A CNN-BiLSTM Model for Document-Level Sentiment Analysis

Document-level sentiment analysis is a challenging task given the large size of the text, which leads to an abundance of words and opinions, at times contradictory, in the same document. This analysis is particularly useful in analyzing press articles and blog posts about a particular product or com...

Full description

Saved in:
Bibliographic Details
Published inMachine learning and knowledge extraction Vol. 1; no. 3; pp. 832 - 847
Main Authors Rhanoui, Maryem, Mikram, Mounia, Yousfi, Siham, Barzali, Soukaina
Format Journal Article
LanguageEnglish
Published 01.09.2019
Online AccessGet full text
ISSN2504-4990
2504-4990
DOI10.3390/make1030048

Cover

Abstract Document-level sentiment analysis is a challenging task given the large size of the text, which leads to an abundance of words and opinions, at times contradictory, in the same document. This analysis is particularly useful in analyzing press articles and blog posts about a particular product or company, and it requires a high concentration, especially when the topic being discussed is sensitive. Nevertheless, most existing models and techniques are designed to process short text from social networks and collaborative platforms. In this paper, we propose a combination of Convolutional Neural Networks (CNN) and Bidirectional Long Short-Term Memory (BiLSTM) models, with Doc2vec embedding, suitable for opinion analysis in long texts. The CNN-BiLSTM model is compared with CNN, LSTM, BiLSTM and CNN-LSTM models with Word2vec/Doc2vec embeddings. The Doc2vec with CNN-BiLSTM model was applied on French newspapers articles and outperformed the other models with 90.66% accuracy.
AbstractList Document-level sentiment analysis is a challenging task given the large size of the text, which leads to an abundance of words and opinions, at times contradictory, in the same document. This analysis is particularly useful in analyzing press articles and blog posts about a particular product or company, and it requires a high concentration, especially when the topic being discussed is sensitive. Nevertheless, most existing models and techniques are designed to process short text from social networks and collaborative platforms. In this paper, we propose a combination of Convolutional Neural Networks (CNN) and Bidirectional Long Short-Term Memory (BiLSTM) models, with Doc2vec embedding, suitable for opinion analysis in long texts. The CNN-BiLSTM model is compared with CNN, LSTM, BiLSTM and CNN-LSTM models with Word2vec/Doc2vec embeddings. The Doc2vec with CNN-BiLSTM model was applied on French newspapers articles and outperformed the other models with 90.66% accuracy.
Author Rhanoui, Maryem
Mikram, Mounia
Yousfi, Siham
Barzali, Soukaina
Author_xml – sequence: 1
  givenname: Maryem
  orcidid: 0000-0002-0147-8466
  surname: Rhanoui
  fullname: Rhanoui, Maryem
– sequence: 2
  givenname: Mounia
  orcidid: 0000-0002-6647-5098
  surname: Mikram
  fullname: Mikram, Mounia
– sequence: 3
  givenname: Siham
  orcidid: 0000-0002-0745-8327
  surname: Yousfi
  fullname: Yousfi, Siham
– sequence: 4
  givenname: Soukaina
  surname: Barzali
  fullname: Barzali, Soukaina
BookMark eNptj0tPwzAQhC1UJErpiT-QOzKsH3n4GMJTSsuh5RxtElsyJDGyA1L_PYngUCFOO7v6ZrRzThaDGzQhlwyuhVBw0-O7ZiAAZHZCljwGSaVSsDjSZ2QdwhsA8FRJBnJJsjwqtlt6a8vdfhNtXKu7yDgf3bnms9fDSEv9NZ12k7TzHuUDdodgwwU5NdgFvf6dK_L6cL8vnmj58vhc5CVtOMBIUw1cxkLFbWJaWXMwzfRNnWZxBlJJUSulUmY41lpJPtOACBizGhPGEyNW5Oont_EuBK9N9eFtj_5QMajm3tVR74lmf-jGjjhaN4webfev5xvsHlq-
CitedBy_id crossref_primary_10_3390_make6010023
crossref_primary_10_2196_22916
crossref_primary_10_3390_su13169087
crossref_primary_10_3390_app15052345
crossref_primary_10_1109_ACCESS_2022_3210182
crossref_primary_10_1007_s10462_023_10651_9
crossref_primary_10_1016_j_eswa_2022_117575
crossref_primary_10_1016_j_compeleceng_2022_107978
crossref_primary_10_1016_j_eswa_2021_115265
crossref_primary_10_1007_s10666_023_09920_2
crossref_primary_10_1016_j_neucom_2024_127732
crossref_primary_10_4018_IJACI_331744
crossref_primary_10_3390_informatics10040086
crossref_primary_10_1016_j_ijhcs_2021_102761
crossref_primary_10_3233_WEB_230063
crossref_primary_10_1007_s10207_024_00945_6
crossref_primary_10_1109_ACCESS_2021_3073728
crossref_primary_10_1002_spe_2853
crossref_primary_10_1145_3586075
crossref_primary_10_1371_journal_pone_0317355
crossref_primary_10_1016_j_seta_2023_103263
crossref_primary_10_1109_ACCESS_2024_3394930
crossref_primary_10_1016_j_copbio_2023_102968
crossref_primary_10_1109_ACCESS_2021_3067844
crossref_primary_10_1109_ACCESS_2021_3096739
crossref_primary_10_1109_ACCESS_2025_3541494
crossref_primary_10_3390_w17010059
crossref_primary_10_1007_s10489_022_04060_8
crossref_primary_10_1109_ACCESS_2022_3152828
crossref_primary_10_1109_ACCESS_2021_3072900
crossref_primary_10_7717_peerj_cs_2592
crossref_primary_10_1051_shsconf_202316304007
crossref_primary_10_3390_app9194156
crossref_primary_10_1109_ACCESS_2024_3479774
crossref_primary_10_1142_S0218126623502924
crossref_primary_10_1007_s40614_023_00394_x
crossref_primary_10_3390_sym13030406
crossref_primary_10_1016_j_eswa_2023_119611
crossref_primary_10_1016_j_ijhm_2023_103647
crossref_primary_10_3390_mi14112050
crossref_primary_10_7717_peerj_cs_1414
crossref_primary_10_7717_peerj_cs_2349
crossref_primary_10_3390_computers14020036
crossref_primary_10_3390_s24041162
crossref_primary_10_3390_electronics14030434
crossref_primary_10_3390_sym13081517
crossref_primary_10_29109_gujsc_1111884
crossref_primary_10_1016_j_procs_2024_04_218
crossref_primary_10_1093_comjnl_bxab118
crossref_primary_10_1155_2022_4914792
crossref_primary_10_1007_s00521_022_07248_8
crossref_primary_10_3390_machines10050336
crossref_primary_10_4018_IJITSA_324100
crossref_primary_10_1007_s00500_020_05290_z
crossref_primary_10_3390_app11188613
crossref_primary_10_1016_j_atech_2024_100573
crossref_primary_10_1007_s10462_022_10215_3
crossref_primary_10_3233_JIFS_237653
crossref_primary_10_1049_cth2_12463
crossref_primary_10_1007_s00034_025_02999_w
crossref_primary_10_51583_IJLTEMAS_2024_130721
crossref_primary_10_3390_math9212722
crossref_primary_10_1007_s13735_023_00308_2
crossref_primary_10_31083_j_fbl2812322
crossref_primary_10_3390_electronics11121906
crossref_primary_10_1007_s12559_021_09836_7
crossref_primary_10_61186_jsdp_20_2_3
crossref_primary_10_3390_electronics12061298
crossref_primary_10_1007_s42979_023_01913_y
crossref_primary_10_1016_j_inffus_2025_103000
crossref_primary_10_1016_j_engappai_2024_108231
crossref_primary_10_3390_math11102335
crossref_primary_10_3390_app13074550
crossref_primary_10_1186_s40537_025_01064_2
crossref_primary_10_1007_s10614_024_10566_9
crossref_primary_10_1007_s10462_024_10795_2
crossref_primary_10_3390_make2030016
crossref_primary_10_1016_j_energy_2024_133596
crossref_primary_10_1155_2021_5541134
crossref_primary_10_1016_j_iswa_2022_200090
crossref_primary_10_1016_j_rineng_2023_101109
crossref_primary_10_1016_j_engappai_2023_107305
crossref_primary_10_1016_j_jisa_2024_103953
crossref_primary_10_1038_s41598_023_41485_8
crossref_primary_10_32604_csse_2023_029953
crossref_primary_10_1007_s41870_024_01882_2
crossref_primary_10_1002_cpe_7538
crossref_primary_10_1007_s00500_023_08639_2
crossref_primary_10_3390_app13063915
crossref_primary_10_3390_make6020041
crossref_primary_10_1108_IJICC_04_2024_0184
crossref_primary_10_1007_s13246_022_01189_1
crossref_primary_10_1109_ACCESS_2024_3487752
crossref_primary_10_1109_TICPS_2024_3477433
crossref_primary_10_1007_s10115_025_02365_x
crossref_primary_10_1007_s44196_024_00589_3
crossref_primary_10_1007_s11042_022_13810_2
crossref_primary_10_1088_2632_2153_abd614
crossref_primary_10_1007_s42979_021_00977_y
crossref_primary_10_1016_j_jksuci_2020_10_017
crossref_primary_10_1007_s11219_025_09714_7
crossref_primary_10_1007_s10115_024_02256_7
crossref_primary_10_3390_systems11030148
crossref_primary_10_1007_s41870_023_01395_4
crossref_primary_10_1007_s11042_024_18316_7
crossref_primary_10_1016_j_eswa_2022_117581
crossref_primary_10_1080_17449057_2022_2031509
crossref_primary_10_3390_electronics13010004
crossref_primary_10_1016_j_cja_2022_05_005
crossref_primary_10_1016_j_knosys_2021_107073
crossref_primary_10_1007_s41019_021_00165_1
crossref_primary_10_21923_jesd_1350375
crossref_primary_10_1109_ACCESS_2021_3110143
crossref_primary_10_1109_ACCESS_2023_3276757
crossref_primary_10_1016_j_dajour_2022_100111
crossref_primary_10_3390_buildings15050763
crossref_primary_10_1007_s11042_024_18124_z
crossref_primary_10_24018_ejece_2023_7_6_583
crossref_primary_10_1109_ACCESS_2023_3259107
crossref_primary_10_2139_ssrn_4165241
crossref_primary_10_1109_ACCESS_2021_3121791
crossref_primary_10_1016_j_engappai_2023_106041
crossref_primary_10_1007_s10462_023_10555_8
Cites_doi 10.1007/s13278-012-0057-9
10.1007/978-3-642-35236-2_62
10.18653/v1/W16-1609
10.1007/978-3-319-68121-4_17
10.18653/v1/D16-1058
10.1007/978-3-7908-2604-3_16
10.3115/v1/D14-1162
10.3115/v1/S14-2033
10.1007/978-3-642-35289-8_3
10.1162/neco.1997.9.8.1735
10.21437/Interspeech.2012-65
10.1002/widm.1253
10.3115/v1/P14-2009
10.1016/j.ipm.2016.12.002
10.1016/j.eswa.2018.06.052
10.18653/v1/N16-1174
10.1145/2766462.2767830
10.1145/1651461.1651468
10.1145/945645.945658
10.1016/j.ipm.2013.08.006
10.1109/CTS.2012.6261103
10.1609/aaai.v29i1.9513
10.1109/78.650093
10.1016/j.giq.2012.06.005
10.1109/ACCESS.2017.2776930
10.3115/v1/D14-1181
10.14313/JAMRIS/3-2020/34
10.1162/tacl_a_00051
10.1016/j.neucom.2018.04.045
10.18653/v1/W18-5408
10.3390/make1010014
10.3115/v1/P15-1150
10.1109/UEMCON.2017.8249013
10.1561/1500000011
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.3390/make1030048
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2504-4990
EndPage 847
ExternalDocumentID 10_3390_make1030048
GroupedDBID AADQD
AAFWJ
AAYXX
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
MODMG
M~E
OK1
ID FETCH-LOGICAL-c200t-7e0245395d6fd4b20fc250b785804943b99971f2abe9427e020aa0a51ba6126f3
ISSN 2504-4990
IngestDate Thu Apr 24 23:10:13 EDT 2025
Tue Jul 01 03:11:06 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c200t-7e0245395d6fd4b20fc250b785804943b99971f2abe9427e020aa0a51ba6126f3
ORCID 0000-0002-6647-5098
0000-0002-0147-8466
0000-0002-0745-8327
OpenAccessLink https://www.mdpi.com/2504-4990/1/3/48/pdf?version=1564047828
PageCount 16
ParticipantIDs crossref_primary_10_3390_make1030048
crossref_citationtrail_10_3390_make1030048
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationTitle Machine learning and knowledge extraction
PublicationYear 2019
References ref_13
ref_12
ref_11
ref_19
ref_18
ref_17
ref_15
Sobkowicz (ref_31) 2012; 29
Missen (ref_36) 2013; 3
Gamal (ref_16) 2019; 1
Rao (ref_38) 2018; 308
ref_25
ref_24
ref_21
ref_20
ref_29
ref_28
ref_27
ref_26
Pang (ref_7) 2008; 2
Fu (ref_39) 2018; 113
Jianqiang (ref_22) 2018; 6
Uysal (ref_23) 2014; 50
ref_35
ref_33
ref_32
ref_30
ref_37
Schuster (ref_14) 1997; 45
Hu (ref_34) 2017; 53
Hochreiter (ref_10) 1997; 9
Bojanowski (ref_50) 2017; 5
ref_47
ref_46
ref_45
ref_44
ref_43
ref_42
ref_41
Goldberg (ref_6) 2017; 10
ref_40
ref_3
ref_2
Liu (ref_1) 2012; 5
ref_49
ref_48
ref_9
ref_8
ref_5
ref_4
References_xml – ident: ref_9
– volume: 3
  start-page: 107
  year: 2013
  ident: ref_36
  article-title: Opinion mining: reviewed from word to document level
  publication-title: Soc. Netw. Anal. Min.
  doi: 10.1007/s13278-012-0057-9
– ident: ref_24
  doi: 10.1007/978-3-642-35236-2_62
– ident: ref_40
  doi: 10.18653/v1/W16-1609
– ident: ref_5
– ident: ref_26
– ident: ref_29
  doi: 10.1007/978-3-319-68121-4_17
– ident: ref_47
  doi: 10.18653/v1/D16-1058
– ident: ref_44
  doi: 10.1007/978-3-7908-2604-3_16
– ident: ref_42
– ident: ref_49
  doi: 10.3115/v1/D14-1162
– ident: ref_20
  doi: 10.3115/v1/S14-2033
– ident: ref_8
– ident: ref_27
– ident: ref_43
  doi: 10.1007/978-3-642-35289-8_3
– volume: 5
  start-page: 1
  year: 2012
  ident: ref_1
  article-title: Sentiment analysis and opinion mining
  publication-title: Synth. Lect. Hum. Lang. Technol.
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_10
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref_4
  doi: 10.21437/Interspeech.2012-65
– ident: ref_45
– ident: ref_17
  doi: 10.1002/widm.1253
– ident: ref_19
  doi: 10.3115/v1/P14-2009
– volume: 53
  start-page: 436
  year: 2017
  ident: ref_34
  article-title: Opinion mining from online hotel reviews–A text summarization approach
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2016.12.002
– volume: 113
  start-page: 33
  year: 2018
  ident: ref_39
  article-title: Bag of meta-words: A novel method to represent document for the sentiment classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.06.052
– ident: ref_48
  doi: 10.18653/v1/N16-1174
– ident: ref_21
  doi: 10.1145/2766462.2767830
– ident: ref_30
– ident: ref_32
  doi: 10.1145/1651461.1651468
– ident: ref_2
  doi: 10.1145/945645.945658
– volume: 50
  start-page: 104
  year: 2014
  ident: ref_23
  article-title: The impact of preprocessing on text classification
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2013.08.006
– ident: ref_11
– ident: ref_46
  doi: 10.1109/CTS.2012.6261103
– ident: ref_13
  doi: 10.1609/aaai.v29i1.9513
– volume: 10
  start-page: 1
  year: 2017
  ident: ref_6
  article-title: Neural network methods for natural language processing
  publication-title: Synth. Lect. Hum. Lang. Technol.
– volume: 45
  start-page: 2673
  year: 1997
  ident: ref_14
  article-title: Bidirectional recurrent neural networks
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.650093
– ident: ref_37
– volume: 29
  start-page: 470
  year: 2012
  ident: ref_31
  article-title: Opinion mining in social media: Modeling, simulating, and forecasting political opinions in the web
  publication-title: Gov. Inf. Q.
  doi: 10.1016/j.giq.2012.06.005
– ident: ref_18
– volume: 6
  start-page: 23253
  year: 2018
  ident: ref_22
  article-title: Deep convolution neural networks for Twitter sentiment analysis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2776930
– ident: ref_25
– ident: ref_33
– ident: ref_12
– ident: ref_3
  doi: 10.3115/v1/D14-1181
– ident: ref_35
  doi: 10.14313/JAMRIS/3-2020/34
– volume: 5
  start-page: 135
  year: 2017
  ident: ref_50
  article-title: Enriching word vectors with subword information
  publication-title: Trans. Assoc. Comput. Linguist.
  doi: 10.1162/tacl_a_00051
– volume: 308
  start-page: 49
  year: 2018
  ident: ref_38
  article-title: LSTM with sentence representations for document-level sentiment classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.04.045
– ident: ref_41
  doi: 10.18653/v1/W18-5408
– volume: 1
  start-page: 224
  year: 2019
  ident: ref_16
  article-title: Analysis of Machine Learning Algorithms for Opinion Mining in Different Domains
  publication-title: Mach. Learn. Knowl. Extr.
  doi: 10.3390/make1010014
– ident: ref_15
  doi: 10.3115/v1/P15-1150
– ident: ref_28
  doi: 10.1109/UEMCON.2017.8249013
– volume: 2
  start-page: 1
  year: 2008
  ident: ref_7
  article-title: Opinion mining and sentiment analysis
  publication-title: Found. Trends Inf. Retr.
  doi: 10.1561/1500000011
SSID ssj0002794104
Score 2.4814684
Snippet Document-level sentiment analysis is a challenging task given the large size of the text, which leads to an abundance of words and opinions, at times...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 832
Title A CNN-BiLSTM Model for Document-Level Sentiment Analysis
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagLCwIBIi3MnQCGRqnaZKxrUAIkS4tEltlO45aFVJUkoEO_HbOjzih6lBYoso6R0nvy_l8vu8OoWbAw45PuYvTIEoxrHgJjhgNsd9JPS44gUVNcofjQefxpf306r9WxwWKXZKzW75cyyv5j1ZhDPQqWbJ_0Ky9KQzAb9AvXEHDcN1Ix92b_mCAe9Pn4ShWXc0UGRGcYl7IoB9-lhlBYA6yXNXwtxVI6h5prLIpRdk-QjMWbaTtBmz3QnMf7NHMhGbzYmqIPl8m9KtohbOFhlcMJmRKawblM1Xyw-mEWvEeXSypJmcP58WMmj7eZQjCrXKsjKWSZdAwbJ30AYtYM1aa2hqivJrZDE2M06zAugbnqnH3vEhmQ77TmZC90Vq6QufvEtorS5tNOIStjpw-rk3eRjskCNTRfvxdxeUIGChXdZ20b6BpnXL-XW1-zZGpeSSjfbRnthJOV-PiAG2J7BCFXafChKMw4QAmnN-YcCwmnBITR-jl4X7Uf8SmOwbm8A3kOBDy1NyL_KSTJm1GWimHJ2ZB6Iey5o_HwPUP3JRQJqI2kdItSlvUdxkFrxY-xWPUyOaZOEFOFMC-FTy1hHBp09PQE-AaCiLDAcwnySm6Ll91zE3peNnB5G285n89RU0r_KErpqwTO9tM7BztVoi7QI18UYhLcANzdqXCJ1dKez_hK1vb
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+CNN-BiLSTM+Model+for+Document-Level+Sentiment+Analysis&rft.jtitle=Machine+learning+and+knowledge+extraction&rft.au=Rhanoui%2C+Maryem&rft.au=Mikram%2C+Mounia&rft.au=Yousfi%2C+Siham&rft.au=Barzali%2C+Soukaina&rft.date=2019-09-01&rft.issn=2504-4990&rft.eissn=2504-4990&rft.volume=1&rft.issue=3&rft.spage=832&rft.epage=847&rft_id=info:doi/10.3390%2Fmake1030048&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_make1030048
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-4990&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-4990&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-4990&client=summon