Edgeworth Expansion and Large Deviations for the Coefficients of Products of Positive Random Matrices
Consider the matrix products G n : = g n ⋯ g 1 , where ( g n ) n ⩾ 1 is a sequence of independent and identically distributed positive random d × d matrices. Under the optimal third moment condition, we first establish a Berry–Esseen theorem and an Edgeworth expansion for the ( i , j )-th entry G n...
Saved in:
Published in | Journal of theoretical probability Vol. 38; no. 2 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.06.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Consider the matrix products
G
n
:
=
g
n
⋯
g
1
, where
(
g
n
)
n
⩾
1
is a sequence of independent and identically distributed positive random
d
×
d
matrices. Under the optimal third moment condition, we first establish a Berry–Esseen theorem and an Edgeworth expansion for the (
i
,
j
)-th entry
G
n
i
,
j
of the matrix
G
n
, where
1
⩽
i
,
j
⩽
d
. Utilizing the Edgeworth expansion for
G
n
i
,
j
under the changed probability measure, we then prove precise upper and lower large deviation asymptotics for the entries
G
n
i
,
j
subject to an exponential moment assumption. As applications, we deduce local limit theorems with large deviations for
G
n
i
,
j
and establish upper and lower large deviations bounds for the spectral radius
ρ
(
G
n
)
of
G
n
. A byproduct of our approach is the local limit theorem for
G
n
i
,
j
under the optimal second moment condition. In the proofs we develop a spectral gap theory for both the norm cocycle and the coefficients, which is of independent interest. |
---|---|
AbstractList | Consider the matrix products
G
n
:
=
g
n
⋯
g
1
, where
(
g
n
)
n
⩾
1
is a sequence of independent and identically distributed positive random
d
×
d
matrices. Under the optimal third moment condition, we first establish a Berry–Esseen theorem and an Edgeworth expansion for the (
i
,
j
)-th entry
G
n
i
,
j
of the matrix
G
n
, where
1
⩽
i
,
j
⩽
d
. Utilizing the Edgeworth expansion for
G
n
i
,
j
under the changed probability measure, we then prove precise upper and lower large deviation asymptotics for the entries
G
n
i
,
j
subject to an exponential moment assumption. As applications, we deduce local limit theorems with large deviations for
G
n
i
,
j
and establish upper and lower large deviations bounds for the spectral radius
ρ
(
G
n
)
of
G
n
. A byproduct of our approach is the local limit theorem for
G
n
i
,
j
under the optimal second moment condition. In the proofs we develop a spectral gap theory for both the norm cocycle and the coefficients, which is of independent interest. Consider the matrix products Gn:=gn⋯g1, where (gn)n⩾1 is a sequence of independent and identically distributed positive random d×d matrices. Under the optimal third moment condition, we first establish a Berry–Esseen theorem and an Edgeworth expansion for the (i, j)-th entry Gni,j of the matrix Gn, where 1⩽i,j⩽d. Utilizing the Edgeworth expansion for Gni,j under the changed probability measure, we then prove precise upper and lower large deviation asymptotics for the entries Gni,j subject to an exponential moment assumption. As applications, we deduce local limit theorems with large deviations for Gni,j and establish upper and lower large deviations bounds for the spectral radius ρ(Gn) of Gn. A byproduct of our approach is the local limit theorem for Gni,j under the optimal second moment condition. In the proofs we develop a spectral gap theory for both the norm cocycle and the coefficients, which is of independent interest. |
ArticleNumber | 38 |
Author | Grama, Ion Liu, Quansheng Xiao, Hui |
Author_xml | – sequence: 1 givenname: Hui surname: Xiao fullname: Xiao, Hui email: xiaohui@amss.ac.cn organization: Academy of Mathematics and Systems Science, Chinese Academy of Sciences – sequence: 2 givenname: Ion surname: Grama fullname: Grama, Ion organization: Univ Bretagne Sud, CNRS UMR 6205 LMBA – sequence: 3 givenname: Quansheng surname: Liu fullname: Liu, Quansheng organization: Univ Bretagne Sud, CNRS UMR 6205 LMBA |
BookMark | eNp9kE1LAzEQhoNUsK3-AU8Bz9HJJrvZHKXWD6gooueQ3STtFpvUZFu1v96tW_DmaYbhed-BZ4QGPniL0DmFSwogrhIFmUsCWU6AcijI7ggNaS4yIjMGAzSEUnIiSw4naJTSEgCkBBgiOzVz-xliu8DTr7X2qQkea2_wTMe5xTd22-i2uyXsQsTtwuJJsM41dWN9m3Bw-DkGs6kPe0hN22wtfukqwgo_6jY2tU2n6Njp92TPDnOM3m6nr5N7Mnu6e5hcz0idAbREaCkNZ0JaWhVUCEcdLyons1zWZQUVL2vGykILVxomnTZAndFMGqZpXlHBxuii713H8LGxqVXLsIm-e6kYFZRxUfI9lfVUHUNK0Tq1js1Kx29FQe11ql6n6nSqX51q14VYH0od7Oc2_lX_k_oBkGx7JA |
Cites_doi | 10.1214/23-AOP1621 10.1007/b87874 10.1214/aop/1176996798 10.1017/S1474748022000561 10.1515/9783112573006 10.1080/10236198.2014.950259 10.1214/15-AOP1059 10.4171/jems/1142 10.1007/978-3-319-47721-3 10.1214/22-AOP1602 10.1016/j.spa.2020.03.005 10.1007/s11425-021-2067-4 10.1214/aoms/1177705909 10.1214/aop/1023481103 10.1214/15-AIHP684 10.1007/BFb0093229 10.1007/s10959-008-0153-y 10.2307/1969514 10.1090/pspum/089/01488 10.1214/15-AIHP668 10.1137/1109033 10.5802/crmath.312 10.1214/21-AIHP1221 10.1007/BF00532045 10.1007/BF02392040 10.1007/BF01047581 10.30757/ALEA.v21-56 10.1007/s12220-022-01127-3 10.1016/j.spa.2022.12.013 10.1214/18-AOP1285 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. 2025 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. 2025 |
DBID | AAYXX CITATION |
DOI | 10.1007/s10959-025-01406-z |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1572-9230 |
ExternalDocumentID | 10_1007_s10959_025_01406_z |
GroupedDBID | -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDYV AFDZB AFEXP AFGCZ AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF- PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR Z45 ZMTXR ZWQNP ~EX AAYXX ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP CITATION ABRTQ |
ID | FETCH-LOGICAL-c200t-7a99d4379e1b6177f1f46bf9259c8b0b48c3386a7f8d39fad01fda39d3a15b173 |
IEDL.DBID | U2A |
ISSN | 0894-9840 |
IngestDate | Sun Jul 13 05:28:52 EDT 2025 Tue Jul 01 04:47:30 EDT 2025 Fri May 16 03:50:52 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Berry–Esseen theorem Primary 60F05 Spectral gap 60F10 Edgeworth expansion Precise large deviations Secondary 60J05 60B20 Products of positive random matrices Local limit theorem |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c200t-7a99d4379e1b6177f1f46bf9259c8b0b48c3386a7f8d39fad01fda39d3a15b173 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3171347847 |
PQPubID | 2043769 |
ParticipantIDs | proquest_journals_3171347847 crossref_primary_10_1007_s10959_025_01406_z springer_journals_10_1007_s10959_025_01406_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-06-01 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of theoretical probability |
PublicationTitleAbbrev | J Theor Probab |
PublicationYear | 2025 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | H Xiao (1406_CR32) 2024; 67 H Furstenberg (1406_CR12) 1960; 31 1406_CR24 H Xiao (1406_CR33) 2023; 158 H Hennion (1406_CR17) 1997; 25 1406_CR25 M Rosenblatt (1406_CR27) 1964; 9 CT Ionescu Tulcea (1406_CR20) 1950; 52 Y Benoist (1406_CR1) 2016 Y Guivarc’h (1406_CR14) 2015; 89 A Boulanger (1406_CR2) 2023; 56 D Buraczewski (1406_CR4) 2016; 52 H Xiao (1406_CR31) 2023; 51 C Cuny (1406_CR7) 2023; 51 H Hennion (1406_CR18) 2001 I Grama (1406_CR13) 2022; 58 H Xiao (1406_CR30) 2022; 24 JFC Kingman (1406_CR23) 1973; 1 Y Guivarc’h (1406_CR15) 2008 1406_CR35 TC Dinh (1406_CR10) 2022 1406_CR34 1406_CR36 H Cohn (1406_CR6) 1993; 6 TC Dinh (1406_CR11) 2023; 33 C Cuny (1406_CR8) 2022; 360 H Kesten (1406_CR21) 1973; 131 VV Petrov (1406_CR26) 1975 H Kesten (1406_CR22) 1984; 67 C Sert (1406_CR28) 2019; 47 H Hennion (1406_CR19) 2008; 21 D Buraczewski (1406_CR5) 2016; 44 H Xiao (1406_CR29) 2020; 130 D Buraczewski (1406_CR3) 2014; 20 Y Guivarc’h (1406_CR16) 2016; 52 1406_CR9 |
References_xml | – ident: 1406_CR34 doi: 10.1214/23-AOP1621 – volume-title: Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-compactness year: 2001 ident: 1406_CR18 doi: 10.1007/b87874 – volume: 1 start-page: 883 issue: 6 year: 1973 ident: 1406_CR23 publication-title: Ann. Probab. doi: 10.1214/aop/1176996798 – year: 2022 ident: 1406_CR10 publication-title: J. Inst. Math. Jussieu doi: 10.1017/S1474748022000561 – volume: 56 start-page: 885 issue: 3 year: 2023 ident: 1406_CR2 publication-title: Annales Scientifiques de l’École Normale Supérieure – volume-title: Sums of Independent Random Variables year: 1975 ident: 1406_CR26 doi: 10.1515/9783112573006 – volume: 20 start-page: 1523 issue: 11 year: 2014 ident: 1406_CR3 publication-title: J. Differ. Equ. Appl. doi: 10.1080/10236198.2014.950259 – volume: 44 start-page: 3688 issue: 6 year: 2016 ident: 1406_CR5 publication-title: Ann. Probab. doi: 10.1214/15-AOP1059 – volume: 24 start-page: 2691 issue: 8 year: 2022 ident: 1406_CR30 publication-title: J. Eur. Math. Soc. doi: 10.4171/jems/1142 – volume-title: Random Walks on Reductive Groups year: 2016 ident: 1406_CR1 doi: 10.1007/978-3-319-47721-3 – volume: 51 start-page: 495 issue: 2 year: 2023 ident: 1406_CR7 publication-title: Ann. Probab. doi: 10.1214/22-AOP1602 – volume: 130 start-page: 5213 issue: 9 year: 2020 ident: 1406_CR29 publication-title: Stoch. Process. Appl. doi: 10.1016/j.spa.2020.03.005 – volume: 67 start-page: 627 issue: 3 year: 2024 ident: 1406_CR32 publication-title: Sci. China Math. doi: 10.1007/s11425-021-2067-4 – ident: 1406_CR36 – volume: 31 start-page: 457 issue: 2 year: 1960 ident: 1406_CR12 publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177705909 – volume: 25 start-page: 1545 issue: 4 year: 1997 ident: 1406_CR17 publication-title: Ann. Probab. doi: 10.1214/aop/1023481103 – volume: 52 start-page: 1474 issue: 3 year: 2016 ident: 1406_CR4 publication-title: Annales de l’Institut Henri Poincaré, Probabilités et Statistiques doi: 10.1214/15-AIHP684 – ident: 1406_CR24 doi: 10.1007/BFb0093229 – volume: 21 start-page: 966 issue: 4 year: 2008 ident: 1406_CR19 publication-title: J. Theor. Probab. doi: 10.1007/s10959-008-0153-y – ident: 1406_CR25 – volume: 51 start-page: 1380 issue: 4 year: 2023 ident: 1406_CR31 publication-title: Ann. Probab. doi: 10.1214/23-AOP1621 – volume: 52 start-page: 140 issue: 1 year: 1950 ident: 1406_CR20 publication-title: Ann. Math. doi: 10.2307/1969514 – volume: 89 start-page: 279 year: 2015 ident: 1406_CR14 publication-title: Proc. Sympos. Pure Math. doi: 10.1090/pspum/089/01488 – volume: 52 start-page: 503 issue: 2 year: 2016 ident: 1406_CR16 publication-title: Annales de l’Institut Henri Poincaré, Probabilités et Statistiques doi: 10.1214/15-AIHP668 – volume: 9 start-page: 180 issue: 2 year: 1964 ident: 1406_CR27 publication-title: Theory of Probability and Its Applications doi: 10.1137/1109033 – volume: 360 start-page: 475 year: 2022 ident: 1406_CR8 publication-title: Comptes Rendus Mathématique doi: 10.5802/crmath.312 – volume: 58 start-page: 2321 issue: 4 year: 2022 ident: 1406_CR13 publication-title: Annales de l’Institut Henri Poincaré, Probabilités et Statistiques doi: 10.1214/21-AIHP1221 – volume: 67 start-page: 363 issue: 4 year: 1984 ident: 1406_CR22 publication-title: Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete doi: 10.1007/BF00532045 – volume: 131 start-page: 207 issue: 1 year: 1973 ident: 1406_CR21 publication-title: Acta Mathematica doi: 10.1007/BF02392040 – volume: 6 start-page: 389 issue: 2 year: 1993 ident: 1406_CR6 publication-title: J. Theor. Probab. doi: 10.1007/BF01047581 – volume-title: Simplicité de spectres de Lyapounov et propriété d’isolation spectrale pour une famille d’opérateurs de transfert sur l’espace projectif year: 2008 ident: 1406_CR15 – ident: 1406_CR9 doi: 10.30757/ALEA.v21-56 – volume: 33 start-page: 76 year: 2023 ident: 1406_CR11 publication-title: J. Geom. Anal. doi: 10.1007/s12220-022-01127-3 – ident: 1406_CR35 – volume: 158 start-page: 103 year: 2023 ident: 1406_CR33 publication-title: Stoch. Process. Appl. doi: 10.1016/j.spa.2022.12.013 – volume: 47 start-page: 1335 issue: 3 year: 2019 ident: 1406_CR28 publication-title: Ann. Probab. doi: 10.1214/18-AOP1285 |
SSID | ssj0009900 |
Score | 2.3592465 |
Snippet | Consider the matrix products
G
n
:
=
g
n
⋯
g
1
, where
(
g
n
)
n
⩾
1
is a sequence of independent and identically distributed positive random
d
×
d
matrices.... Consider the matrix products Gn:=gn⋯g1, where (gn)n⩾1 is a sequence of independent and identically distributed positive random d×d matrices. Under the optimal... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Deviation Mathematics Mathematics and Statistics Probability Theory and Stochastic Processes Statistics Theorems |
Title | Edgeworth Expansion and Large Deviations for the Coefficients of Products of Positive Random Matrices |
URI | https://link.springer.com/article/10.1007/s10959-025-01406-z https://www.proquest.com/docview/3171347847 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1Bu5QBQQFRKMgDG1iq8-2xKikVUIQQlcoU2bHDRIJoQai_nrOTEEAwsEVKdMPl7HvvfPcMcCK4DjEONBVMOtQLfE6l5waUCdwJmRMIZgeFpzfBZOZdzv15NRS2qLvd6yNJu1N_GXYzJStz_aphBQFdrUPbR-5uGrlmzrCR2uXl4EnEPcqRv1SjMr_b-J6OGoz541jUZpvxFmxWMJEMy_-6DWs678LG9FNjddGFjsGJpczyDuhYPWrb7kfid1zgpgZGRK7Iten0JueY_srSHEGQStAKGRXaqkeYRgpSZOS2lH4tn20n15smd2iieCJTq-OvF7swG8f3owmtblCgKUb_koaCc2UUBzWTCFXCjGVeIDOOnCeN5EB6UYoUNRBhFimXZ0INWKaEy5UrmC9Z6O5BKy9yvQ-ER5lylQpS35WeIXWY8xQ3p7KSG9rVg9PakclzKZSRNJLIxu0Juj2xbk9WPejXvk6qRbNIEMqYwVbMlz04q_3fvP7b2sH_Pj-EjmNDwNRS-tBavrzqI4QWS3kM7eHFw1V8bCPqAwfGxrE |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED7xGCgDggKiUMADTGCpztsDQ9WHCm0RQlRiC3btMNEiUp6_hx_K2UkoIBgYukVKdIq-XHzfne8-AxwIrkP0A00Fkw71Ap9T6bkBZQJXQuYEgtlB4f550Bl4Z9f-9Ry8F7Mwttu92JK0K_WXYTdTsjLHr5qsIKBveStlV78-Y6KWnpw28aseOk67ddXo0PwsATpEP5jQUHCujPaeZhKDdpiwxAtkwpH9DyNZk140xGQtEGESKZcnQtVYooTLlSuYL1noot15WETyEZl_Z-DUp9K-PBt0ibhHOeZL-WjO7-_8PfxNOe2PbVgb3dqrsJLTUlLP_GgN5vSoDMv9T03XtAwlw0szWed10C11q217IWm94IJiam5EjBTpmc5y0sRwm5UCCZJiglZIY6ytWoVp3CDjhFxkUrPZte0ce9LkEk2M70jfnhug0w0YzATlTVgYjUd6CwiPEuUqFQx9V3omicQYq7jZBZbcpHkVOCqAjO8zYY54KsFsYI8R9tjCHr9VoFpgHec_aRojdTKDtBifK3Bc4D-9_be17f89vg9Lnat-L-6dnnd3oORYdzB1nCosTB4e9S7Smoncs15F4GbWbvwBTSYCEw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED5BkRAMiKcoFPAAE1jgJE3igaHqQ0ApQohKbMGubSbSipZXfxU_kbOTUEAwMLBFSnSKvpxzD9_3GWBXcB2hH2gqmPRoEFY5lYEfUibwT8i8UDBHFO5chCfd4OymejMFbwUXxk27F1uSGafBqjSlo8OBMoefiG-2fWWPYrUVQkjH-VhlW78-Y9E2PD5t4Bfe87xW87p-QvNzBWgPfWJEI8G5sjp8mkkM4JFhJgil4VgJ9GJ5JIO4h4VbKCITK58boY6YUcLnyhesKlnko91pmAks-xhXUNerTWR-eUZ6iXlAOdZOOU3n53f-Ggon-e23LVkX6VqLsJCnqKSW-dQSTOl0GeY7H_quw2WYszlqJvG8Arqp7rQbNSTNF_y52P4bEaki53bKnDQw9GZtQYIJMkErpN7XTrnCDnGQviGXmexsdu2myJ40uUIT_XvScWcI6OEqdP8F5TUopf1UrwPhsVG-UmGv6svAFpQYbxW3O8KS25KvDPsFkMkgE-lIJnLMFvYEYU8c7Mm4DJUC6yRfsMME0yhLqsVYXYaDAv_J7d-tbfzt8R2YvWy0kvPTi_YmzHnOG2xLpwKl0cOj3sIMZyS3nVMRuP1vL34Hi00GRg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Edgeworth+Expansion+and+Large+Deviations+for+the+Coefficients+of+Products+of+Positive+Random+Matrices&rft.jtitle=Journal+of+theoretical+probability&rft.date=2025-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0894-9840&rft.eissn=1572-9230&rft.volume=38&rft.issue=2&rft_id=info:doi/10.1007%2Fs10959-025-01406-z&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-9840&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-9840&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-9840&client=summon |