Multi-task model with attribute-specific heads for person re-identification

Person re-identification (ReID) has become an important task in digital surveillance for enhancing security, efficient monitoring, and enabling various applications in smart cities and public safety systems. Person ReID with attributes is a challenging task due to different camera views create signi...

Full description

Saved in:
Bibliographic Details
Published inPattern analysis and applications : PAA Vol. 28; no. 1
Main Authors Ahmed, Md Foysal, Oyshee, Adiba An Nur
Format Journal Article
LanguageEnglish
Published London Springer London 01.03.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Person re-identification (ReID) has become an important task in digital surveillance for enhancing security, efficient monitoring, and enabling various applications in smart cities and public safety systems. Person ReID with attributes is a challenging task due to different camera views create significant difficulties in capturing each person’s unique identity and detailed attributes. In this work, we propose a multi-task model that not only performs unique person ReID but also simultaneously predicts attributes. Our model jointly utilizes a shared backbone network, which can be either ResNet50 or EfficientNet, along with generalized mean (GeM) pooling to achieve efficient feature extraction. It also applies attribute-specific heads to predict various characteristics such as gender, age, type of clothes, color, and alongside the ReID classification. This multi-task approach utilizes the shared features across tasks, gives comprehensive attribute predictions, and may further contribute to identification in surveillance scenarios. We evaluate our model on two commonly used publicly available datasets, Market1501 and DukeMTMC-reID, demonstrating how our approach can improve both in ReID accuracy and give reliable attribute predictions. These results reveal that our multi-task model can be competitive, providing a holistic solution for practical applications in surveillance where both identification and attributes are important. The approach has shown the potential of unifying ReID with attribute prediction to develop more robust and advanced surveillance systems. The code of this experiment is publicly accessible at https://github.com/TripleTheGreatDali/ReIDMTMASH .
AbstractList Person re-identification (ReID) has become an important task in digital surveillance for enhancing security, efficient monitoring, and enabling various applications in smart cities and public safety systems. Person ReID with attributes is a challenging task due to different camera views create significant difficulties in capturing each person’s unique identity and detailed attributes. In this work, we propose a multi-task model that not only performs unique person ReID but also simultaneously predicts attributes. Our model jointly utilizes a shared backbone network, which can be either ResNet50 or EfficientNet, along with generalized mean (GeM) pooling to achieve efficient feature extraction. It also applies attribute-specific heads to predict various characteristics such as gender, age, type of clothes, color, and alongside the ReID classification. This multi-task approach utilizes the shared features across tasks, gives comprehensive attribute predictions, and may further contribute to identification in surveillance scenarios. We evaluate our model on two commonly used publicly available datasets, Market1501 and DukeMTMC-reID, demonstrating how our approach can improve both in ReID accuracy and give reliable attribute predictions. These results reveal that our multi-task model can be competitive, providing a holistic solution for practical applications in surveillance where both identification and attributes are important. The approach has shown the potential of unifying ReID with attribute prediction to develop more robust and advanced surveillance systems. The code of this experiment is publicly accessible at https://github.com/TripleTheGreatDali/ReIDMTMASH .
Person re-identification (ReID) has become an important task in digital surveillance for enhancing security, efficient monitoring, and enabling various applications in smart cities and public safety systems. Person ReID with attributes is a challenging task due to different camera views create significant difficulties in capturing each person’s unique identity and detailed attributes. In this work, we propose a multi-task model that not only performs unique person ReID but also simultaneously predicts attributes. Our model jointly utilizes a shared backbone network, which can be either ResNet50 or EfficientNet, along with generalized mean (GeM) pooling to achieve efficient feature extraction. It also applies attribute-specific heads to predict various characteristics such as gender, age, type of clothes, color, and alongside the ReID classification. This multi-task approach utilizes the shared features across tasks, gives comprehensive attribute predictions, and may further contribute to identification in surveillance scenarios. We evaluate our model on two commonly used publicly available datasets, Market1501 and DukeMTMC-reID, demonstrating how our approach can improve both in ReID accuracy and give reliable attribute predictions. These results reveal that our multi-task model can be competitive, providing a holistic solution for practical applications in surveillance where both identification and attributes are important. The approach has shown the potential of unifying ReID with attribute prediction to develop more robust and advanced surveillance systems. The code of this experiment is publicly accessible at https://github.com/TripleTheGreatDali/ReIDMTMASH.
ArticleNumber 38
Author Oyshee, Adiba An Nur
Ahmed, Md Foysal
Author_xml – sequence: 1
  givenname: Md Foysal
  surname: Ahmed
  fullname: Ahmed, Md Foysal
  email: foysal.dali.fd@hotmail.com
  organization: School of Computer Science and Technology, Southwest University of Science and Technology
– sequence: 2
  givenname: Adiba An Nur
  surname: Oyshee
  fullname: Oyshee, Adiba An Nur
  organization: Department of Computer Science and Engineering, Daffodil International University
BookMark eNp9kE9LxDAQxYOs4O7qF_AU8BydNG2aHmXxH654UfAW0jRxs3abmqSI396uFb15mTcw772B3wLNOt8ZhE4pnFOA8iKOM88JZAUBmmeUwAGa05wxUhbFy-x3z-kRWsS4BWCMZWKO7h-GNjmSVHzDO9-YFn-4tMEqpeDqIRkSe6OddRpvjGoitj7g3oToOxwMcY3p0v6qkvPdMTq0qo3m5EeX6Pn66ml1S9aPN3eryzXRGUAiikOuBFQUGs610ZQrXdZGK6XZqLVg1la6LjUTiue8gqqoGLWMidIKmwm2RGdTbx_8-2Bikls_hG58KRnlGeWCltXoyiaXDj7GYKzsg9up8CkpyD00OUGTIzT5DU3CGGJTKI7m7tWEv-p_Ul_v6nGB
Cites_doi 10.1007/978-3-030-01225-0_3
10.1109/TPAMI.2020.3024900
10.1007/s40747-023-01229-7
10.1109/ACCESS.2019.2914670
10.1016/j.patcog.2019.06.006
10.1109/ICCV.2017.405
10.1109/MIPR51284.2021.00077
10.1109/TBIOM.2022.3184525
10.1007/s00530-024-01269-0
10.1109/TCSVT.2023.3296680
10.1145/3343031.3350574
10.3390/math10193530
10.1109/TMM.2022.3174414
10.1109/CVPR42600.2020.01339
10.1007/s11760-023-02913-4
10.1109/ICCVW.2017.304
10.1016/j.neucom.2019.01.027
10.1109/WACV.2016.7477681
10.1109/ICCV.2015.133
10.1109/JSTSP.2023.3260627
10.1007/s11042-023-16286-w
10.48550/arXiv.1512.03385
10.1109/APSIPAASC47483.2019.9023340
10.1109/TIP.2016.2523340
10.1007/978-3-319-46466-4_41
10.1109/ACCESS.2019.2912844
10.1109/TPAMI.2018.2846566
10.1007/s44267-023-00025-8
10.1016/j.patcog.2021.108239
10.48550/arXiv.1711.08184
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. 2025
DBID AAYXX
CITATION
DOI 10.1007/s10044-025-01421-0
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1433-755X
ExternalDocumentID 10_1007_s10044_025_01421_0
GroupedDBID -Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
203
29O
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADHKG
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFGCZ
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9O
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~A9
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
ATHPR
CITATION
ABRTQ
ID FETCH-LOGICAL-c200t-a604a80910d66cec16ac7becaac37beb83ff9cb7c38a6469095931f3387f8f283
IEDL.DBID U2A
ISSN 1433-7541
IngestDate Fri Jul 25 22:05:49 EDT 2025
Tue Jul 01 01:15:19 EDT 2025
Thu Apr 24 03:40:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Digital surveillance
Attribute head
Person re-identification
Multi-task learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c200t-a604a80910d66cec16ac7becaac37beb83ff9cb7c38a6469095931f3387f8f283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3162168179
PQPubID 2043691
ParticipantIDs proquest_journals_3162168179
crossref_primary_10_1007_s10044_025_01421_0
springer_journals_10_1007_s10044_025_01421_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Pattern analysis and applications : PAA
PublicationTitleAbbrev Pattern Anal Applic
PublicationYear 2025
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References 1421_CR8
1421_CR9
Y Zhang (1421_CR16) 2019; 7
JK Kang (1421_CR13) 2019; 7
P Yan (1421_CR6) 2023; 1
1421_CR2
1421_CR12
1421_CR3
Z Sun (1421_CR1) 2024; 10
1421_CR14
1421_CR31
1421_CR19
SU Khan (1421_CR25) 2023; 17
T Si (1421_CR22) 2022; 25
C Ding (1421_CR24) 2020; 44
Z Gao (1421_CR5) 2023
1421_CR15
1421_CR17
HJ Mohammed (1421_CR20) 2022; 10
H Tu (1421_CR7) 2024; 18
Y Lin (1421_CR32) 2019
Z Wu (1421_CR4) 2024; 30
A Yadav (1421_CR10) 2024; 83
F Radenović (1421_CR28) 2018; 41
Y Lin (1421_CR30) 2019
G Wu (1421_CR21) 2022; 121
H Ling (1421_CR23) 2019; 347
1421_CR27
1421_CR26
1421_CR29
W Wang (1421_CR18) 2016; 25
Y Wu (1421_CR11) 2022; 5
References_xml – ident: 1421_CR14
  doi: 10.1007/978-3-030-01225-0_3
– volume: 44
  start-page: 1474
  issue: 3
  year: 2020
  ident: 1421_CR24
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2020.3024900
– volume: 10
  start-page: 1733
  issue: 2
  year: 2024
  ident: 1421_CR1
  publication-title: Complex Intell Syst
  doi: 10.1007/s40747-023-01229-7
– volume: 7
  start-page: 57972
  year: 2019
  ident: 1421_CR13
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2914670
– year: 2019
  ident: 1421_CR32
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2019.06.006
– ident: 1421_CR31
  doi: 10.1109/ICCV.2017.405
– ident: 1421_CR17
  doi: 10.1109/MIPR51284.2021.00077
– volume: 5
  start-page: 1
  issue: 1
  year: 2022
  ident: 1421_CR11
  publication-title: IEEE Trans Biom Behav Identity Sci
  doi: 10.1109/TBIOM.2022.3184525
– volume: 30
  start-page: 70
  issue: 2
  year: 2024
  ident: 1421_CR4
  publication-title: Multimed Syst
  doi: 10.1007/s00530-024-01269-0
– year: 2023
  ident: 1421_CR5
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2023.3296680
– ident: 1421_CR19
  doi: 10.1145/3343031.3350574
– volume: 10
  start-page: 3530
  issue: 19
  year: 2022
  ident: 1421_CR20
  publication-title: Mathematics
  doi: 10.3390/math10193530
– volume: 25
  start-page: 4323
  year: 2022
  ident: 1421_CR22
  publication-title: IEEE Trans Multimed
  doi: 10.1109/TMM.2022.3174414
– ident: 1421_CR9
  doi: 10.1109/CVPR42600.2020.01339
– volume: 18
  start-page: 2367
  issue: 3
  year: 2024
  ident: 1421_CR7
  publication-title: Signal, Image Video Process
  doi: 10.1007/s11760-023-02913-4
– ident: 1421_CR27
– ident: 1421_CR2
  doi: 10.1109/ICCVW.2017.304
– volume: 347
  start-page: 109
  year: 2019
  ident: 1421_CR23
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.01.027
– ident: 1421_CR8
  doi: 10.1109/WACV.2016.7477681
– year: 2019
  ident: 1421_CR30
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2019.06.006
– ident: 1421_CR29
  doi: 10.1109/ICCV.2015.133
– volume: 17
  start-page: 575
  issue: 3
  year: 2023
  ident: 1421_CR25
  publication-title: IEEE J Sel Top Signal Process
  doi: 10.1109/JSTSP.2023.3260627
– volume: 83
  start-page: 22005
  issue: 8
  year: 2024
  ident: 1421_CR10
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-023-16286-w
– ident: 1421_CR26
  doi: 10.48550/arXiv.1512.03385
– ident: 1421_CR12
  doi: 10.1109/APSIPAASC47483.2019.9023340
– volume: 25
  start-page: 1465
  issue: 3
  year: 2016
  ident: 1421_CR18
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2016.2523340
– ident: 1421_CR3
  doi: 10.1007/978-3-319-46466-4_41
– volume: 7
  start-page: 53585
  year: 2019
  ident: 1421_CR16
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2912844
– volume: 41
  start-page: 1655
  issue: 7
  year: 2018
  ident: 1421_CR28
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2018.2846566
– volume: 1
  start-page: 24
  issue: 1
  year: 2023
  ident: 1421_CR6
  publication-title: Vis Intell
  doi: 10.1007/s44267-023-00025-8
– volume: 121
  year: 2022
  ident: 1421_CR21
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2021.108239
– ident: 1421_CR15
  doi: 10.48550/arXiv.1711.08184
SSID ssj0033328
Score 2.3787081
Snippet Person re-identification (ReID) has become an important task in digital surveillance for enhancing security, efficient monitoring, and enabling various...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Computer Science
Original Article
Pattern Recognition
Public safety
Surveillance
Surveillance systems
Uniqueness
Title Multi-task model with attribute-specific heads for person re-identification
URI https://link.springer.com/article/10.1007/s10044-025-01421-0
https://www.proquest.com/docview/3162168179
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8MwDLVgu3DhGzEYUw7cIFLbtGl6nNDGxAQnJo1TlSaNhJDGtJb_j5MmGiA4cKqUVjnYjv3c2M8A14hQK0uyQo22pNpRoqjEyEQVL2KT60wpx9P9-MRni_RhmS19U1gTqt3DlaTz1F-a3aI0pXb8KsL6BJPgXehnNndHK14k4-B_GWNuoioCAUbzLI19q8zve3wPR1uM-eNa1EWb6SHse5hIxp1ej2CnXh3DgYeMxB_IBpfCVIawdgJz11NLW9m8ETfnhth_rUS23WyrmtrmSlsgRNAP64YgaiVrh7vJpqav2pcPOY2dwmI6eb6bUT8ygSo095ZKHqVSWAygOVe1irlUOapJSsXwWQlmTKGqXDEhuc2MLS9xbDBPzY0wCDXOoLd6X9XnQDIutImkErnmqTC6wHCXSZZybSnnCjaAmyC5ct0xY5RbDmQr5xLlXDo5l9EAhkG4pT8lTclinsRcoE8YwG0Q-Pb137td_O_zS9hLnM5t6dgQeu3mo75CLNFWI-iP71_mk5EzoU_2RMBD
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BGWDhG1Eo4IENLCVx4jgjQlSFfkyt1C1y7FhCSKVqwv_n7NoqIBiYIjmRh3f23XN89w7gFhlqZUVWqNFWVDtKFJUYmajiRWxynSnldLrHEz6YpS_zbO6LwpqQ7R6uJJ2n_lLsFqUpte1XkdYneAjehh0kA8Imcs2Sh-B_GWOuoyoSAUbzLI19qczvc3wPRxuO-eNa1EWb_iHse5pIHtZ2PYKtenEMB54yEr8hGxwKXRnC2AkMXU0tbWXzRlyfG2L_tRLZrntb1dQWV9oEIYJ-WDcEWStZOt5NVjV91T59yFnsFGb9p-njgPqWCVThcm-p5FEqheUAmnNVq5hLlaOZpFQMn5VgxhSqyhUTktuTsdUljg2eU3MjDFKNM-gs3hf1OZCMC20iqUSueSqMLjDcZZKlXFvJuYJ14S4gVy7XyhjlRgPZ4lwizqXDuYy60Avgln6XNCWLeRJzgT6hC_cB8M3rv2e7-N_nN7A7mI5H5eh5MryEvcTZ36aR9aDTrj7qK-QVbXXtltEnIGPBog
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BkRAL34jy6YENrCZx4jhjBVSFQsVApW6Wa8cSQgpVE_4_ZydRC4KBKZITeXh3Pj_Hd-8ArpChzpzICrXGiWoHkaYKdyaqeRba1CRae53u5zEfTuLHaTJdqeL32e7tlWRd0-BUmoqqNze2t1L4FsQxda1YkeJHeCBehw0Mx6Hz60nUb2MxY8x3V0VSwGiaxGFTNvP7HN-3piXf_HFF6neewS5sN5SR9Gsb78FaXuzDTkMfSbM4SxxqOzS0Ywcw8vW1tFLlO_E9b4j770pUVfe5yqkrtHTJQgRjsikJMlgy9xycLHL6ZppUIm-9Q5gM7l9vh7Rpn0A1un5FFQ9iJRwfMJzrXIdc6RRNppRm-JwJZm2mZ6lmQnF3SnYaxaHFM2tqhUXacQSd4qPIj4EkXBgbKC1Sw2NhTYZYJ4rF3Dj5uYx14bpFTs5rlQy51EN2OEvEWXqcZdCFsxZc2ayYUrKQRyEXGB-6cNMCvnz992wn__v8EjZf7gby6WE8OoWtyJvfZZSdQadafObnSDGq2YX3oi-tasXe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-task+model+with+attribute-specific+heads+for+person+re-identification&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Ahmed%2C+Md+Foysal&rft.au=Oyshee%2C+Adiba+An+Nur&rft.date=2025-03-01&rft.pub=Springer+London&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=28&rft.issue=1&rft_id=info:doi/10.1007%2Fs10044-025-01421-0&rft.externalDocID=10_1007_s10044_025_01421_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon