Bubble models and real bubbles: Rayleigh and energy-deposit cases in a Tait-compressible liquid

Abstract In analytical and numerical studies on bubbles in liquids, often the Rayleigh initial condition of a spherical bubble at maximum radius is used: the Rayleigh case. This condition cannot be realized in practice, instead the bubbles need first to be generated and expanded. The energy-deposit...

Full description

Saved in:
Bibliographic Details
Published inIMA journal of applied mathematics Vol. 83; no. 4; pp. 556 - 589
Main Authors Lauterborn, Werner, Lechner, Christiane, Koch, Max, Mettin, Robert
Format Journal Article
LanguageEnglish
Published Oxford University Press 25.07.2018
Subjects
Online AccessGet full text
ISSN0272-4960
1464-3634
DOI10.1093/imamat/hxy015

Cover

Loading…
Abstract Abstract In analytical and numerical studies on bubbles in liquids, often the Rayleigh initial condition of a spherical bubble at maximum radius is used: the Rayleigh case. This condition cannot be realized in practice, instead the bubbles need first to be generated and expanded. The energy-deposit case with its initial condition of a small, spherical bubble of high internal pressure that expands into water at atmospheric pressure is studied for comparison with the Rayleigh case. From the many possible configurations, a single bubble near a flat solid boundary is chosen as this is a basic configuration to study erosion and cleaning phenomena. The bubble contains a small amount of non-condensable gas obeying an adiabatic law. The water is compressible according to the Tait equation. The Euler equations in axial symmetry are solved with the help of the open source software package OpenFOAM, based on the finite volume method. The volume of fluid method is used for interface capturing. Rayleigh bubbles of $R_\mathrm{max} = 500\,\mu $m and energy-deposit bubbles that reach $R_\mathrm{max} = 500\,\mu $m after expansion in an unbounded liquid are compared with respect to microjet velocity, microjet impact pressure and microjet impact times, when placed or being generated near a flat solid boundary. Velocity and pressure fields from the impact zone are given to demonstrate the sequence of phenomena from axial liquid microjet impact via annular gas-jet and annular liquid-nanojet formation to the Blake splash and the first torus-bubble splitting. Normalized distances $D^{\ast } = D/R_\mathrm{max}$ (D = initial distance of the bubble centre from the boundary) between 1.02 and 1.5 are studied. Rayleigh bubbles show a stronger collapse with about 50% higher microjet impact velocities and also significantly higher microjet impact pressures.
AbstractList Abstract In analytical and numerical studies on bubbles in liquids, often the Rayleigh initial condition of a spherical bubble at maximum radius is used: the Rayleigh case. This condition cannot be realized in practice, instead the bubbles need first to be generated and expanded. The energy-deposit case with its initial condition of a small, spherical bubble of high internal pressure that expands into water at atmospheric pressure is studied for comparison with the Rayleigh case. From the many possible configurations, a single bubble near a flat solid boundary is chosen as this is a basic configuration to study erosion and cleaning phenomena. The bubble contains a small amount of non-condensable gas obeying an adiabatic law. The water is compressible according to the Tait equation. The Euler equations in axial symmetry are solved with the help of the open source software package OpenFOAM, based on the finite volume method. The volume of fluid method is used for interface capturing. Rayleigh bubbles of $R_\mathrm{max} = 500\,\mu $m and energy-deposit bubbles that reach $R_\mathrm{max} = 500\,\mu $m after expansion in an unbounded liquid are compared with respect to microjet velocity, microjet impact pressure and microjet impact times, when placed or being generated near a flat solid boundary. Velocity and pressure fields from the impact zone are given to demonstrate the sequence of phenomena from axial liquid microjet impact via annular gas-jet and annular liquid-nanojet formation to the Blake splash and the first torus-bubble splitting. Normalized distances $D^{\ast } = D/R_\mathrm{max}$ (D = initial distance of the bubble centre from the boundary) between 1.02 and 1.5 are studied. Rayleigh bubbles show a stronger collapse with about 50% higher microjet impact velocities and also significantly higher microjet impact pressures.
Author Mettin, Robert
Lechner, Christiane
Koch, Max
Lauterborn, Werner
Author_xml – sequence: 1
  givenname: Werner
  surname: Lauterborn
  fullname: Lauterborn, Werner
  email: Werner.Lauterborn@phys.uni-goettingen.de
  organization: Drittes Physikalisches Institut, Universität Göttingen, Göttingen, Germany
– sequence: 2
  givenname: Christiane
  surname: Lechner
  fullname: Lechner, Christiane
  organization: Drittes Physikalisches Institut, Universität Göttingen, Göttingen, Germany
– sequence: 3
  givenname: Max
  surname: Koch
  fullname: Koch, Max
  organization: Drittes Physikalisches Institut, Universität Göttingen, Göttingen, Germany
– sequence: 4
  givenname: Robert
  surname: Mettin
  fullname: Mettin, Robert
  organization: Drittes Physikalisches Institut, Universität Göttingen, Göttingen, Germany
BookMark eNqFkE1LAzEQhoMo2FaP3nP0EjtJtknXmxa_oCBIPS_J7qSN7JfJFtx_77brSRAvMzDzvO_hmZLTuqmRkCsONxxSOfeVqUw33331wBcnZMITlTCpZHJKJiC0YEmq4JxMY_wAGBANE5Ld760tkVZNgWWkpi5oQFNSezzHW_pm-hL9dnd8YY1h27MC2yb6juYmYqS-poZujO9Y3lRtwBj9obH0n3tfXJAzZ8qIlz97Rt4fHzarZ7Z-fXpZ3a1ZLgA6ppwQEhVqQKFzLSS4xbIYRmoXijtpdQpGmoQjpko7tZQARjubc2GtlSBnRI69eWhiDOiy3Hem803dBePLjEN2cJSNjrLR0ZBiv1JtGIjQ_8lfj3yzb_9BvwFB7H0g
CitedBy_id crossref_primary_10_1016_j_oceaneng_2019_106414
crossref_primary_10_1134_S1995080223050268
crossref_primary_10_1016_j_ultsonch_2024_106816
crossref_primary_10_1103_PhysRevFluids_4_021601
crossref_primary_10_1007_s00348_023_03759_9
crossref_primary_10_1016_j_ijmultiphaseflow_2018_12_014
crossref_primary_10_1016_j_ijmultiphaseflow_2021_103618
crossref_primary_10_1017_jfm_2019_938
crossref_primary_10_1063_5_0063048
crossref_primary_10_1063_5_0136577
crossref_primary_10_1007_s00348_023_03569_z
crossref_primary_10_1016_j_ultsonch_2024_107185
crossref_primary_10_1063_5_0209287
crossref_primary_10_1017_jfm_2022_698
crossref_primary_10_1016_j_jcp_2020_109377
crossref_primary_10_1063_5_0213166
crossref_primary_10_1063_5_0107299
crossref_primary_10_1063_5_0145499
crossref_primary_10_1103_PhysRevFluids_5_093604
crossref_primary_10_1557_mrs_2019_107
crossref_primary_10_3390_fluids8040131
crossref_primary_10_1063_1_5095148
crossref_primary_10_1016_j_enganabound_2023_11_012
crossref_primary_10_1016_j_oceaneng_2024_117118
crossref_primary_10_1063_5_0175807
crossref_primary_10_1134_S1995080223050256
crossref_primary_10_1063_5_0132104
crossref_primary_10_1007_s00348_020_03075_6
crossref_primary_10_1063_5_0043822
crossref_primary_10_1063_5_0075280
crossref_primary_10_1063_5_0157661
crossref_primary_10_1007_s10409_022_22099_x
crossref_primary_10_1063_5_0127709
crossref_primary_10_3390_fluids8070200
crossref_primary_10_1007_s00340_023_08163_z
crossref_primary_10_1016_j_apor_2024_104339
crossref_primary_10_3390_fluids7010002
crossref_primary_10_3390_fluids5020069
crossref_primary_10_1063_1_5088528
crossref_primary_10_1017_jfm_2022_223
crossref_primary_10_1063_5_0070847
crossref_primary_10_1126_sciadv_aax6192
crossref_primary_10_1016_j_oceaneng_2024_120258
crossref_primary_10_1063_5_0135924
crossref_primary_10_1088_1361_6595_ab9b33
crossref_primary_10_1017_jfm_2023_542
crossref_primary_10_1017_jfm_2024_1146
crossref_primary_10_1063_5_0220659
Cites_doi 10.1146/annurev.fl.19.010187.000531
10.1017/S0022112089002314
10.1007/BF00385946
10.1121/1.384720
10.1098/rsta.1999.0327
10.1017/jfm.2015.183
10.1017/S0022112086000745
10.1002/fld.2033
10.1017/S0334270000006111
10.1017/S0022112086000460
10.1063/1.1421102
10.1016/j.compfluid.2013.04.002
10.1146/annurev.fl.09.010177.001045
10.1017/S0022112098003589
10.1063/1.4812659
10.1017/S0022112006003296
10.1016/j.compfluid.2012.07.020
10.1017/jfm.2016.463
10.1006/jcph.2001.6726
10.1063/1.89495
10.1080/14786440808635681
10.1146/annurev.fluid.29.1.201
10.1121/1.3502464
10.1016/0021-9991(81)90145-5
10.1093/oso/9780195094091.001.0001
10.1007/s10404-012-1015-6
10.1017/S0022112093003027
10.1017/S0022112080002662
10.1121/1.396852
10.1146/annurev.fl.16.010184.001255
10.1016/j.jfluidstructs.2015.01.014
10.1017/S0022112010002430
10.1121/1.402855
10.1098/rspa.1996.0077
10.1016/j.compfluid.2009.04.004
10.1017/S0022112075003448
10.1063/1.1401810
10.1017/S0022112071001058
10.1007/978-3-642-34297-4_3
10.1017/S0022112002003695
10.1002/andp.19955070104
10.1017/S002211200200856X
10.1364/AO.27.001869
10.1007/s00161-011-0225-6
10.1121/1.2047147
10.1299/jfst.6.860
10.1023/A:1000711113941
10.1007/s00348-008-0603-4
10.1088/0034-4885/73/10/106501
10.1017/jfm.2014.105
10.1098/rsta.1966.0046
10.1146/annurev-fluid-010816-060221
10.1103/PhysRevE.85.066303
10.1017/S0022112098008738
10.1017/S0022112093003349
10.1029/JZ072i010p02665
10.1098/rsta.1997.0023
10.1017/S0022112009006351
10.1017/S0022112092000387
10.1017/jfm.2011.149
10.1098/rsfs.2015.0017
10.1017/S0022112086000988
10.1017/jfm.2012.132
10.1016/j.ultsonch.2006.10.009
10.1002/fld.3796
10.1007/978-94-017-8539-6_6
10.1121/1.4929687
10.1017/jfm.2014.394
10.1007/s00348-009-0743-1
10.1121/1.5017619
10.1103/PhysRevE.74.066307
10.1016/j.compfluid.2015.11.008
ContentType Journal Article
Copyright The Author(s) 2018. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2018
Copyright_xml – notice: The Author(s) 2018. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2018
DBID AAYXX
CITATION
DOI 10.1093/imamat/hxy015
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1464-3634
EndPage 589
ExternalDocumentID 10_1093_imamat_hxy015
10.1093/imamat/hxy015
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  funderid: 10.13039/501100001659
GroupedDBID -E4
-~X
.2P
.I3
0R~
18M
1TH
29I
4.4
482
48X
5GY
5VS
5WA
70D
AAIJN
AAJKP
AAJQQ
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
ABAZT
ABDBF
ABDFA
ABDTM
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABNKS
ABPQP
ABPTD
ABQLI
ABVGC
ABWST
ABXVV
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACUFI
ACUHS
ACUTJ
ACUXJ
ACYTK
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AFYAG
AGINJ
AGKEF
AGQXC
AGSYK
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AJNCP
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
ANAKG
APIBT
APWMN
ATGXG
AXUDD
AZVOD
BAYMD
BCRHZ
BEFXN
BEYMZ
BFFAM
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
CDBKE
CS3
CZ4
DAKXR
DILTD
DU5
D~K
EBS
EE~
EJD
ESX
F9B
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
H13
H5~
HAR
HW0
HZ~
I-F
IOX
J21
JAVBF
JXSIZ
KAQDR
KBUDW
KOP
KSI
KSN
M-Z
M43
M49
N9A
NGC
NMDNZ
NOMLY
NU-
O9-
OCL
ODMLO
OJQWA
OJZSN
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
ROL
ROX
ROZ
RUSNO
RW1
RXO
TJP
TN5
TUS
UPT
WH7
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
AAYXX
ABVLG
ADYJX
AGORE
AJBYB
AMVHM
CITATION
OXVGQ
ID FETCH-LOGICAL-c200t-6f223e6e70e27c7230f58d0f59b561f3b790a3a41ee967f68300a7fbc12bbb303
ISSN 0272-4960
IngestDate Tue Jul 01 01:59:17 EDT 2025
Thu Apr 24 22:49:55 EDT 2025
Wed Apr 02 07:05:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords volume of fluid method
jet formation
Euler equations
bubble dynamics
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/about_us/legal/notices) For permissions, please e-mail: journals. permissions@oup.com
http://academic.oup.com/journals/pages/about_us/legal/notices
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c200t-6f223e6e70e27c7230f58d0f59b561f3b790a3a41ee967f68300a7fbc12bbb303
PageCount 34
ParticipantIDs crossref_citationtrail_10_1093_imamat_hxy015
crossref_primary_10_1093_imamat_hxy015
oup_primary_10_1093_imamat_hxy015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180725
PublicationDateYYYYMMDD 2018-07-25
PublicationDate_xml – month: 07
  year: 2018
  text: 20180725
  day: 25
PublicationDecade 2010
PublicationTitle IMA journal of applied mathematics
PublicationYear 2018
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Benjamin ( key 20180723122942_C2) 1966; 260
Tong ( key 20180723122942_C77) 1999; 380
Lauterborn ( key 20180723122942_C45) 2010
Ochiai ( key 20180723122942_C60) 2011; 6
Feng ( key 20180723122942_C18) 1997; 29
Lauterborn ( key 20180723122942_C43) 1975; 72
Plesset ( key 20180723122942_C66) 1971; 47
Brujan ( key 20180723122942_C14) 2002; 14
Hsiao ( key 20180723122942_C29) 2014; 755
Tryggvason ( key 20180723122942_C78) 2001; 169
Brujan ( key 20180723122942_C13) 2012; 13
Lauterborn ( key 20180723122942_C40) 1974; 31
Reuter ( key 20180723122942_C73) 2017
Zein ( key 20180723122942_C87) 2013; 73
Leighton ( key 20180723122942_C50) 1994
Blake ( key 20180723122942_C6) 1987; 19
Müller ( key 20180723122942_C56) 2010; 62
Tsiglifis ( key 20180723122942_C79) 2007; 14
Best ( key 20180723122942_C4) 1992; 245
Keller ( key 20180723122942_C32) 1980; 68
Blake ( key 20180723122942_C9) 1986; 170
Obreschkow ( key 20180723122942_C59) 2013
Supponen ( key 20180723122942_C74) 2016; 802
Wang ( key 20180723122942_C86) 2011; 679
Obreschkow ( key 20180723122942_C58) 2011
Blake ( key 20180723122942_C10) 1998; 58
( key 20180723122942_C63) 2014
Prosperetti ( key 20180723122942_C70) 1986; 168
Zhang ( key 20180723122942_C89) 2015
Kapahi ( key 20180723122942_C31) 2015
Chahine ( key 20180723122942_C15) 2014; 106
Brennen ( key 20180723122942_C12) 1995
Lauterborn ( key 20180723122942_C46) 1984; 16
Blake ( key 20180723122942_C7) 1997; 355
Wang ( key 20180723122942_C85) 2010; 659
Bourne ( key 20180723122942_C11) 1996; 452
Rayleigh ( key 20180723122942_C72) 1917; 34
Vogel ( key 20180723122942_C81) 1988; 27
Miller ( key 20180723122942_C54) 2013; 87
Dreyer ( key 20180723122942_C17) 2012; 24
Lauterborn ( key 20180723122942_C44) 1977; 31
Obreschkow ( key 20180723122942_C57) 2012
Kröninger ( key 20180723122942_C36) 2010; 48
Lee ( key 20180723122942_C49) 2007; 570
Plesset ( key 20180723122942_C67) 1977; 9
Foundation ( key 20180723122942_C64) 2012
Lauterborn ( key 20180723122942_C47) 2013; 8
Kuttruff ( key 20180723122942_C38) 1962; 12
Lauterborn ( key 20180723122942_C42) 1982; 38
Lechner ( key 20180723122942_C48) 2017; 142
Koukouvinis ( key 20180723122942_C34) 2016
Philipp ( key 20180723122942_C65) 1998; 361
Gaitan ( key 20180723122942_C23) 1992; 91
Lauterborn ( key 20180723122942_C41) 1979; 41
Ohl ( key 20180723122942_C61) 1995; 4
Vogel ( key 20180723122942_C80) 1988; 84
Fong ( key 20180723122942_C19) 2009; 46
Wang ( key 20180723122942_C84) 2014; 745
Ohl ( key 20180723122942_C62) 1999; 357
Prosperetti ( key 20180723122942_C69) 2017; 49
Müller ( key 20180723122942_C55) 2009; 38
Wang ( key 20180723122942_C83) 2013; 25
Koch ( key 20180723122942_C33) 2016; 126
Marrone ( key 20180723122942_C53) 2015; 54
Han ( key 20180723122942_C26) 2015; 771
Fuster ( key 20180723122942_C21) 2009
Vogel ( key 20180723122942_C82) 1989; 206
Geisler ( key 20180723122942_C24) 2003
Krieger ( key 20180723122942_C35) 2005; 118
Akhatov ( key 20180723122942_C1) 2001; 13
Hirt ( key 20180723122942_C28) 1981; 39
Lauer ( key 20180723122942_C39) 2012; 69
Tomita ( key 20180723122942_C76) 1990; 71
Gilmore ( key 20180723122942_C25) 1952
Fuster ( key 20180723122942_C22) 2011; 129
Johnsen ( key 20180723122942_C30) 2009; 629
Best ( key 20180723122942_C3) 1993; 251
Rattray ( key 20180723122942_C71) 1951
Blake ( key 20180723122942_C8) 2015; 5
Tomita ( key 20180723122942_C75) 1986; 169
Blake ( key 20180723122942_C5) 1988; 30
Fujikawa ( key 20180723122942_C20) 1980; 97
Crum ( key 20180723122942_C16) 2015; 138
Hawker ( key 20180723122942_C27) 2012; 701
Zhang ( key 20180723122942_C88) 1993; 257
Lindau ( key 20180723122942_C52) 2003; 479
Popinet ( key 20180723122942_C68) 2002; 464
Kurz ( key 20180723122942_C37) 2006
Y-H ( key 20180723122942_C51) 1967; 72
References_xml – volume: 19
  start-page: 99
  year: 1987
  ident: key 20180723122942_C6
  article-title: Cavitation bubbles near boundaries
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fl.19.010187.000531
– volume: 206
  start-page: 299
  year: 1989
  ident: key 20180723122942_C82
  article-title: Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112089002314
– volume: 38
  start-page: 165
  year: 1982
  ident: key 20180723122942_C42
  article-title: Cavitation bubble dynamics new tools for an intricate problem
  publication-title: Appl. Scient. Res.
  doi: 10.1007/BF00385946
– volume: 68
  start-page: 628
  year: 1980
  ident: key 20180723122942_C32
  article-title: Bubble oscillations of large amplitude
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.384720
– volume: 357
  start-page: 269
  year: 1999
  ident: key 20180723122942_C62
  article-title: Bubble dynamics, shock waves and sonoluminescence
  publication-title: Phil. Trans. R. Soc. Lond. A
  doi: 10.1098/rsta.1999.0327
– start-page: 204501-1
  volume-title: Phys. Rev. Lett.
  year: 2011
  ident: key 20180723122942_C58
  article-title: Universal scaling law for jets of collapsing bubbles
– volume: 771
  start-page: 706
  year: 2015
  ident: key 20180723122942_C26
  article-title: Dynamics of laser-induced bubble pairs
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2015.183
– volume: 169
  start-page: 535
  year: 1986
  ident: key 20180723122942_C75
  article-title: Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112086000745
– start-page: 15003-1
  volume-title: Exp. Fluids
  year: 2013
  ident: key 20180723122942_C59
  article-title: The quest for the most spherical bubble: experimental setup and data overview
– year: 1952
  ident: key 20180723122942_C25
  article-title: The growth or collapse of a spherical bubble in a viscous compressible liquid
– volume: 62
  start-page: 591
  year: 2010
  ident: key 20180723122942_C56
  article-title: Numerical simulation of a single bubble by compressible two-phase fluids
  publication-title: Int. J. Num. Meth. Fluids
  doi: 10.1002/fld.2033
– start-page: 012128-1
  volume-title: J. Phys. Conf. Series
  year: 2015
  ident: key 20180723122942_C31
  article-title: Shock-induced bubble collapse versus Rayleigh collapse
– volume: 30
  start-page: 127
  year: 1988
  ident: key 20180723122942_C5
  article-title: The Kelvin impulse: application to cavitation bubble dynamics
  publication-title: J. Austral. Math. Soc. B
  doi: 10.1017/S0334270000006111
– volume: 168
  start-page: 457
  year: 1986
  ident: key 20180723122942_C70
  article-title: Bubble dynamics in a compressible liquid
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112086000460
– volume: 14
  start-page: 85
  year: 2002
  ident: key 20180723122942_C14
  article-title: The final stages of collapse of a cavitation bubble close to a rigid boundary
  publication-title: Phys. Fluids
  doi: 10.1063/1.1421102
– volume: 87
  start-page: 132
  year: 2013
  ident: key 20180723122942_C54
  article-title: A pressure-based, compressible, two-phase flow finite volume method for underwater explosions
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2013.04.002
– volume: 9
  start-page: 145
  year: 1977
  ident: key 20180723122942_C67
  article-title: Bubble dynamics and cavitation
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fl.09.010177.001045
– volume: 380
  start-page: 339
  year: 1999
  ident: key 20180723122942_C77
  article-title: The role of ‘splashing’ in the collapse of a laser-generated cavity near a rigid boundary
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112098003589
– volume: 25
  start-page: 072104-1
  year: 2013
  ident: key 20180723122942_C83
  article-title: Non-spherical bubble dynamics of underwater explosions in a compressible fluid
  publication-title: Phys. Fluids
  doi: 10.1063/1.4812659
– volume: 570
  start-page: 407
  year: 2007
  ident: key 20180723122942_C49
  article-title: On the boundary integral method for the rebounding bubble
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112006003296
– volume: 69
  start-page: 1
  year: 2012
  ident: key 20180723122942_C39
  article-title: Numerical modelling and investigation of symmetric and asymmetric cavitation bubble dynamics
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2012.07.020
– volume: 802
  start-page: 263
  year: 2016
  ident: key 20180723122942_C74
  article-title: Scaling laws of jets of single cavitation bubbles
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2016.463
– year: 2014
  ident: key 20180723122942_C63
– year: 2003
  ident: key 20180723122942_C24
  article-title: Untersuchungen zur laserinduzierten Kavitation mit Nanosekunden- und Femtosekundenlasern (Investigation of laser-induced cavitation with nanosecond and femtosecond laser light). Ph.D. Thesis,
– volume: 169
  start-page: 708
  year: 2001
  ident: key 20180723122942_C78
  article-title: A front-tracking method for the computations of multiphase flow
  publication-title: J. Comp. Phys.
  doi: 10.1006/jcph.2001.6726
– volume: 31
  start-page: 663
  year: 1977
  ident: key 20180723122942_C44
  article-title: High-speed holography of laser-induced breakdown in liquids
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.89495
– volume: 34
  start-page: 94
  year: 1917
  ident: key 20180723122942_C72
  article-title: On the pressure developed in a liquid during the collapse of a spherical cavity
  publication-title: Phil. Mag.
  doi: 10.1080/14786440808635681
– volume: 29
  start-page: 201
  year: 1997
  ident: key 20180723122942_C18
  article-title: Nonlinear bubble dynamics
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.29.1.201
– volume: 129
  start-page: 122
  year: 2011
  ident: key 20180723122942_C22
  article-title: Liquid compressibility effects during the collapse of a single cavitating bubble
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3502464
– volume: 71
  start-page: 161
  year: 1990
  ident: key 20180723122942_C76
  article-title: High-speed photographic observations of laser-induced cavitation bubbles in water
  publication-title: Acustica
– volume: 39
  start-page: 201
  year: 1981
  ident: key 20180723122942_C28
  article-title: Volume of fluid (VOF) method for the dynamics of free boundaries
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(81)90145-5
– volume-title: Cavitation and Bubble Dynamics
  year: 1995
  ident: key 20180723122942_C12
  doi: 10.1093/oso/9780195094091.001.0001
– volume: 13
  start-page: 957
  year: 2012
  ident: key 20180723122942_C13
  article-title: Collapse of micrometer-sized cavitation bubbles near a rigid boundary
  publication-title: Microfluid Nanofluid
  doi: 10.1007/s10404-012-1015-6
– volume: 257
  start-page: 147
  year: 1993
  ident: key 20180723122942_C88
  article-title: The final stage of the collapse of a cavitation bubble near a rigid wall
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112093003027
– volume: 97
  start-page: 481
  year: 1980
  ident: key 20180723122942_C20
  article-title: Effects of the non-equilibrium condensation of vapour on the pressure wave produced by the collapse of a bubble in a liquid
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112080002662
– volume: 84
  start-page: 719
  year: 1988
  ident: key 20180723122942_C80
  article-title: Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.396852
– start-page: 065001-1
  volume-title: Fluid Dyn. Res.
  year: 2009
  ident: key 20180723122942_C21
  article-title: Numerical simulation of droplets, bubbles and waves: state of the art
– volume: 16
  start-page: 223
  year: 1984
  ident: key 20180723122942_C46
  article-title: Modern optical techniques in fluid mechanics
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fl.16.010184.001255
– volume: 54
  start-page: 802
  year: 2015
  ident: key 20180723122942_C53
  article-title: Prediction of energy losses in water impacts using incompressible and weakly compressible models
  publication-title: J. Fluid Struct.
  doi: 10.1016/j.jfluidstructs.2015.01.014
– volume: 659
  start-page: 191
  year: 2010
  ident: key 20180723122942_C85
  article-title: Non-spherical bubble dynamics in a compressible liquid. Part 1. Travelling acoustic wave
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112010002430
– volume: 91
  start-page: 3166
  year: 1992
  ident: key 20180723122942_C23
  article-title: Sonoluminescence and bubble dynamics for a single, stable cavitation bubble
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.402855
– volume: 452
  start-page: 1497
  year: 1996
  ident: key 20180723122942_C11
  article-title: The impact and penetration of a water surface by a liquid jet
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspa.1996.0077
– volume: 38
  start-page: 1850
  year: 2009
  ident: key 20180723122942_C55
  article-title: Comparison and validation of compressible flow simulations of laser-induced cavitation bubbles
  publication-title: Comp. Fluids
  doi: 10.1016/j.compfluid.2009.04.004
– volume: 72
  start-page: 391
  year: 1975
  ident: key 20180723122942_C43
  article-title: Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112075003448
– volume: 13
  start-page: 2805
  year: 2001
  ident: key 20180723122942_C1
  article-title: Collapse and rebound of a laser-induced cavitation bubble
  publication-title: Phys. Fluids
  doi: 10.1063/1.1401810
– volume: 47
  start-page: 283
  year: 1971
  ident: key 20180723122942_C66
  article-title: Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112071001058
– volume: 8
  start-page: 67
  year: 2013
  ident: key 20180723122942_C47
  article-title: Shock wave emission by laser generated bubbles
  publication-title: Bubble Dynamics & Shock Waves (C. F. Delale ed.), SHOCKWAVES
  doi: 10.1007/978-3-642-34297-4_3
– volume: 479
  start-page: 327
  year: 2003
  ident: key 20180723122942_C52
  article-title: Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112002003695
– volume: 4
  start-page: 26
  year: 1995
  ident: key 20180723122942_C61
  article-title: Cavitation bubble collapse studied at 20 million frames per second
  publication-title: Ann. Physik
  doi: 10.1002/andp.19955070104
– volume: 464
  start-page: 137
  year: 2002
  ident: key 20180723122942_C68
  article-title: Bubble collapse near a solid boundary: a numerical study of the influence of viscosity
  publication-title: J. Fluid Mech.
  doi: 10.1017/S002211200200856X
– volume: 27
  start-page: 1869
  year: 1988
  ident: key 20180723122942_C81
  article-title: Time-resolved particle image velocimetry used in the investigation of cavitation bubble dynamics
  publication-title: Appl. Opt.
  doi: 10.1364/AO.27.001869
– volume: 24
  start-page: 461
  year: 2012
  ident: key 20180723122942_C17
  article-title: Bubbles in liquids with phase transition. Part 1. On phase change of a single vapor bubble in liquid water
  publication-title: Continuum Mech. Thermodyn.
  doi: 10.1007/s00161-011-0225-6
– volume: 118
  start-page: 2961
  year: 2005
  ident: key 20180723122942_C35
  article-title: Acoustic signals of underwater explosions near surfaces
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2047147
– volume: 6
  start-page: 860
  year: 2011
  ident: key 20180723122942_C60
  article-title: Numerical analysis of nonspherical bubble collapse behavior and induced impulsive pressure during first and second collapses near the wall boundary
  publication-title: J. Fluid Sci. Technol.
  doi: 10.1299/jfst.6.860
– volume: 58
  start-page: 77
  year: 1998
  ident: key 20180723122942_C10
  article-title: The art, craft and science of modelling jet impact in a collapsing cavitation bubble
  publication-title: Appl. Scient. Res.
  doi: 10.1023/A:1000711113941
– volume: 31
  start-page: 51
  year: 1974
  ident: key 20180723122942_C40
  article-title: Kavitation durch Laserlicht (Laser-induced cavitation)
  publication-title: Acustica
– volume: 46
  start-page: 705
  year: 2009
  ident: key 20180723122942_C19
  article-title: Interactions of multiple spark-generated bubbles with phase differences
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-008-0603-4
– volume-title: Rep. Prog. Phys.
  year: 2010
  ident: key 20180723122942_C45
  article-title: Physics of bubble oscillations.
  doi: 10.1088/0034-4885/73/10/106501
– volume: 745
  start-page: 509
  year: 2014
  ident: key 20180723122942_C84
  article-title: Multi-oscillations of a bubble in a compressible liquid near a rigid boundary
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2014.105
– start-page: 062102-1
  volume-title: Phys. Fluids
  year: 2015
  ident: key 20180723122942_C89
  article-title: Study on splitting of a toroidal bubble near a rigid boundary
– volume: 260
  start-page: 221
  year: 1966
  ident: key 20180723122942_C2
  article-title: The collapse of cavitation bubbles and the pressure thereby produced against solid boundaries
  publication-title: Phil. Trans. R. Soc. Lond. A
  doi: 10.1098/rsta.1966.0046
– volume: 49
  start-page: 221
  year: 2017
  ident: key 20180723122942_C69
  article-title: Vapor bubbles
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-010816-060221
– volume-title: The Acoustic Bubble
  year: 1994
  ident: key 20180723122942_C50
– start-page: 1.1
  year: 2012
  ident: key 20180723122942_C64
  publication-title: Open FOAM - The Open Source CFD Toolbox - User Guide, vers. 2
– start-page: 032110-1
  volume-title: Phys. Fluids
  year: 2016
  ident: key 20180723122942_C34
  article-title: Numerical simulation of a collapsing bubble subject to gravity
– volume-title: Phys. Rev. E
  year: 2012
  ident: key 20180723122942_C57
  article-title: Analytical approximation for the collapse of an empty spherical bubble
  doi: 10.1103/PhysRevE.85.066303
– volume: 361
  start-page: 75
  year: 1998
  ident: key 20180723122942_C65
  article-title: Cavitation erosion by single laser-produced bubbles
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112098008738
– volume: 251
  start-page: 79
  year: 1993
  ident: key 20180723122942_C3
  article-title: The formation of toroidal bubbles upon the collapse of transient cavities
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112093003349
– volume: 12
  start-page: 230
  year: 1962
  ident: key 20180723122942_C38
  article-title: Über den Zusammenhang zwischen der Sonolumineszenz und der Schwingungskavitation in Flüssigkeiten (On the connection between sonoluminescence and acoustic cavitation)
  publication-title: Acustica
– volume: 72
  start-page: 2665
  year: 1967
  ident: key 20180723122942_C51
  article-title: Equation of state of water and sea water
  publication-title: J. Geophys. Res.
  doi: 10.1029/JZ072i010p02665
– volume: 355
  start-page: 537
  year: 1997
  ident: key 20180723122942_C7
  article-title: Collapsing cavities, toroidal bubbles and jet impact
  publication-title: Phil. Trans. R. Soc. Lond. A
  doi: 10.1098/rsta.1997.0023
– volume: 629
  start-page: 231
  year: 2009
  ident: key 20180723122942_C30
  article-title: Numerical simulations of non-spherical bubble collapse
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112009006351
– volume: 245
  start-page: 137
  year: 1992
  ident: key 20180723122942_C4
  article-title: A numerical investigation of nonspherical rebounding bubbles
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112092000387
– volume: 679
  start-page: 559
  year: 2011
  ident: key 20180723122942_C86
  article-title: Non-spherical bubble dynamics in a compressible liquid. Part 2. Acoustic standing wave
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2011.149
– volume: 5
  start-page: 20150017-1
  year: 2015
  ident: key 20180723122942_C8
  article-title: Cavitation and bubble dynamics: the Kelvin impulse and its applications
  publication-title: Interface Focus
  doi: 10.1098/rsfs.2015.0017
– volume: 170
  start-page: 479
  year: 1986
  ident: key 20180723122942_C9
  article-title: Transient cavities near boundaries. Part 1. Rigid boundary
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112086000988
– volume: 701
  start-page: 59
  year: 2012
  ident: key 20180723122942_C27
  article-title: Interaction of a strong shockwave with a gas bubble in a liquid medium: a numerical study
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2012.132
– volume: 14
  start-page: 456
  year: 2007
  ident: key 20180723122942_C79
  article-title: Numerical simulation of aspherical collapse of laser and acoustically generated bubbles
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2006.10.009
– volume: 73
  start-page: 172
  year: 2013
  ident: key 20180723122942_C87
  article-title: On the modeling and simulation of a laser-induced cavitation bubble
  publication-title: Int. J. Num. Meth. Fluids
  doi: 10.1002/fld.3796
– volume: 106
  start-page: 123
  year: 2014
  ident: key 20180723122942_C15
  article-title: Modeling of cavitation dynamics and interaction with material. Advanced Experimental and Numerical Techniques for Cavitation Erosion Prediction (K. H. Kim, G. L. Chahine, J. P. Franc & A. Karimi eds)
  publication-title: Fluid Mechanics and Its Applications
  doi: 10.1007/978-94-017-8539-6_6
– volume: 138
  start-page: 2181
  year: 2015
  ident: key 20180723122942_C16
  article-title: Resource paper: sonoluminescence
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.4929687
– volume: 755
  start-page: 142
  year: 2014
  ident: key 20180723122942_C29
  article-title: Modelling of material pitting from cavitation bubble collapse
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2014.394
– volume: 48
  start-page: 395
  year: 2010
  ident: key 20180723122942_C36
  article-title: Particle tracking velocimetry of the flow field around a collapsing cavitation bubble
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-009-0743-1
– volume: 41
  start-page: C8-273
  year: 1979
  ident: key 20180723122942_C41
  article-title: Optic cavitation
  publication-title: J. Physique
– volume: 142
  start-page: 3649
  year: 2017
  ident: key 20180723122942_C48
  article-title: Pressure and tension waves from bubble collapse near a solid boundary: a numerical approach
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.5017619
– year: 1951
  ident: key 20180723122942_C71
  article-title: Perturbation effects in cavitation bubble dynamics. Ph.D. Thesis
– volume-title: Phys. Rev. E
  year: 2006
  ident: key 20180723122942_C37
  article-title: Optic cavitation in an ultrasonic field
  doi: 10.1103/PhysRevE.74.066307
– volume: 126
  start-page: 71
  year: 2016
  ident: key 20180723122942_C33
  article-title: Numerical modeling of laser generated cavitation bubbles with the finite volume and volume of fluid method, using OpenFOAM
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2015.11.008
– start-page: 064202-1
  volume-title: Phys. Rev. Fluids
  year: 2017
  ident: key 20180723122942_C73
  article-title: Flow fields and vortex dynamics of bubbles collapsing near a solid boundary
SSID ssj0001570
Score 2.3468049
Snippet Abstract In analytical and numerical studies on bubbles in liquids, often the Rayleigh initial condition of a spherical bubble at maximum radius is used: the...
SourceID crossref
oup
SourceType Enrichment Source
Index Database
Publisher
StartPage 556
Title Bubble models and real bubbles: Rayleigh and energy-deposit cases in a Tait-compressible liquid
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFLa68rI9TOymMdjkSdNemCEXx2n21m4g2OieisZbZLu2iARhq1IJ-C382B37mDQdF7G9WJHjHik5X88t50LIB9fCSxRqylKZgoOiYsGUEJZxbcFgtlMd-fKx8Q-xd8i_HWVHvd5VJ2tp3qgtfXlrXcn_cBX2gK-uSvYfONsShQ24Bv7CChyG9UE8Hs2VK3zy02yw1_LM9QlWfhtz3cAhd8FPf9P4Oj82NT5Ta1ODAvPZsHJzIquGuexynxXraJ5Uv-fV0hDP_fGw22dCBvP1tO372lrnB9LNiQBweYn208zqRQrwgQvlh-LD4yBgWmx9P8PBVGN53gLBNKHNAeaAd6MU8cCFP7GiOQizJE8YL3B2wJZBYcsFZ6kIwcwgjXGsTUAd74jWLBMdLZ3h4KEbCgCbY1WnEh4cLo7PLyIsF11utf2XCmwTE_GTfFoigRJ__oisJOCEJH2yMhx9He22mj7OcozhhWcLPVyBwDYS2EYCSzaPq6PsmDCTVfI0-B50iEB6Rnqmfk6ejBcMfEFKhBRFSFFADXWQogFSn-k1oPytZUBRDyha1VTSG4CiCKiX5HB3Z_Jlj4UZHEzDP61hwoL9aITJI5PkOgeH1WaDKSyFAsvbpiovIplKHhtTiNyKQRpFMrdKx4lSCuyjV6Rfn9XmNaFaW50kkXYzB3iswDQVsbTa6MyC0zDga-TT9VsqdWhQ7-aknJS3cmWNfGyP_8LOLHcdfA-v_P4zbx5KbJ08XsB7g_Sb2dy8BbO0Ue8COv4AC7CVwg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bubble+models+and+real+bubbles%3A+Rayleigh+and+energy-deposit+cases+in+a+Tait-compressible+liquid&rft.jtitle=IMA+journal+of+applied+mathematics&rft.au=Lauterborn%2C+Werner&rft.au=Lechner%2C+Christiane&rft.au=Koch%2C+Max&rft.au=Mettin%2C+Robert&rft.date=2018-07-25&rft.issn=0272-4960&rft.eissn=1464-3634&rft.volume=83&rft.issue=4&rft.spage=556&rft.epage=589&rft_id=info:doi/10.1093%2Fimamat%2Fhxy015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_imamat_hxy015
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-4960&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-4960&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-4960&client=summon