej2CnXh3DgYeMxB_IBpfCVIawdgJz11NLW9m8ETfnhth_rUS23WyrmtrmSlsgRNAP64YgaiVrh7vJpqav2pcPOY2dwmI6eb6bUT8ygSo095ZKHqVSWAygOVe1irlUOapJSsXwWQlmTKGqXDEhuc2MLS9xbDBPzY0wCDXOoLd6X9XnQDIutImkErnmqTC6wHCXSZZybSnnCjaAmyC5ct0xY5RbDmQr5xLlXDo5l9EAhkG4pT8lTclinsRcoE8YwG0Q-Pb137td_O_zS9hLnM5t6dgQeu3mo75CLNFWI-iP71_mk5EzoU_2RMBD |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BGWDhG1Eo4IENLCVx4jgjQlSFfkyt1C1y7FhCSKVqwv_n7NoqIBiYIjmRh3f23XN89w7gFhlqZUVWqNFWVDtKFJUYmajiRWxynSnldLrHEz6YpS_zbO6LwpqQ7R6uJJ2n_lLsFqUpte1XkdYneAjehh0kA8Imcs2Sh-B_GWOuoyoSAUbzLI19qczvc3wPRxuO-eNa1EWb_iHse5pIHtZ2PYKtenEMB54yEr8hGxwKXRnC2AkMXU0tbWXzRlyfG2L_tRLZrntb1dQWV9oEIYJ-WDcEWStZOt5NVjV91T59yFnsFGb9p-njgPqWCVThcm-p5FEqheUAmnNVq5hLlaOZpFQMn5VgxhSqyhUTktuTsdUljg2eU3MjDFKNM-gs3hf1OZCMC20iqUSueSqMLjDcZZKlXFvJuYJ14S4gVy7XyhjlRgPZ4lwizqXDuYy60Avgln6XNCWLeRJzgT6hC_cB8M3rv2e7-N_nN7A7mI5H5eh5MryEvcTZ36aR9aDTrj7qK-QVbXXtltEnIGPBog |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BkRAL34jy6YENrCZx4jhjBVSFQsVApW6Wa8cSQgpVE_4_ZydRC4KBKZITeXh3Pj_Hd-8ArpChzpzICrXGiWoHkaYKdyaqeRba1CRae53u5zEfTuLHaTJdqeL32e7tlWRd0-BUmoqqNze2t1L4FsQxda1YkeJHeCBehw0Mx6Hz60nUb2MxY8x3V0VSwGiaxGFTNvP7HN-3piXf_HFF6neewS5sN5SR9Gsb78FaXuzDTkMfSbM4SxxqOzS0Ywcw8vW1tFLlO_E9b4j770pUVfe5yqkrtHTJQgRjsikJMlgy9xycLHL6ZppUIm-9Q5gM7l9vh7Rpn0A1un5FFQ9iJRwfMJzrXIdc6RRNppRm-JwJZm2mZ6lmQnF3SnYaxaHFM2tqhUXacQSd4qPIj4EkXBgbKC1Sw2NhTYZYJ4rF3Dj5uYx14bpFTs5rlQy51EN2OEvEWXqcZdCFsxZc2ayYUrKQRyEXGB-6cNMCvnz992wn__v8EjZf7gby6WE8OoWtyJvfZZSdQadafObnSDGq2YX3oi-tasXe |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-task+model+with+attribute-specific+heads+for+person+re-identification&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Ahmed%2C+Md+Foysal&rft.au=Oyshee%2C+Adiba+An+Nur&rft.date=2025-03-01&rft.pub=Springer+London&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=28&rft.issue=1&rft_id=info:doi/10.1007%2Fs10044-025-01421-0&rft.externalDocID=10_1007_s10044_025_01421_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon |