Bubble models and real bubbles: Rayleigh and energy-deposit cases in a Tait-compressible liquid
Abstract In analytical and numerical studies on bubbles in liquids, often the Rayleigh initial condition of a spherical bubble at maximum radius is used: the Rayleigh case. This condition cannot be realized in practice, instead the bubbles need first to be generated and expanded. The energy-deposit...
Saved in:
Published in | IMA journal of applied mathematics Vol. 83; no. 4; pp. 556 - 589 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford University Press
25.07.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0272-4960 1464-3634 |
DOI | 10.1093/imamat/hxy015 |
Cover
Loading…
Abstract | Abstract
In analytical and numerical studies on bubbles in liquids, often the Rayleigh initial condition of a spherical bubble at maximum radius is used: the Rayleigh case. This condition cannot be realized in practice, instead the bubbles need first to be generated and expanded. The energy-deposit case with its initial condition of a small, spherical bubble of high internal pressure that expands into water at atmospheric pressure is studied for comparison with the Rayleigh case. From the many possible configurations, a single bubble near a flat solid boundary is chosen as this is a basic configuration to study erosion and cleaning phenomena. The bubble contains a small amount of non-condensable gas obeying an adiabatic law. The water is compressible according to the Tait equation. The Euler equations in axial symmetry are solved with the help of the open source software package OpenFOAM, based on the finite volume method. The volume of fluid method is used for interface capturing. Rayleigh bubbles of $R_\mathrm{max} = 500\,\mu $m and energy-deposit bubbles that reach $R_\mathrm{max} = 500\,\mu $m after expansion in an unbounded liquid are compared with respect to microjet velocity, microjet impact pressure and microjet impact times, when placed or being generated near a flat solid boundary. Velocity and pressure fields from the impact zone are given to demonstrate the sequence of phenomena from axial liquid microjet impact via annular gas-jet and annular liquid-nanojet formation to the Blake splash and the first torus-bubble splitting. Normalized distances $D^{\ast } = D/R_\mathrm{max}$ (D = initial distance of the bubble centre from the boundary) between 1.02 and 1.5 are studied. Rayleigh bubbles show a stronger collapse with about 50% higher microjet impact velocities and also significantly higher microjet impact pressures. |
---|---|
AbstractList | Abstract
In analytical and numerical studies on bubbles in liquids, often the Rayleigh initial condition of a spherical bubble at maximum radius is used: the Rayleigh case. This condition cannot be realized in practice, instead the bubbles need first to be generated and expanded. The energy-deposit case with its initial condition of a small, spherical bubble of high internal pressure that expands into water at atmospheric pressure is studied for comparison with the Rayleigh case. From the many possible configurations, a single bubble near a flat solid boundary is chosen as this is a basic configuration to study erosion and cleaning phenomena. The bubble contains a small amount of non-condensable gas obeying an adiabatic law. The water is compressible according to the Tait equation. The Euler equations in axial symmetry are solved with the help of the open source software package OpenFOAM, based on the finite volume method. The volume of fluid method is used for interface capturing. Rayleigh bubbles of $R_\mathrm{max} = 500\,\mu $m and energy-deposit bubbles that reach $R_\mathrm{max} = 500\,\mu $m after expansion in an unbounded liquid are compared with respect to microjet velocity, microjet impact pressure and microjet impact times, when placed or being generated near a flat solid boundary. Velocity and pressure fields from the impact zone are given to demonstrate the sequence of phenomena from axial liquid microjet impact via annular gas-jet and annular liquid-nanojet formation to the Blake splash and the first torus-bubble splitting. Normalized distances $D^{\ast } = D/R_\mathrm{max}$ (D = initial distance of the bubble centre from the boundary) between 1.02 and 1.5 are studied. Rayleigh bubbles show a stronger collapse with about 50% higher microjet impact velocities and also significantly higher microjet impact pressures. |
Author | Mettin, Robert Lechner, Christiane Koch, Max Lauterborn, Werner |
Author_xml | – sequence: 1 givenname: Werner surname: Lauterborn fullname: Lauterborn, Werner email: Werner.Lauterborn@phys.uni-goettingen.de organization: Drittes Physikalisches Institut, Universität Göttingen, Göttingen, Germany – sequence: 2 givenname: Christiane surname: Lechner fullname: Lechner, Christiane organization: Drittes Physikalisches Institut, Universität Göttingen, Göttingen, Germany – sequence: 3 givenname: Max surname: Koch fullname: Koch, Max organization: Drittes Physikalisches Institut, Universität Göttingen, Göttingen, Germany – sequence: 4 givenname: Robert surname: Mettin fullname: Mettin, Robert organization: Drittes Physikalisches Institut, Universität Göttingen, Göttingen, Germany |
BookMark | eNqFkE1LAzEQhoMo2FaP3nP0EjtJtknXmxa_oCBIPS_J7qSN7JfJFtx_77brSRAvMzDzvO_hmZLTuqmRkCsONxxSOfeVqUw33331wBcnZMITlTCpZHJKJiC0YEmq4JxMY_wAGBANE5Ld760tkVZNgWWkpi5oQFNSezzHW_pm-hL9dnd8YY1h27MC2yb6juYmYqS-poZujO9Y3lRtwBj9obH0n3tfXJAzZ8qIlz97Rt4fHzarZ7Z-fXpZ3a1ZLgA6ppwQEhVqQKFzLSS4xbIYRmoXijtpdQpGmoQjpko7tZQARjubc2GtlSBnRI69eWhiDOiy3Hem803dBePLjEN2cJSNjrLR0ZBiv1JtGIjQ_8lfj3yzb_9BvwFB7H0g |
CitedBy_id | crossref_primary_10_1016_j_oceaneng_2019_106414 crossref_primary_10_1134_S1995080223050268 crossref_primary_10_1016_j_ultsonch_2024_106816 crossref_primary_10_1103_PhysRevFluids_4_021601 crossref_primary_10_1007_s00348_023_03759_9 crossref_primary_10_1016_j_ijmultiphaseflow_2018_12_014 crossref_primary_10_1016_j_ijmultiphaseflow_2021_103618 crossref_primary_10_1017_jfm_2019_938 crossref_primary_10_1063_5_0063048 crossref_primary_10_1063_5_0136577 crossref_primary_10_1007_s00348_023_03569_z crossref_primary_10_1016_j_ultsonch_2024_107185 crossref_primary_10_1063_5_0209287 crossref_primary_10_1017_jfm_2022_698 crossref_primary_10_1016_j_jcp_2020_109377 crossref_primary_10_1063_5_0213166 crossref_primary_10_1063_5_0107299 crossref_primary_10_1063_5_0145499 crossref_primary_10_1103_PhysRevFluids_5_093604 crossref_primary_10_1557_mrs_2019_107 crossref_primary_10_3390_fluids8040131 crossref_primary_10_1063_1_5095148 crossref_primary_10_1016_j_enganabound_2023_11_012 crossref_primary_10_1016_j_oceaneng_2024_117118 crossref_primary_10_1063_5_0175807 crossref_primary_10_1134_S1995080223050256 crossref_primary_10_1063_5_0132104 crossref_primary_10_1007_s00348_020_03075_6 crossref_primary_10_1063_5_0043822 crossref_primary_10_1063_5_0075280 crossref_primary_10_1063_5_0157661 crossref_primary_10_1007_s10409_022_22099_x crossref_primary_10_1063_5_0127709 crossref_primary_10_3390_fluids8070200 crossref_primary_10_1007_s00340_023_08163_z crossref_primary_10_1016_j_apor_2024_104339 crossref_primary_10_3390_fluids7010002 crossref_primary_10_3390_fluids5020069 crossref_primary_10_1063_1_5088528 crossref_primary_10_1017_jfm_2022_223 crossref_primary_10_1063_5_0070847 crossref_primary_10_1126_sciadv_aax6192 crossref_primary_10_1016_j_oceaneng_2024_120258 crossref_primary_10_1063_5_0135924 crossref_primary_10_1088_1361_6595_ab9b33 crossref_primary_10_1017_jfm_2023_542 crossref_primary_10_1017_jfm_2024_1146 crossref_primary_10_1063_5_0220659 |
Cites_doi | 10.1146/annurev.fl.19.010187.000531 10.1017/S0022112089002314 10.1007/BF00385946 10.1121/1.384720 10.1098/rsta.1999.0327 10.1017/jfm.2015.183 10.1017/S0022112086000745 10.1002/fld.2033 10.1017/S0334270000006111 10.1017/S0022112086000460 10.1063/1.1421102 10.1016/j.compfluid.2013.04.002 10.1146/annurev.fl.09.010177.001045 10.1017/S0022112098003589 10.1063/1.4812659 10.1017/S0022112006003296 10.1016/j.compfluid.2012.07.020 10.1017/jfm.2016.463 10.1006/jcph.2001.6726 10.1063/1.89495 10.1080/14786440808635681 10.1146/annurev.fluid.29.1.201 10.1121/1.3502464 10.1016/0021-9991(81)90145-5 10.1093/oso/9780195094091.001.0001 10.1007/s10404-012-1015-6 10.1017/S0022112093003027 10.1017/S0022112080002662 10.1121/1.396852 10.1146/annurev.fl.16.010184.001255 10.1016/j.jfluidstructs.2015.01.014 10.1017/S0022112010002430 10.1121/1.402855 10.1098/rspa.1996.0077 10.1016/j.compfluid.2009.04.004 10.1017/S0022112075003448 10.1063/1.1401810 10.1017/S0022112071001058 10.1007/978-3-642-34297-4_3 10.1017/S0022112002003695 10.1002/andp.19955070104 10.1017/S002211200200856X 10.1364/AO.27.001869 10.1007/s00161-011-0225-6 10.1121/1.2047147 10.1299/jfst.6.860 10.1023/A:1000711113941 10.1007/s00348-008-0603-4 10.1088/0034-4885/73/10/106501 10.1017/jfm.2014.105 10.1098/rsta.1966.0046 10.1146/annurev-fluid-010816-060221 10.1103/PhysRevE.85.066303 10.1017/S0022112098008738 10.1017/S0022112093003349 10.1029/JZ072i010p02665 10.1098/rsta.1997.0023 10.1017/S0022112009006351 10.1017/S0022112092000387 10.1017/jfm.2011.149 10.1098/rsfs.2015.0017 10.1017/S0022112086000988 10.1017/jfm.2012.132 10.1016/j.ultsonch.2006.10.009 10.1002/fld.3796 10.1007/978-94-017-8539-6_6 10.1121/1.4929687 10.1017/jfm.2014.394 10.1007/s00348-009-0743-1 10.1121/1.5017619 10.1103/PhysRevE.74.066307 10.1016/j.compfluid.2015.11.008 |
ContentType | Journal Article |
Copyright | The Author(s) 2018. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2018 |
Copyright_xml | – notice: The Author(s) 2018. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2018 |
DBID | AAYXX CITATION |
DOI | 10.1093/imamat/hxy015 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1464-3634 |
EndPage | 589 |
ExternalDocumentID | 10_1093_imamat_hxy015 10.1093/imamat/hxy015 |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft funderid: 10.13039/501100001659 |
GroupedDBID | -E4 -~X .2P .I3 0R~ 18M 1TH 29I 4.4 482 48X 5GY 5VS 5WA 70D AAIJN AAJKP AAJQQ AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP ABAZT ABDBF ABDFA ABDTM ABEJV ABEUO ABGNP ABIXL ABJNI ABNKS ABPQP ABPTD ABQLI ABVGC ABWST ABXVV ABZBJ ACGFO ACGFS ACGOD ACIWK ACUFI ACUHS ACUTJ ACUXJ ACYTK ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRDM ADRTK ADVEK ADYVW ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFIYH AFOFC AFYAG AGINJ AGKEF AGQXC AGSYK AHXPO AIAGR AIJHB AJEEA AJEUX AJNCP ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX ANAKG APIBT APWMN ATGXG AXUDD AZVOD BAYMD BCRHZ BEFXN BEYMZ BFFAM BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN CDBKE CS3 CZ4 DAKXR DILTD DU5 D~K EBS EE~ EJD ESX F9B FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC H13 H5~ HAR HW0 HZ~ I-F IOX J21 JAVBF JXSIZ KAQDR KBUDW KOP KSI KSN M-Z M43 M49 N9A NGC NMDNZ NOMLY NU- O9- OCL ODMLO OJQWA OJZSN P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 ROL ROX ROZ RUSNO RW1 RXO TJP TN5 TUS UPT WH7 X7H YAYTL YKOAZ YXANX ZKX ~91 AAYXX ABVLG ADYJX AGORE AJBYB AMVHM CITATION OXVGQ |
ID | FETCH-LOGICAL-c200t-6f223e6e70e27c7230f58d0f59b561f3b790a3a41ee967f68300a7fbc12bbb303 |
ISSN | 0272-4960 |
IngestDate | Tue Jul 01 01:59:17 EDT 2025 Thu Apr 24 22:49:55 EDT 2025 Wed Apr 02 07:05:38 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | volume of fluid method jet formation Euler equations bubble dynamics |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/about_us/legal/notices) For permissions, please e-mail: journals. permissions@oup.com http://academic.oup.com/journals/pages/about_us/legal/notices |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c200t-6f223e6e70e27c7230f58d0f59b561f3b790a3a41ee967f68300a7fbc12bbb303 |
PageCount | 34 |
ParticipantIDs | crossref_citationtrail_10_1093_imamat_hxy015 crossref_primary_10_1093_imamat_hxy015 oup_primary_10_1093_imamat_hxy015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180725 |
PublicationDateYYYYMMDD | 2018-07-25 |
PublicationDate_xml | – month: 07 year: 2018 text: 20180725 day: 25 |
PublicationDecade | 2010 |
PublicationTitle | IMA journal of applied mathematics |
PublicationYear | 2018 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Benjamin ( key 20180723122942_C2) 1966; 260 Tong ( key 20180723122942_C77) 1999; 380 Lauterborn ( key 20180723122942_C45) 2010 Ochiai ( key 20180723122942_C60) 2011; 6 Feng ( key 20180723122942_C18) 1997; 29 Lauterborn ( key 20180723122942_C43) 1975; 72 Plesset ( key 20180723122942_C66) 1971; 47 Brujan ( key 20180723122942_C14) 2002; 14 Hsiao ( key 20180723122942_C29) 2014; 755 Tryggvason ( key 20180723122942_C78) 2001; 169 Brujan ( key 20180723122942_C13) 2012; 13 Lauterborn ( key 20180723122942_C40) 1974; 31 Reuter ( key 20180723122942_C73) 2017 Zein ( key 20180723122942_C87) 2013; 73 Leighton ( key 20180723122942_C50) 1994 Blake ( key 20180723122942_C6) 1987; 19 Müller ( key 20180723122942_C56) 2010; 62 Tsiglifis ( key 20180723122942_C79) 2007; 14 Best ( key 20180723122942_C4) 1992; 245 Keller ( key 20180723122942_C32) 1980; 68 Blake ( key 20180723122942_C9) 1986; 170 Obreschkow ( key 20180723122942_C59) 2013 Supponen ( key 20180723122942_C74) 2016; 802 Wang ( key 20180723122942_C86) 2011; 679 Obreschkow ( key 20180723122942_C58) 2011 Blake ( key 20180723122942_C10) 1998; 58 ( key 20180723122942_C63) 2014 Prosperetti ( key 20180723122942_C70) 1986; 168 Zhang ( key 20180723122942_C89) 2015 Kapahi ( key 20180723122942_C31) 2015 Chahine ( key 20180723122942_C15) 2014; 106 Brennen ( key 20180723122942_C12) 1995 Lauterborn ( key 20180723122942_C46) 1984; 16 Blake ( key 20180723122942_C7) 1997; 355 Wang ( key 20180723122942_C85) 2010; 659 Bourne ( key 20180723122942_C11) 1996; 452 Rayleigh ( key 20180723122942_C72) 1917; 34 Vogel ( key 20180723122942_C81) 1988; 27 Miller ( key 20180723122942_C54) 2013; 87 Dreyer ( key 20180723122942_C17) 2012; 24 Lauterborn ( key 20180723122942_C44) 1977; 31 Obreschkow ( key 20180723122942_C57) 2012 Kröninger ( key 20180723122942_C36) 2010; 48 Lee ( key 20180723122942_C49) 2007; 570 Plesset ( key 20180723122942_C67) 1977; 9 Foundation ( key 20180723122942_C64) 2012 Lauterborn ( key 20180723122942_C47) 2013; 8 Kuttruff ( key 20180723122942_C38) 1962; 12 Lauterborn ( key 20180723122942_C42) 1982; 38 Lechner ( key 20180723122942_C48) 2017; 142 Koukouvinis ( key 20180723122942_C34) 2016 Philipp ( key 20180723122942_C65) 1998; 361 Gaitan ( key 20180723122942_C23) 1992; 91 Lauterborn ( key 20180723122942_C41) 1979; 41 Ohl ( key 20180723122942_C61) 1995; 4 Vogel ( key 20180723122942_C80) 1988; 84 Fong ( key 20180723122942_C19) 2009; 46 Wang ( key 20180723122942_C84) 2014; 745 Ohl ( key 20180723122942_C62) 1999; 357 Prosperetti ( key 20180723122942_C69) 2017; 49 Müller ( key 20180723122942_C55) 2009; 38 Wang ( key 20180723122942_C83) 2013; 25 Koch ( key 20180723122942_C33) 2016; 126 Marrone ( key 20180723122942_C53) 2015; 54 Han ( key 20180723122942_C26) 2015; 771 Fuster ( key 20180723122942_C21) 2009 Vogel ( key 20180723122942_C82) 1989; 206 Geisler ( key 20180723122942_C24) 2003 Krieger ( key 20180723122942_C35) 2005; 118 Akhatov ( key 20180723122942_C1) 2001; 13 Hirt ( key 20180723122942_C28) 1981; 39 Lauer ( key 20180723122942_C39) 2012; 69 Tomita ( key 20180723122942_C76) 1990; 71 Gilmore ( key 20180723122942_C25) 1952 Fuster ( key 20180723122942_C22) 2011; 129 Johnsen ( key 20180723122942_C30) 2009; 629 Best ( key 20180723122942_C3) 1993; 251 Rattray ( key 20180723122942_C71) 1951 Blake ( key 20180723122942_C8) 2015; 5 Tomita ( key 20180723122942_C75) 1986; 169 Blake ( key 20180723122942_C5) 1988; 30 Fujikawa ( key 20180723122942_C20) 1980; 97 Crum ( key 20180723122942_C16) 2015; 138 Hawker ( key 20180723122942_C27) 2012; 701 Zhang ( key 20180723122942_C88) 1993; 257 Lindau ( key 20180723122942_C52) 2003; 479 Popinet ( key 20180723122942_C68) 2002; 464 Kurz ( key 20180723122942_C37) 2006 Y-H ( key 20180723122942_C51) 1967; 72 |
References_xml | – volume: 19 start-page: 99 year: 1987 ident: key 20180723122942_C6 article-title: Cavitation bubbles near boundaries publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fl.19.010187.000531 – volume: 206 start-page: 299 year: 1989 ident: key 20180723122942_C82 article-title: Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary publication-title: J. Fluid Mech. doi: 10.1017/S0022112089002314 – volume: 38 start-page: 165 year: 1982 ident: key 20180723122942_C42 article-title: Cavitation bubble dynamics new tools for an intricate problem publication-title: Appl. Scient. Res. doi: 10.1007/BF00385946 – volume: 68 start-page: 628 year: 1980 ident: key 20180723122942_C32 article-title: Bubble oscillations of large amplitude publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.384720 – volume: 357 start-page: 269 year: 1999 ident: key 20180723122942_C62 article-title: Bubble dynamics, shock waves and sonoluminescence publication-title: Phil. Trans. R. Soc. Lond. A doi: 10.1098/rsta.1999.0327 – start-page: 204501-1 volume-title: Phys. Rev. Lett. year: 2011 ident: key 20180723122942_C58 article-title: Universal scaling law for jets of collapsing bubbles – volume: 771 start-page: 706 year: 2015 ident: key 20180723122942_C26 article-title: Dynamics of laser-induced bubble pairs publication-title: J. Fluid Mech. doi: 10.1017/jfm.2015.183 – volume: 169 start-page: 535 year: 1986 ident: key 20180723122942_C75 article-title: Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse publication-title: J. Fluid Mech. doi: 10.1017/S0022112086000745 – start-page: 15003-1 volume-title: Exp. Fluids year: 2013 ident: key 20180723122942_C59 article-title: The quest for the most spherical bubble: experimental setup and data overview – year: 1952 ident: key 20180723122942_C25 article-title: The growth or collapse of a spherical bubble in a viscous compressible liquid – volume: 62 start-page: 591 year: 2010 ident: key 20180723122942_C56 article-title: Numerical simulation of a single bubble by compressible two-phase fluids publication-title: Int. J. Num. Meth. Fluids doi: 10.1002/fld.2033 – start-page: 012128-1 volume-title: J. Phys. Conf. Series year: 2015 ident: key 20180723122942_C31 article-title: Shock-induced bubble collapse versus Rayleigh collapse – volume: 30 start-page: 127 year: 1988 ident: key 20180723122942_C5 article-title: The Kelvin impulse: application to cavitation bubble dynamics publication-title: J. Austral. Math. Soc. B doi: 10.1017/S0334270000006111 – volume: 168 start-page: 457 year: 1986 ident: key 20180723122942_C70 article-title: Bubble dynamics in a compressible liquid publication-title: J. Fluid Mech. doi: 10.1017/S0022112086000460 – volume: 14 start-page: 85 year: 2002 ident: key 20180723122942_C14 article-title: The final stages of collapse of a cavitation bubble close to a rigid boundary publication-title: Phys. Fluids doi: 10.1063/1.1421102 – volume: 87 start-page: 132 year: 2013 ident: key 20180723122942_C54 article-title: A pressure-based, compressible, two-phase flow finite volume method for underwater explosions publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2013.04.002 – volume: 9 start-page: 145 year: 1977 ident: key 20180723122942_C67 article-title: Bubble dynamics and cavitation publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fl.09.010177.001045 – volume: 380 start-page: 339 year: 1999 ident: key 20180723122942_C77 article-title: The role of ‘splashing’ in the collapse of a laser-generated cavity near a rigid boundary publication-title: J. Fluid Mech. doi: 10.1017/S0022112098003589 – volume: 25 start-page: 072104-1 year: 2013 ident: key 20180723122942_C83 article-title: Non-spherical bubble dynamics of underwater explosions in a compressible fluid publication-title: Phys. Fluids doi: 10.1063/1.4812659 – volume: 570 start-page: 407 year: 2007 ident: key 20180723122942_C49 article-title: On the boundary integral method for the rebounding bubble publication-title: J. Fluid Mech. doi: 10.1017/S0022112006003296 – volume: 69 start-page: 1 year: 2012 ident: key 20180723122942_C39 article-title: Numerical modelling and investigation of symmetric and asymmetric cavitation bubble dynamics publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2012.07.020 – volume: 802 start-page: 263 year: 2016 ident: key 20180723122942_C74 article-title: Scaling laws of jets of single cavitation bubbles publication-title: J. Fluid Mech. doi: 10.1017/jfm.2016.463 – year: 2014 ident: key 20180723122942_C63 – year: 2003 ident: key 20180723122942_C24 article-title: Untersuchungen zur laserinduzierten Kavitation mit Nanosekunden- und Femtosekundenlasern (Investigation of laser-induced cavitation with nanosecond and femtosecond laser light). Ph.D. Thesis, – volume: 169 start-page: 708 year: 2001 ident: key 20180723122942_C78 article-title: A front-tracking method for the computations of multiphase flow publication-title: J. Comp. Phys. doi: 10.1006/jcph.2001.6726 – volume: 31 start-page: 663 year: 1977 ident: key 20180723122942_C44 article-title: High-speed holography of laser-induced breakdown in liquids publication-title: Appl. Phys. Lett. doi: 10.1063/1.89495 – volume: 34 start-page: 94 year: 1917 ident: key 20180723122942_C72 article-title: On the pressure developed in a liquid during the collapse of a spherical cavity publication-title: Phil. Mag. doi: 10.1080/14786440808635681 – volume: 29 start-page: 201 year: 1997 ident: key 20180723122942_C18 article-title: Nonlinear bubble dynamics publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.29.1.201 – volume: 129 start-page: 122 year: 2011 ident: key 20180723122942_C22 article-title: Liquid compressibility effects during the collapse of a single cavitating bubble publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.3502464 – volume: 71 start-page: 161 year: 1990 ident: key 20180723122942_C76 article-title: High-speed photographic observations of laser-induced cavitation bubbles in water publication-title: Acustica – volume: 39 start-page: 201 year: 1981 ident: key 20180723122942_C28 article-title: Volume of fluid (VOF) method for the dynamics of free boundaries publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(81)90145-5 – volume-title: Cavitation and Bubble Dynamics year: 1995 ident: key 20180723122942_C12 doi: 10.1093/oso/9780195094091.001.0001 – volume: 13 start-page: 957 year: 2012 ident: key 20180723122942_C13 article-title: Collapse of micrometer-sized cavitation bubbles near a rigid boundary publication-title: Microfluid Nanofluid doi: 10.1007/s10404-012-1015-6 – volume: 257 start-page: 147 year: 1993 ident: key 20180723122942_C88 article-title: The final stage of the collapse of a cavitation bubble near a rigid wall publication-title: J. Fluid Mech. doi: 10.1017/S0022112093003027 – volume: 97 start-page: 481 year: 1980 ident: key 20180723122942_C20 article-title: Effects of the non-equilibrium condensation of vapour on the pressure wave produced by the collapse of a bubble in a liquid publication-title: J. Fluid Mech. doi: 10.1017/S0022112080002662 – volume: 84 start-page: 719 year: 1988 ident: key 20180723122942_C80 article-title: Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.396852 – start-page: 065001-1 volume-title: Fluid Dyn. Res. year: 2009 ident: key 20180723122942_C21 article-title: Numerical simulation of droplets, bubbles and waves: state of the art – volume: 16 start-page: 223 year: 1984 ident: key 20180723122942_C46 article-title: Modern optical techniques in fluid mechanics publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fl.16.010184.001255 – volume: 54 start-page: 802 year: 2015 ident: key 20180723122942_C53 article-title: Prediction of energy losses in water impacts using incompressible and weakly compressible models publication-title: J. Fluid Struct. doi: 10.1016/j.jfluidstructs.2015.01.014 – volume: 659 start-page: 191 year: 2010 ident: key 20180723122942_C85 article-title: Non-spherical bubble dynamics in a compressible liquid. Part 1. Travelling acoustic wave publication-title: J. Fluid Mech. doi: 10.1017/S0022112010002430 – volume: 91 start-page: 3166 year: 1992 ident: key 20180723122942_C23 article-title: Sonoluminescence and bubble dynamics for a single, stable cavitation bubble publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.402855 – volume: 452 start-page: 1497 year: 1996 ident: key 20180723122942_C11 article-title: The impact and penetration of a water surface by a liquid jet publication-title: Proc. R. Soc. Lond. A doi: 10.1098/rspa.1996.0077 – volume: 38 start-page: 1850 year: 2009 ident: key 20180723122942_C55 article-title: Comparison and validation of compressible flow simulations of laser-induced cavitation bubbles publication-title: Comp. Fluids doi: 10.1016/j.compfluid.2009.04.004 – volume: 72 start-page: 391 year: 1975 ident: key 20180723122942_C43 article-title: Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary publication-title: J. Fluid Mech. doi: 10.1017/S0022112075003448 – volume: 13 start-page: 2805 year: 2001 ident: key 20180723122942_C1 article-title: Collapse and rebound of a laser-induced cavitation bubble publication-title: Phys. Fluids doi: 10.1063/1.1401810 – volume: 47 start-page: 283 year: 1971 ident: key 20180723122942_C66 article-title: Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary publication-title: J. Fluid Mech. doi: 10.1017/S0022112071001058 – volume: 8 start-page: 67 year: 2013 ident: key 20180723122942_C47 article-title: Shock wave emission by laser generated bubbles publication-title: Bubble Dynamics & Shock Waves (C. F. Delale ed.), SHOCKWAVES doi: 10.1007/978-3-642-34297-4_3 – volume: 479 start-page: 327 year: 2003 ident: key 20180723122942_C52 article-title: Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall publication-title: J. Fluid Mech. doi: 10.1017/S0022112002003695 – volume: 4 start-page: 26 year: 1995 ident: key 20180723122942_C61 article-title: Cavitation bubble collapse studied at 20 million frames per second publication-title: Ann. Physik doi: 10.1002/andp.19955070104 – volume: 464 start-page: 137 year: 2002 ident: key 20180723122942_C68 article-title: Bubble collapse near a solid boundary: a numerical study of the influence of viscosity publication-title: J. Fluid Mech. doi: 10.1017/S002211200200856X – volume: 27 start-page: 1869 year: 1988 ident: key 20180723122942_C81 article-title: Time-resolved particle image velocimetry used in the investigation of cavitation bubble dynamics publication-title: Appl. Opt. doi: 10.1364/AO.27.001869 – volume: 24 start-page: 461 year: 2012 ident: key 20180723122942_C17 article-title: Bubbles in liquids with phase transition. Part 1. On phase change of a single vapor bubble in liquid water publication-title: Continuum Mech. Thermodyn. doi: 10.1007/s00161-011-0225-6 – volume: 118 start-page: 2961 year: 2005 ident: key 20180723122942_C35 article-title: Acoustic signals of underwater explosions near surfaces publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.2047147 – volume: 6 start-page: 860 year: 2011 ident: key 20180723122942_C60 article-title: Numerical analysis of nonspherical bubble collapse behavior and induced impulsive pressure during first and second collapses near the wall boundary publication-title: J. Fluid Sci. Technol. doi: 10.1299/jfst.6.860 – volume: 58 start-page: 77 year: 1998 ident: key 20180723122942_C10 article-title: The art, craft and science of modelling jet impact in a collapsing cavitation bubble publication-title: Appl. Scient. Res. doi: 10.1023/A:1000711113941 – volume: 31 start-page: 51 year: 1974 ident: key 20180723122942_C40 article-title: Kavitation durch Laserlicht (Laser-induced cavitation) publication-title: Acustica – volume: 46 start-page: 705 year: 2009 ident: key 20180723122942_C19 article-title: Interactions of multiple spark-generated bubbles with phase differences publication-title: Exp. Fluids doi: 10.1007/s00348-008-0603-4 – volume-title: Rep. Prog. Phys. year: 2010 ident: key 20180723122942_C45 article-title: Physics of bubble oscillations. doi: 10.1088/0034-4885/73/10/106501 – volume: 745 start-page: 509 year: 2014 ident: key 20180723122942_C84 article-title: Multi-oscillations of a bubble in a compressible liquid near a rigid boundary publication-title: J. Fluid Mech. doi: 10.1017/jfm.2014.105 – start-page: 062102-1 volume-title: Phys. Fluids year: 2015 ident: key 20180723122942_C89 article-title: Study on splitting of a toroidal bubble near a rigid boundary – volume: 260 start-page: 221 year: 1966 ident: key 20180723122942_C2 article-title: The collapse of cavitation bubbles and the pressure thereby produced against solid boundaries publication-title: Phil. Trans. R. Soc. Lond. A doi: 10.1098/rsta.1966.0046 – volume: 49 start-page: 221 year: 2017 ident: key 20180723122942_C69 article-title: Vapor bubbles publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-010816-060221 – volume-title: The Acoustic Bubble year: 1994 ident: key 20180723122942_C50 – start-page: 1.1 year: 2012 ident: key 20180723122942_C64 publication-title: Open FOAM - The Open Source CFD Toolbox - User Guide, vers. 2 – start-page: 032110-1 volume-title: Phys. Fluids year: 2016 ident: key 20180723122942_C34 article-title: Numerical simulation of a collapsing bubble subject to gravity – volume-title: Phys. Rev. E year: 2012 ident: key 20180723122942_C57 article-title: Analytical approximation for the collapse of an empty spherical bubble doi: 10.1103/PhysRevE.85.066303 – volume: 361 start-page: 75 year: 1998 ident: key 20180723122942_C65 article-title: Cavitation erosion by single laser-produced bubbles publication-title: J. Fluid Mech. doi: 10.1017/S0022112098008738 – volume: 251 start-page: 79 year: 1993 ident: key 20180723122942_C3 article-title: The formation of toroidal bubbles upon the collapse of transient cavities publication-title: J. Fluid Mech. doi: 10.1017/S0022112093003349 – volume: 12 start-page: 230 year: 1962 ident: key 20180723122942_C38 article-title: Über den Zusammenhang zwischen der Sonolumineszenz und der Schwingungskavitation in Flüssigkeiten (On the connection between sonoluminescence and acoustic cavitation) publication-title: Acustica – volume: 72 start-page: 2665 year: 1967 ident: key 20180723122942_C51 article-title: Equation of state of water and sea water publication-title: J. Geophys. Res. doi: 10.1029/JZ072i010p02665 – volume: 355 start-page: 537 year: 1997 ident: key 20180723122942_C7 article-title: Collapsing cavities, toroidal bubbles and jet impact publication-title: Phil. Trans. R. Soc. Lond. A doi: 10.1098/rsta.1997.0023 – volume: 629 start-page: 231 year: 2009 ident: key 20180723122942_C30 article-title: Numerical simulations of non-spherical bubble collapse publication-title: J. Fluid Mech. doi: 10.1017/S0022112009006351 – volume: 245 start-page: 137 year: 1992 ident: key 20180723122942_C4 article-title: A numerical investigation of nonspherical rebounding bubbles publication-title: J. Fluid Mech. doi: 10.1017/S0022112092000387 – volume: 679 start-page: 559 year: 2011 ident: key 20180723122942_C86 article-title: Non-spherical bubble dynamics in a compressible liquid. Part 2. Acoustic standing wave publication-title: J. Fluid Mech. doi: 10.1017/jfm.2011.149 – volume: 5 start-page: 20150017-1 year: 2015 ident: key 20180723122942_C8 article-title: Cavitation and bubble dynamics: the Kelvin impulse and its applications publication-title: Interface Focus doi: 10.1098/rsfs.2015.0017 – volume: 170 start-page: 479 year: 1986 ident: key 20180723122942_C9 article-title: Transient cavities near boundaries. Part 1. Rigid boundary publication-title: J. Fluid Mech. doi: 10.1017/S0022112086000988 – volume: 701 start-page: 59 year: 2012 ident: key 20180723122942_C27 article-title: Interaction of a strong shockwave with a gas bubble in a liquid medium: a numerical study publication-title: J. Fluid Mech. doi: 10.1017/jfm.2012.132 – volume: 14 start-page: 456 year: 2007 ident: key 20180723122942_C79 article-title: Numerical simulation of aspherical collapse of laser and acoustically generated bubbles publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2006.10.009 – volume: 73 start-page: 172 year: 2013 ident: key 20180723122942_C87 article-title: On the modeling and simulation of a laser-induced cavitation bubble publication-title: Int. J. Num. Meth. Fluids doi: 10.1002/fld.3796 – volume: 106 start-page: 123 year: 2014 ident: key 20180723122942_C15 article-title: Modeling of cavitation dynamics and interaction with material. Advanced Experimental and Numerical Techniques for Cavitation Erosion Prediction (K. H. Kim, G. L. Chahine, J. P. Franc & A. Karimi eds) publication-title: Fluid Mechanics and Its Applications doi: 10.1007/978-94-017-8539-6_6 – volume: 138 start-page: 2181 year: 2015 ident: key 20180723122942_C16 article-title: Resource paper: sonoluminescence publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.4929687 – volume: 755 start-page: 142 year: 2014 ident: key 20180723122942_C29 article-title: Modelling of material pitting from cavitation bubble collapse publication-title: J. Fluid Mech. doi: 10.1017/jfm.2014.394 – volume: 48 start-page: 395 year: 2010 ident: key 20180723122942_C36 article-title: Particle tracking velocimetry of the flow field around a collapsing cavitation bubble publication-title: Exp. Fluids doi: 10.1007/s00348-009-0743-1 – volume: 41 start-page: C8-273 year: 1979 ident: key 20180723122942_C41 article-title: Optic cavitation publication-title: J. Physique – volume: 142 start-page: 3649 year: 2017 ident: key 20180723122942_C48 article-title: Pressure and tension waves from bubble collapse near a solid boundary: a numerical approach publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.5017619 – year: 1951 ident: key 20180723122942_C71 article-title: Perturbation effects in cavitation bubble dynamics. Ph.D. Thesis – volume-title: Phys. Rev. E year: 2006 ident: key 20180723122942_C37 article-title: Optic cavitation in an ultrasonic field doi: 10.1103/PhysRevE.74.066307 – volume: 126 start-page: 71 year: 2016 ident: key 20180723122942_C33 article-title: Numerical modeling of laser generated cavitation bubbles with the finite volume and volume of fluid method, using OpenFOAM publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2015.11.008 – start-page: 064202-1 volume-title: Phys. Rev. Fluids year: 2017 ident: key 20180723122942_C73 article-title: Flow fields and vortex dynamics of bubbles collapsing near a solid boundary |
SSID | ssj0001570 |
Score | 2.3468049 |
Snippet | Abstract
In analytical and numerical studies on bubbles in liquids, often the Rayleigh initial condition of a spherical bubble at maximum radius is used: the... |
SourceID | crossref oup |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 556 |
Title | Bubble models and real bubbles: Rayleigh and energy-deposit cases in a Tait-compressible liquid |
Volume | 83 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFLa68rI9TOymMdjkSdNemCEXx2n21m4g2OieisZbZLu2iARhq1IJ-C382B37mDQdF7G9WJHjHik5X88t50LIB9fCSxRqylKZgoOiYsGUEJZxbcFgtlMd-fKx8Q-xd8i_HWVHvd5VJ2tp3qgtfXlrXcn_cBX2gK-uSvYfONsShQ24Bv7CChyG9UE8Hs2VK3zy02yw1_LM9QlWfhtz3cAhd8FPf9P4Oj82NT5Ta1ODAvPZsHJzIquGuexynxXraJ5Uv-fV0hDP_fGw22dCBvP1tO372lrnB9LNiQBweYn208zqRQrwgQvlh-LD4yBgWmx9P8PBVGN53gLBNKHNAeaAd6MU8cCFP7GiOQizJE8YL3B2wJZBYcsFZ6kIwcwgjXGsTUAd74jWLBMdLZ3h4KEbCgCbY1WnEh4cLo7PLyIsF11utf2XCmwTE_GTfFoigRJ__oisJOCEJH2yMhx9He22mj7OcozhhWcLPVyBwDYS2EYCSzaPq6PsmDCTVfI0-B50iEB6Rnqmfk6ejBcMfEFKhBRFSFFADXWQogFSn-k1oPytZUBRDyha1VTSG4CiCKiX5HB3Z_Jlj4UZHEzDP61hwoL9aITJI5PkOgeH1WaDKSyFAsvbpiovIplKHhtTiNyKQRpFMrdKx4lSCuyjV6Rfn9XmNaFaW50kkXYzB3iswDQVsbTa6MyC0zDga-TT9VsqdWhQ7-aknJS3cmWNfGyP_8LOLHcdfA-v_P4zbx5KbJ08XsB7g_Sb2dy8BbO0Ue8COv4AC7CVwg |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bubble+models+and+real+bubbles%3A+Rayleigh+and+energy-deposit+cases+in+a+Tait-compressible+liquid&rft.jtitle=IMA+journal+of+applied+mathematics&rft.au=Lauterborn%2C+Werner&rft.au=Lechner%2C+Christiane&rft.au=Koch%2C+Max&rft.au=Mettin%2C+Robert&rft.date=2018-07-25&rft.issn=0272-4960&rft.eissn=1464-3634&rft.volume=83&rft.issue=4&rft.spage=556&rft.epage=589&rft_id=info:doi/10.1093%2Fimamat%2Fhxy015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_imamat_hxy015 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-4960&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-4960&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-4960&client=summon |