DDNet: a hybrid network based on deep adaptive multi-head attention and dynamic graph convolution for EEG emotion recognition

Emotion recognition plays a crucial role in cognitive science and human-computer interaction. Existing techniques tend to ignore the significant differences between different subjects, resulting in limited accuracy and generalization ability. In addition, existing methods suffer from difficulties in...

Full description

Saved in:
Bibliographic Details
Published inSignal, image and video processing Vol. 19; no. 4
Main Authors Xu, Bingyue, Zhang, Xin, Zhang, Xiu, Sun, Baiwei, Wang, Yujie
Format Journal Article
LanguageEnglish
Published London Springer London 01.04.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1863-1703
1863-1711
DOI10.1007/s11760-025-03876-4

Cover

Loading…
Abstract Emotion recognition plays a crucial role in cognitive science and human-computer interaction. Existing techniques tend to ignore the significant differences between different subjects, resulting in limited accuracy and generalization ability. In addition, existing methods suffer from difficulties in capturing the complex relationships among the channels of electroencephalography signals. A hybrid network is proposed to overcome the limitations. The proposed network is comprised of a deep adaptive multi-head attention (DAM) branch and a dynamic graph convolution (DGC) branch. The DAM branch uses residual convolution and adaptive multi-head attention mechanism. It can focus on multi-dimensional information from different representational subspaces at different locations. The DGC branch uses a dynamic graph convolutional neural network that learns topological features among the channels. The synergistic effect of these two branches enhances the model’s adaptability to subject differences. The extraction of local features and the understanding of global patterns are also optimized in the proposed network. Subject independent experiments were conducted on SEED and SEED-IV datasets. The average accuracy of SEED was 92.63% and the average F1-score was 92.43%. The average accuracy of SEED-IV was 85.03%, and the average F1-score was 85.01%. The results show that the proposed network has significant advantages in cross-subject emotion recognition, and can improve the accuracy and generalization ability in emotion recognition tasks.
AbstractList Emotion recognition plays a crucial role in cognitive science and human-computer interaction. Existing techniques tend to ignore the significant differences between different subjects, resulting in limited accuracy and generalization ability. In addition, existing methods suffer from difficulties in capturing the complex relationships among the channels of electroencephalography signals. A hybrid network is proposed to overcome the limitations. The proposed network is comprised of a deep adaptive multi-head attention (DAM) branch and a dynamic graph convolution (DGC) branch. The DAM branch uses residual convolution and adaptive multi-head attention mechanism. It can focus on multi-dimensional information from different representational subspaces at different locations. The DGC branch uses a dynamic graph convolutional neural network that learns topological features among the channels. The synergistic effect of these two branches enhances the model’s adaptability to subject differences. The extraction of local features and the understanding of global patterns are also optimized in the proposed network. Subject independent experiments were conducted on SEED and SEED-IV datasets. The average accuracy of SEED was 92.63% and the average F1-score was 92.43%. The average accuracy of SEED-IV was 85.03%, and the average F1-score was 85.01%. The results show that the proposed network has significant advantages in cross-subject emotion recognition, and can improve the accuracy and generalization ability in emotion recognition tasks.
ArticleNumber 293
Author Zhang, Xin
Sun, Baiwei
Zhang, Xiu
Wang, Yujie
Xu, Bingyue
Author_xml – sequence: 1
  givenname: Bingyue
  surname: Xu
  fullname: Xu, Bingyue
  organization: Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, Tianjin Normal University
– sequence: 2
  givenname: Xin
  surname: Zhang
  fullname: Zhang, Xin
  email: ecemark@tjnu.edu.cn
  organization: College of Artificial Intelligence, Tianjin Normal University
– sequence: 3
  givenname: Xiu
  surname: Zhang
  fullname: Zhang, Xiu
  organization: College of Electronic and Communication Engineering, Tianjin Normal University
– sequence: 4
  givenname: Baiwei
  surname: Sun
  fullname: Sun, Baiwei
  organization: Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, Tianjin Normal University
– sequence: 5
  givenname: Yujie
  surname: Wang
  fullname: Wang, Yujie
  organization: Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, Tianjin Normal University
BookMark eNp9UE1PAjEQbYwmIvIHPDXxvNqP3bZ4M4BoQvSi56ZsB1hk27XtYjj4313A6M25zJu8j0neBTp13gFCV5TcUELkbaRUCpIRVmSEKymy_AT1qBI8o5LS019M-DkaxLgm3XAmlVA99DUeP0O6wwavdvNQWewgffrwjucmgsXeYQvQYGNNk6ot4LrdpCpbgbHYpAQuVZ3EOIvtzpm6KvEymGaFS--2ftMe2IUPeDKZYqj94Q5Q-qWr9vgSnS3MJsLgZ_fR28PkdfSYzV6mT6P7WVYyQlKmCjXkVEgFBePMcFKUQuZWloUoZMGkoYIxBkO6UB1FYWhEbrmcK6OsoRx4H10fc5vgP1qISa99G1z3Uu9zKSU54Z2KHVVl8DEGWOgmVLUJO02J3jetj03rrml9aFrnnYkfTbETuyWEv-h_XN-i84JF
Cites_doi 10.1109/TAFFC.2017.2712143
10.1109/TCYB.2018.2797176
10.1016/j.ins.2022.01.013
10.1109/ACCESS.2019.2921451
10.1007/s11760-022-02399-6
10.1109/TAMD.2015.2431497
10.1109/BIBM58861.2023.10385711
10.1109/TAFFC.2017.2714671
10.1109/TAFFC.2023.3288118
10.1109/TAFFC.2022.3170428
10.1007/s11760-024-03178-1
10.1007/s11760-023-02965-6
10.1109/RCAR.2016.7784015
10.1109/ACCESS.2024.3384303
10.1109/TII.2022.3170422
10.1109/TNNLS.2022.3225855
10.1109/TNSRE.2024.3355750
10.1016/j.bspc.2023.105875
10.3389/fnins.2021.778488
10.1007/s10044-019-00860-w
10.1109/TAFFC.2020.2994159
10.1007/s11571-024-10127-8
10.1109/TAFFC.2018.2885474
10.1007/s11760-023-02920-5
10.1016/j.inffus.2018.09.008
10.1109/TNSRE.2022.3173724
10.1109/TAFFC.2018.2817622
10.1007/s11760-022-02447-1
10.1007/s11571-022-09890-3
10.1109/ACCESS.2023.3270317
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. 2025
DBID AAYXX
CITATION
DOI 10.1007/s11760-025-03876-4
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1863-1711
ExternalDocumentID 10_1007_s11760_025_03876_4
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62371341; 62371341
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -Y2
.VR
06D
0R~
123
1N0
203
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
875
8TC
95-
95.
95~
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDBE
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYFIA
AYJHY
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P9O
PF0
PT4
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
YLTOR
Z45
ZMTXR
~A9
AAYXX
ABBRH
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHWEU
AIXLP
ATHPR
CITATION
ABRTQ
ID FETCH-LOGICAL-c200t-858931678e5232a305c674d7c5657527a16222e91f805c1e9a64d37b8a8da13e3
IEDL.DBID U2A
ISSN 1863-1703
IngestDate Fri Jul 25 21:08:41 EDT 2025
Tue Jul 01 05:16:31 EDT 2025
Tue Apr 01 01:16:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Deep learning
Emotion recognition
EEG
Graph neural network
Multi-head attention
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c200t-858931678e5232a305c674d7c5657527a16222e91f805c1e9a64d37b8a8da13e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3167110403
PQPubID 2044169
ParticipantIDs proquest_journals_3167110403
crossref_primary_10_1007_s11760_025_03876_4
springer_journals_10_1007_s11760_025_03876_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Signal, image and video processing
PublicationTitleAbbrev SIViP
PublicationYear 2025
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References M Li (3876_CR12) 2022; 17
R Zhou (3876_CR30) 2024; 15
Y Li (3876_CR29) 2021; 12
MS Hossain (3876_CR3) 2019; 49
T Song (3876_CR16) 2020; 11
H Zeng (3876_CR18) 2022; 71
D Bian (3876_CR10) 2024; 18
3876_CR23
3876_CR20
L Shen (3876_CR13) 2022; 30
3876_CR6
SM Alarcão (3876_CR4) 2019; 10
3876_CR7
3876_CR8
3876_CR24
W Guo (3876_CR33) 2024; 283
F Wu (3876_CR26) 2022; 591
C Li (3876_CR22) 2023; 19
P Zhong (3876_CR17) 2022; 13
D Klepl (3876_CR14) 2024; 32
S Bagherzadeh (3876_CR32) 2024; 90
W-L Zheng (3876_CR27) 2015; 7
W-L Zheng (3876_CR28) 2019; 49
H Abbasi (3876_CR5) 2023; 18
T Li (3876_CR9) 2023; 11
S Bagherzadeh (3876_CR19) 2024; 12
M Wahdow (3876_CR1) 2022; 17
P Liu (3876_CR11) 2019; 7
H Wang (3876_CR25) 2021; 70
W-L Zheng (3876_CR34) 2019; 10
3876_CR15
S Hwang (3876_CR21) 2019; 23
Y Zhang (3876_CR2) 2022; 17
Y Li (3876_CR31) 2023; 14
References_xml – volume: 10
  start-page: 417
  year: 2019
  ident: 3876_CR34
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2017.2712143
– volume: 49
  start-page: 1110
  year: 2019
  ident: 3876_CR28
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2797176
– volume: 591
  start-page: 142
  year: 2022
  ident: 3876_CR26
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2022.01.013
– volume: 7
  start-page: 74973
  year: 2019
  ident: 3876_CR11
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2921451
– volume: 17
  start-page: 1883
  year: 2022
  ident: 3876_CR1
  publication-title: Signal Image Video Process.
  doi: 10.1007/s11760-022-02399-6
– volume: 7
  start-page: 162
  year: 2015
  ident: 3876_CR27
  publication-title: IEEE Trans. Auton. Mental Dev.
  doi: 10.1109/TAMD.2015.2431497
– ident: 3876_CR23
  doi: 10.1109/BIBM58861.2023.10385711
– volume: 10
  start-page: 374
  year: 2019
  ident: 3876_CR4
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2017.2714671
– volume: 15
  start-page: 657
  year: 2024
  ident: 3876_CR30
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2023.3288118
– volume: 14
  start-page: 2512
  year: 2023
  ident: 3876_CR31
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2022.3170428
– ident: 3876_CR7
  doi: 10.1007/s11760-024-03178-1
– ident: 3876_CR20
– volume: 18
  start-page: 2991
  year: 2024
  ident: 3876_CR10
  publication-title: Signal Image Video Process
  doi: 10.1007/s11760-023-02965-6
– ident: 3876_CR6
  doi: 10.1109/RCAR.2016.7784015
– volume: 12
  start-page: 50949
  year: 2024
  ident: 3876_CR19
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3384303
– volume: 19
  start-page: 6016
  year: 2023
  ident: 3876_CR22
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2022.3170422
– ident: 3876_CR15
  doi: 10.1109/TNNLS.2022.3225855
– volume: 32
  start-page: 493
  year: 2024
  ident: 3876_CR14
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2024.3355750
– volume: 90
  year: 2024
  ident: 3876_CR32
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2023.105875
– ident: 3876_CR8
  doi: 10.3389/fnins.2021.778488
– volume: 23
  start-page: 1323
  year: 2019
  ident: 3876_CR21
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-019-00860-w
– volume: 13
  start-page: 1290
  year: 2022
  ident: 3876_CR17
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2020.2994159
– volume: 71
  start-page: 1
  year: 2022
  ident: 3876_CR18
  publication-title: IEEE Trans. Instrum. Meas.
– ident: 3876_CR24
  doi: 10.1007/s11571-024-10127-8
– volume: 12
  start-page: 494
  year: 2021
  ident: 3876_CR29
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2018.2885474
– volume: 18
  start-page: 2453
  year: 2023
  ident: 3876_CR5
  publication-title: Signal Image Video Process.
  doi: 10.1007/s11760-023-02920-5
– volume: 49
  start-page: 69
  year: 2019
  ident: 3876_CR3
  publication-title: Inf. Fus.
  doi: 10.1016/j.inffus.2018.09.008
– volume: 30
  start-page: 1191
  year: 2022
  ident: 3876_CR13
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2022.3173724
– volume: 11
  start-page: 532
  year: 2020
  ident: 3876_CR16
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2018.2817622
– volume: 17
  start-page: 2305
  year: 2022
  ident: 3876_CR2
  publication-title: Signal Image Video Process.
  doi: 10.1007/s11760-022-02447-1
– volume: 70
  start-page: 1
  year: 2021
  ident: 3876_CR25
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 17
  start-page: 1271
  year: 2022
  ident: 3876_CR12
  publication-title: Cogn. Neurodyn.
  doi: 10.1007/s11571-022-09890-3
– volume: 283
  year: 2024
  ident: 3876_CR33
  publication-title: Knowl. Based Syst.
– volume: 11
  start-page: 41859
  year: 2023
  ident: 3876_CR9
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3270317
SSID ssj0000327868
Score 2.3362365
Snippet Emotion recognition plays a crucial role in cognitive science and human-computer interaction. Existing techniques tend to ignore the significant differences...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Accuracy
Artificial neural networks
Attention
Channels
Computer Imaging
Computer Science
Emotion recognition
Emotions
Graph neural networks
Image Processing and Computer Vision
Multidimensional methods
Multimedia Information Systems
Original Paper
Pattern Recognition and Graphics
Signal,Image and Speech Processing
Subspaces
Synergistic effect
Vision
Title DDNet: a hybrid network based on deep adaptive multi-head attention and dynamic graph convolution for EEG emotion recognition
URI https://link.springer.com/article/10.1007/s11760-025-03876-4
https://www.proquest.com/docview/3167110403
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07b9swED7ksSRDm6QJ6sYNbujWErD4kOhsdvwIUsBTDbiTQIk0MslG4wwZ8t9zR0l2GyRDJwkgQQi6N--7O4BvZMVlqUoldKGN0MbwNEDpRCBVqAqzpPeI8p2lt3N9tzCLpijsoUW7tynJqKl3xW5JlvYEj1_llGsq9D4cGo7diYvncrC9Wekpmdm6Bs6m3H-zp5pqmbeP-dci7dzMV5nRaHAmJ_Ch8RRxUJP2FPZCdQYf2ykM2AjlGRz_1VLwEzyPRrOwuUaH909cjIVVjfNGNlceVxX6ENbovFuzosMIKBSkkT1yp82IfURXefT1qHqMHa2RwekNkyK5uTgeTzHUE4Bwi0FaVecwn4x_3dyKZsSCKEk8NsIa8lcSMliBAlLpSPjLNNM-KzkbamTmkpQciNBPlpaWktB3qfYqK6yz3vEF6gUcVKsqfAakuIjCN7WU1imd2cKy9pBF35BWkMvMdOB7-5vzdd1JI9_1TGai5ESUPBIl1x3otpTIG6l6yPlLyV3RPdWBHy11dsvvn_bl_7ZfwpGMDMIAnS4cbP48hq_ke2yKKzgcTIbDGT-nv3-OryLrvQDJ_c_v
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7xGICBN6JQ4AY2sNT4kbhsCAoFSicqsUVO7IoprSAMDPx3zk5CAcHAFsmRFeVen33f3QEcUxTnucgFk5lUTCrlpwFywxy5QpGpMT0Hlu8w7o_k7aN6rIvCXhq2e5OSDJ56VuwWJXGH-fGrPuUaMzkPiwQGtCdyjfj5581KR_BEVzVwOvb9Nzuirpb5fZvvEWkGM39kRkPAuVqH1Rop4nkl2g2Yc8UmrDVTGLA2yk1Y-dJScAveLy-HrjxDg09vvhgLi4rnjT5cWZwUaJ2borFm6h0dBkIhI49s0XfaDNxHNIVFW42qx9DRGj05vVZSJJiLvd41umoCEH5ykCbFNoyueg8XfVaPWGA5mUfJtCK8ElHAcnQg5YaMP48TaZPcZ0MVT0wUE4Bw3WisaSlyXRNLK5JMG22Nv0DdgYViUrhdQDoX0fFNjLk2QiY609578KyryCvwcaJacNL85nRaddJIZz2TvVBSEkoahJLKFrQbSaS1Vb2k_ksJrsiOaMFpI53Z8t-77f3v9SNY6j_cD9LBzfBuH5Z5UBZP1mnDQvn86g4Ih5TZYVC7D7Scz9I
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61VELlQAu0Ygtt58ANLDZ-JF5uqLtbCmjFgZW4RU7siFN2VcKBA_-9M07CAmoPvUVyZEWZ12fPNzMABxTFZalKJXShjdDG8DRA6UQgV6gKU9FzZPnO0rO5Pr8xN8-q-CPbvU9JtjUN3KWpbo6XvjpeFb4lWToUPIqV06-p0G_hHbnjhPV6Lk-fblmGSma2rYezKffiHKqucubv27yMTivI-SpLGoPP9CNsdqgRT1sxb8GbUG_Dh34iA3YGug0bz9oL7sDjeDwLzQk6vH3gwiysW843cujyuKjRh7BE592SnR5GcqEg7-yRu25GHiS62qNvx9Zj7G6NTFTvFBYJ8uJk8hNDOw0In_hIi_oTzKeT6x9nohu3IEoylUZYQ9gloeAV6HAqHTmCMs20z0rOjBqZuSQlMBFGSWVpKQkjl2qvssI66x1fpn6GtXpRh11AOiPRUU5V0jqlM1tY9iSyGBnyELLKzAAO-9-cL9uuGvmqfzILJSeh5FEouR7Afi-JvLOwu5y_lKCLHqoBHPXSWS3_e7cv__f6d1i_Gk_zy1-ziz14L6OuMG9nH9aa3_fhK0GSpvgWte4PCqLUDg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DDNet%3A+a+hybrid+network+based+on+deep+adaptive+multi-head+attention+and+dynamic+graph+convolution+for+EEG+emotion+recognition&rft.jtitle=Signal%2C+image+and+video+processing&rft.au=Xu%2C+Bingyue&rft.au=Zhang%2C+Xin&rft.au=Zhang%2C+Xiu&rft.au=Sun%2C+Baiwei&rft.date=2025-04-01&rft.pub=Springer+London&rft.issn=1863-1703&rft.eissn=1863-1711&rft.volume=19&rft.issue=4&rft_id=info:doi/10.1007%2Fs11760-025-03876-4&rft.externalDocID=10_1007_s11760_025_03876_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-1703&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-1703&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-1703&client=summon