Grain Coarsening of Columnar Iron Polycrystals by Repetitive Cold Work and Annealing
Experimental studies on single crystals of pure metals are essential for understanding the mechanisms governing their plastic deformation as well as for interpretations of these observations using theoretical and atomistic models. Iron is especially interesting, because its low-temperature plastic r...
Saved in:
Published in | Metallurgical and materials transactions. A, Physical metallurgy and materials science Vol. 54; no. 2; pp. 439 - 449 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.02.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Experimental studies on single crystals of pure metals are essential for understanding the mechanisms governing their plastic deformation as well as for interpretations of these observations using theoretical and atomistic models. Iron is especially interesting, because its low-temperature plastic response may be affected by ferromagnetism. However, the growth of large single crystals of iron from the melt is notoriously difficult due to the allotropic transformation between its face-centered and body-centered cubic phases. An alternative route is to start with polycrystalline iron of high purity and subject it to one or more cycles of cold work and subsequent annealing. This process is demonstrated here by utilizing 99.99 pct pure polycrystalline electrolytic iron with initially strong columnar microstructure. We investigate how the final grain size depends on the number of cold work cycles, annealing time in vacuum, and annealing temperature. The size distribution and characters of individual grains are assessed on etched samples using the electron backscatter diffraction analysis. The largest grains obtained by this process have the characteristic sizes above 2 mm and require four cycles of cold work, each followed by annealing at 870 °C for 8 hours. The probability density of grain sizes after optimal combination of cold work and annealing is well approximated by log-normal distribution. These results constitute guidelines to optimal processing of columnar polycrystals for further extraction of single-crystalline samples. |
---|---|
AbstractList | Experimental studies on single crystals of pure metals are essential for understanding the mechanisms governing their plastic deformation as well as for interpretations of these observations using theoretical and atomistic models. Iron is especially interesting, because its low-temperature plastic response may be affected by ferromagnetism. However, the growth of large single crystals of iron from the melt is notoriously difficult due to the allotropic transformation between its face-centered and body-centered cubic phases. An alternative route is to start with polycrystalline iron of high purity and subject it to one or more cycles of cold work and subsequent annealing. This process is demonstrated here by utilizing 99.99 pct pure polycrystalline electrolytic iron with initially strong columnar microstructure. We investigate how the final grain size depends on the number of cold work cycles, annealing time in vacuum, and annealing temperature. The size distribution and characters of individual grains are assessed on etched samples using the electron backscatter diffraction analysis. The largest grains obtained by this process have the characteristic sizes above 2 mm and require four cycles of cold work, each followed by annealing at 870 °C for 8 hours. The probability density of grain sizes after optimal combination of cold work and annealing is well approximated by log-normal distribution. These results constitute guidelines to optimal processing of columnar polycrystals for further extraction of single-crystalline samples. Experimental studies on single crystals of pure metals are essential for understanding the mechanisms governing their plastic deformation as well as for interpretations of these observations using theoretical and atomistic models. Iron is especially interesting, because its low-temperature plastic response may be affected by ferromagnetism. However, the growth of large single crystals of iron from the melt is notoriously difficult due to the allotropic transformation between its face-centered and body-centered cubic phases. An alternative route is to start with polycrystalline iron of high purity and subject it to one or more cycles of cold work and subsequent annealing. This process is demonstrated here by utilizing 99.99 pct pure polycrystalline electrolytic iron with initially strong columnar microstructure. We investigate how the final grain size depends on the number of cold work cycles, annealing time in vacuum, and annealing temperature. The size distribution and characters of individual grains are assessed on etched samples using the electron backscatter diffraction analysis. The largest grains obtained by this process have the characteristic sizes above 2 mm and require four cycles of cold work, each followed by annealing at 870 °C for 8 hours. The probability density of grain sizes after optimal combination of cold work and annealing is well approximated by log-normal distribution. These results constitute guidelines to optimal processing of columnar polycrystals for further extraction of single-crystalline samples. |
Author | Holzer, Jakub Husťák, Miroslav Hegrová, Jitka Gröger, Roman |
Author_xml | – sequence: 1 givenname: Jakub surname: Holzer fullname: Holzer, Jakub email: holzer@ipm.cz organization: Institute of Physics of Materials and CEITEC IPM, Czech Academy of Sciences – sequence: 2 givenname: Miroslav surname: Husťák fullname: Husťák, Miroslav organization: Institute of Physics of Materials and CEITEC IPM, Czech Academy of Sciences – sequence: 3 givenname: Jitka surname: Hegrová fullname: Hegrová, Jitka organization: Transport Research Centre – sequence: 4 givenname: Roman surname: Gröger fullname: Gröger, Roman organization: Institute of Physics of Materials and CEITEC IPM, Czech Academy of Sciences |
BookMark | eNp9kMFKAzEQhoNUsK2-gKeA5-hMspt0j6VoLRQUKXgM2W22bN0mNdkK-_amruDN08zAN_8w34SMnHeWkFuEewRQDxFRSmTAOQM5k5LBBRljngmGRQaj1IMSLJdcXJFJjHsAwELIMdksg2kcXXgTonWN21Ffp6k9HZwJdBW8o6--7avQx860kZY9fbNH2zVd82XP4Ja--_BBjdvSuXPWtCnjmlzWCbY3v3VKNk-Pm8UzW78sV4v5mlUcoGPSQJbPKlUKa9Eok9UcK2FMCdzIMq-zqhB5eqa0IFVteaZQKCFAokLJQUzJ3RB7DP7zZGOn9_4UXLqouZLJCwIvEsUHqgo-xmBrfQzNwYReI-izPD3I00me_pGnz9FiWIoJdjsb_qL_2foGdHBygw |
Cites_doi | 10.1016/0025-5416(71)90042-5 10.1016/j.jmrt.2020.07.065 10.1016/j.actamat.2014.06.028 10.1002/crat.19670020205 10.1016/j.scriptamat.2008.04.049 10.1016/j.jallcom.2020.157390 10.1016/0022-0248(75)90009-3 10.1016/j.scriptamat.2006.02.028 10.1016/0026-0800(69)90042-1 10.1016/0001-6160(68)90064-3 10.1007/BF00548166 10.1016/0001-6160(57)90136-0 10.1126/science.1098627 10.1007/s11661-022-06742-x 10.1016/j.jcrysgro.2018.01.010 10.1088/1757-899X/219/1/012039 10.1016/0026-0800(72)90018-3 10.1016/0022-0248(70)90112-0 10.1007/BF00932404 10.1080/14786435.2014.984004 10.1016/S0032-5910(98)00197-1 10.1016/j.actamat.2007.07.019 10.1038/118266a0 10.1007/BF02667297 10.2320/matertrans.M2013227 10.1179/cmq.1974.13.1.275 10.1016/0025-5408(67)90097-9 |
ContentType | Journal Article |
Copyright | The Minerals, Metals & Materials Society and ASM International 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Minerals, Metals & Materials Society and ASM International 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 3V. 4T- 4U- 7SR 7XB 88I 8AF 8AO 8BQ 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO GNUQQ GUQSH HCIFZ JG9 KB. L6V M2O M2P M7S MBDVC PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0X |
DOI | 10.1007/s11661-022-06866-0 |
DatabaseName | CrossRef ProQuest Central (Corporate) Docstoc University Readers Engineered Materials Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central (ProQuest) Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central ProQuest Central Student Research Library Prep SciTech Premium Collection Materials Research Database Materials Science Database ProQuest Engineering Collection ProQuest Research Library Science Database ProQuest Engineering Database (NC LIVE) Research Library (Corporate) Materials Science Collection (ProQuest) ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic SIRS Editorial |
DatabaseTitle | CrossRef Materials Research Database University Readers Research Library Prep ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials SIRS Editorial Materials Science Collection ProQuest AP Science ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Research Library ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection METADEX ProQuest One Academic UKI Edition Docstoc Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1543-1940 |
EndPage | 449 |
ExternalDocumentID | 10_1007_s11661_022_06866_0 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06C 06D 0R~ 0VY 123 199 1SB 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 40D 40E 5VS 67Z 6NX 6TJ 78A 88I 8AF 8AO 8FE 8FG 8FW 8G5 8UJ 8WZ 95- 95. 95~ 96X A6W AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBEA ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIDUJ AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ CAG CCPQU COF CS3 CSCUP CZ9 D1I DDRTE DNIVK DPUIP DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GUQSH H13 HCIFZ HF~ HG5 HG6 HMJXF HRMNR HVGLF HZ~ I-F IJ- IKXTQ ITM IWAJR IXC IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KB. KC. KDC KOV L6V LLZTM M2O M2P M2Q M4Y M7S MA- N2Q N9A NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9N PDBOC PF0 PQQKQ PRG PROAC PT4 PT5 PTHSS PZZ Q2X QF4 QM1 QN7 QO4 QOK QOR QOS R89 R9I RHV RIG RNI RNS ROL RPX RSV RWL RZK S0X S16 S1Z S26 S27 S28 S3B SAP SC5 SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TSG TSK TSV TUC TUS U2A UG4 ULE UOJIU UTJUX UZXMN VC2 VFIZW W48 W4F WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8W Z8Z Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ACMFV ADHKG AFDZB AFOHR AGQPQ AHPBZ ATHPR AYFIA CITATION PHGZM PHGZT 4T- 4U- 7SR 7XB 8BQ 8FD 8FK ABRTQ JG9 MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c200t-6a0458c7b3ee1a7a4f21c3aab02a6b5f4c935866be067fe24713733061716203 |
IEDL.DBID | U2A |
ISSN | 1073-5623 |
IngestDate | Fri Jul 25 19:07:51 EDT 2025 Tue Jul 01 02:52:41 EDT 2025 Fri Feb 21 02:46:23 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c200t-6a0458c7b3ee1a7a4f21c3aab02a6b5f4c935866be067fe24713733061716203 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2761001029 |
PQPubID | 49316 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2761001029 crossref_primary_10_1007_s11661_022_06866_0 springer_journals_10_1007_s11661_022_06866_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230200 2023-02-00 20230201 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 2 year: 2023 text: 20230200 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Metallurgical and materials transactions. A, Physical metallurgy and materials science |
PublicationTitleAbbrev | Metall Mater Trans A |
PublicationYear | 2023 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | SchmidtSNielsenSFGundlachCMarguliesLHuangXJuul JensenDScience20043052292321:CAS:528:DC%2BD2cXlsV2gsb8%3D10.1126/science.1098627 ThompsonAWMetallography1972536636910.1016/0026-0800(72)90018-3 JinSKangBKongTHongSHShinHJRuoffoRSJ. Alloys Compd.202185315739010.1016/j.jallcom.2020.157390 ZhangZWChenGChenGLActa Mater.200755598859981:CAS:528:DC%2BD2sXhtVKrsb7O10.1016/j.actamat.2007.07.019 SimmonsMJHLangstonPABurbidgeASPowder Technol.199910275831:CAS:528:DyaK1MXhs1artb4%3D10.1016/S0032-5910(98)00197-1 AlmeidaDRRiosPRZöllnerDSandimHRZJ. Mater. Res. Technol.2020911099111101:CAS:528:DC%2BB3cXhsFaisrnJ10.1016/j.jmrt.2020.07.065 HenslerJHJ. Inst. Met.196896190192 FosterCRMetall. Mater. Trans. A202253A35071110.1007/s11661-022-06742-x SmithCSGuttmanLJ. Met.195358187 Van BoxelSSchmidtSLudwigWZhangYBJuul JensenDPantleonWMater. Trans.20145512813610.2320/matertrans.M2013227 LubitzKGöltzGAppl. Phys.1979192372391:CAS:528:DyaE1MXks1Knt7g%3D10.1007/BF00932404 BhadeshiaHKDHHoneycombeRSteels—Microstructure and Properties20063OxfordButterworth-Heinemann116 CarpenterHCHNature192611826626910.1038/118266a0 RosingerHEBratinaWJCraigGBJ. Cryst. Growth1970742441:CAS:528:DyaE3cXktl2ntL8%3D10.1016/0022-0248(70)90112-0 KranzleinHHBurtonMSSmithGVMem. Sci. Rev. Metall.196865361368 TomalinDSMcMahonCJJrMater. Sci. Eng.1971854561:CAS:528:DyaE3MXlt1eit7o%3D10.1016/0025-5416(71)90042-5 KadečkováSŠestákBKrist. Tech.1967219120310.1002/crat.19670020205 BaileyDJBrewerEGMetall. Trans. A1975640340810.1007/BF02667297 RogneBRSThaulowCPhilos. Mag.2014951814182810.1080/14786435.2014.984004 MayerGBackofenWAMater. Res. Bull.196728718751:CAS:528:DyaF1cXkvVWhsLc%3D10.1016/0025-5408(67)90097-9 FixMSchumannHJantzSGBreitnerFALeineweberAJescheAJ. Cryst. Growth201848650551:CAS:528:DC%2BC1cXhvVWmsbY%3D10.1016/j.jcrysgro.2018.01.010 FullmanRLTrans. AIME19531974471:CAS:528:DyaG3sXisFWjtA%3D%3D LauridsenEMSchmidtSNielsenSFMarguliesLPoulsenHFJuul JensenDScripta Mater.20065551561:CAS:528:DC%2BD28XktlemtrY%3D10.1016/j.scriptamat.2006.02.028 KadečkováSSaleebKZJ. Cryst. Growth19753033534210.1016/0022-0248(75)90009-3 AntonioneCMarinoFRiontinoGTabassoMCJ. Mater. Sci.1977127477501:CAS:528:DyaE2sXkt1Kksb4%3D10.1007/BF00548166 SchückherFDeHoffRTRhinesFNQuantitative Microscopy1968New YorkMcGraw-Hill Book Co.201265 AboavDALangdonTGMetallography196913333401:CAS:528:DyaF1MXktVKjt7w%3D10.1016/0026-0800(69)90042-1 SunJLyckegaardAZhangYBCatherineSAPattersonBRBachmannFGueninchaultNBaleHHolznerCLauridsenEJuul JensenDIOP Conf. Ser. Mater. Sci. Eng.201721901203910.1088/1757-899X/219/1/012039 MillerGAAveryDHBackofenWATrans. AIME196623616671:CAS:528:DyaF2sXitFKntw%3D%3D FelthamPActa Metall.19575971051:CAS:528:DyaG2sXivFClsg%3D%3D10.1016/0001-6160(57)90136-0 McKennaIMPoulsenSOLauridsenEMLudwigWVoorheesPWActa Mater.2014781251341:CAS:528:DC%2BC2cXht1Cgs7fK10.1016/j.actamat.2014.06.028 SchmidtSOlsenULPoulsenHFSørensenHOLauridsenEMMarguliesLMauriceCJuul JensenDScripta Mater.2008594914941:CAS:528:DC%2BD1cXotFelurg%3D10.1016/j.scriptamat.2008.04.049 HermantMEActa Metall.196816161:CAS:528:DyaF1cXkt1Gjuw%3D%3D10.1016/0001-6160(68)90064-3 HuHCan. Metall. Q.1974132752861:CAS:528:DyaE2cXltV2nsbw%3D10.1179/cmq.1974.13.1.275 DR Almeida (6866_CR14) 2020; 9 J Sun (6866_CR32) 2017; 219 G Mayer (6866_CR4) 1967; 2 IM McKenna (6866_CR27) 2014; 78 ZW Zhang (6866_CR15) 2007; 55 S Schmidt (6866_CR28) 2004; 305 BRS Rogne (6866_CR34) 2014; 95 S Jin (6866_CR13) 2021; 853 AW Thompson (6866_CR19) 1972; 5 HKDH Bhadeshia (6866_CR2) 2006 CS Smith (6866_CR18) 1953; 5 DS Tomalin (6866_CR10) 1971; 8 HH Kranzlein (6866_CR8) 1968; 65 RL Fullman (6866_CR20) 1953; 197 S Kadečková (6866_CR6) 1967; 2 S Schmidt (6866_CR30) 2008; 59 ME Hermant (6866_CR1) 1968; 16 F Schückher (6866_CR24) 1968 H Hu (6866_CR16) 1974; 13 GA Miller (6866_CR22) 1966; 236 K Lubitz (6866_CR12) 1979; 19 DA Aboav (6866_CR26) 1969; 1 HE Rosinger (6866_CR9) 1970; 7 JH Hensler (6866_CR21) 1968; 96 EM Lauridsen (6866_CR29) 2006; 55 HCH Carpenter (6866_CR3) 1926; 118 DJ Bailey (6866_CR11) 1975; 6 P Feltham (6866_CR23) 1957; 5 CR Foster (6866_CR25) 2022; 53A C Antonione (6866_CR5) 1977; 12 S Van Boxel (6866_CR31) 2014; 55 M Fix (6866_CR33) 2018; 486 S Kadečková (6866_CR7) 1975; 30 MJH Simmons (6866_CR17) 1999; 102 |
References_xml | – reference: McKennaIMPoulsenSOLauridsenEMLudwigWVoorheesPWActa Mater.2014781251341:CAS:528:DC%2BC2cXht1Cgs7fK10.1016/j.actamat.2014.06.028 – reference: LubitzKGöltzGAppl. Phys.1979192372391:CAS:528:DyaE1MXks1Knt7g%3D10.1007/BF00932404 – reference: MillerGAAveryDHBackofenWATrans. AIME196623616671:CAS:528:DyaF2sXitFKntw%3D%3D – reference: Van BoxelSSchmidtSLudwigWZhangYBJuul JensenDPantleonWMater. Trans.20145512813610.2320/matertrans.M2013227 – reference: FelthamPActa Metall.19575971051:CAS:528:DyaG2sXivFClsg%3D%3D10.1016/0001-6160(57)90136-0 – reference: RogneBRSThaulowCPhilos. Mag.2014951814182810.1080/14786435.2014.984004 – reference: AboavDALangdonTGMetallography196913333401:CAS:528:DyaF1MXktVKjt7w%3D10.1016/0026-0800(69)90042-1 – reference: RosingerHEBratinaWJCraigGBJ. Cryst. Growth1970742441:CAS:528:DyaE3cXktl2ntL8%3D10.1016/0022-0248(70)90112-0 – reference: FosterCRMetall. Mater. Trans. A202253A35071110.1007/s11661-022-06742-x – reference: KadečkováSSaleebKZJ. Cryst. Growth19753033534210.1016/0022-0248(75)90009-3 – reference: SchückherFDeHoffRTRhinesFNQuantitative Microscopy1968New YorkMcGraw-Hill Book Co.201265 – reference: CarpenterHCHNature192611826626910.1038/118266a0 – reference: HuHCan. Metall. Q.1974132752861:CAS:528:DyaE2cXltV2nsbw%3D10.1179/cmq.1974.13.1.275 – reference: KadečkováSŠestákBKrist. Tech.1967219120310.1002/crat.19670020205 – reference: SchmidtSNielsenSFGundlachCMarguliesLHuangXJuul JensenDScience20043052292321:CAS:528:DC%2BD2cXlsV2gsb8%3D10.1126/science.1098627 – reference: AlmeidaDRRiosPRZöllnerDSandimHRZJ. Mater. Res. Technol.2020911099111101:CAS:528:DC%2BB3cXhsFaisrnJ10.1016/j.jmrt.2020.07.065 – reference: SimmonsMJHLangstonPABurbidgeASPowder Technol.199910275831:CAS:528:DyaK1MXhs1artb4%3D10.1016/S0032-5910(98)00197-1 – reference: TomalinDSMcMahonCJJrMater. Sci. Eng.1971854561:CAS:528:DyaE3MXlt1eit7o%3D10.1016/0025-5416(71)90042-5 – reference: JinSKangBKongTHongSHShinHJRuoffoRSJ. Alloys Compd.202185315739010.1016/j.jallcom.2020.157390 – reference: SunJLyckegaardAZhangYBCatherineSAPattersonBRBachmannFGueninchaultNBaleHHolznerCLauridsenEJuul JensenDIOP Conf. Ser. Mater. Sci. Eng.201721901203910.1088/1757-899X/219/1/012039 – reference: HenslerJHJ. Inst. Met.196896190192 – reference: HermantMEActa Metall.196816161:CAS:528:DyaF1cXkt1Gjuw%3D%3D10.1016/0001-6160(68)90064-3 – reference: FullmanRLTrans. AIME19531974471:CAS:528:DyaG3sXisFWjtA%3D%3D – reference: BhadeshiaHKDHHoneycombeRSteels—Microstructure and Properties20063OxfordButterworth-Heinemann116 – reference: KranzleinHHBurtonMSSmithGVMem. Sci. Rev. Metall.196865361368 – reference: SchmidtSOlsenULPoulsenHFSørensenHOLauridsenEMMarguliesLMauriceCJuul JensenDScripta Mater.2008594914941:CAS:528:DC%2BD1cXotFelurg%3D10.1016/j.scriptamat.2008.04.049 – reference: ZhangZWChenGChenGLActa Mater.200755598859981:CAS:528:DC%2BD2sXhtVKrsb7O10.1016/j.actamat.2007.07.019 – reference: MayerGBackofenWAMater. Res. Bull.196728718751:CAS:528:DyaF1cXkvVWhsLc%3D10.1016/0025-5408(67)90097-9 – reference: LauridsenEMSchmidtSNielsenSFMarguliesLPoulsenHFJuul JensenDScripta Mater.20065551561:CAS:528:DC%2BD28XktlemtrY%3D10.1016/j.scriptamat.2006.02.028 – reference: BaileyDJBrewerEGMetall. Trans. A1975640340810.1007/BF02667297 – reference: AntonioneCMarinoFRiontinoGTabassoMCJ. Mater. Sci.1977127477501:CAS:528:DyaE2sXkt1Kksb4%3D10.1007/BF00548166 – reference: FixMSchumannHJantzSGBreitnerFALeineweberAJescheAJ. Cryst. Growth201848650551:CAS:528:DC%2BC1cXhvVWmsbY%3D10.1016/j.jcrysgro.2018.01.010 – reference: SmithCSGuttmanLJ. Met.195358187 – reference: ThompsonAWMetallography1972536636910.1016/0026-0800(72)90018-3 – volume: 8 start-page: 54 year: 1971 ident: 6866_CR10 publication-title: Mater. Sci. Eng. doi: 10.1016/0025-5416(71)90042-5 – volume: 65 start-page: 361 year: 1968 ident: 6866_CR8 publication-title: Mem. Sci. Rev. Metall. – volume: 9 start-page: 11099 year: 2020 ident: 6866_CR14 publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2020.07.065 – volume: 78 start-page: 125 year: 2014 ident: 6866_CR27 publication-title: Acta Mater. doi: 10.1016/j.actamat.2014.06.028 – volume: 2 start-page: 191 year: 1967 ident: 6866_CR6 publication-title: Krist. Tech. doi: 10.1002/crat.19670020205 – volume: 59 start-page: 491 year: 2008 ident: 6866_CR30 publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2008.04.049 – volume: 5 start-page: 81 year: 1953 ident: 6866_CR18 publication-title: J. Met. – volume: 236 start-page: 1667 year: 1966 ident: 6866_CR22 publication-title: Trans. AIME – volume: 853 start-page: 157 year: 2021 ident: 6866_CR13 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.157390 – volume: 30 start-page: 335 year: 1975 ident: 6866_CR7 publication-title: J. Cryst. Growth doi: 10.1016/0022-0248(75)90009-3 – volume: 55 start-page: 51 year: 2006 ident: 6866_CR29 publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2006.02.028 – volume: 1 start-page: 333 year: 1969 ident: 6866_CR26 publication-title: Metallography doi: 10.1016/0026-0800(69)90042-1 – volume: 16 start-page: 1 year: 1968 ident: 6866_CR1 publication-title: Acta Metall. doi: 10.1016/0001-6160(68)90064-3 – volume: 12 start-page: 747 year: 1977 ident: 6866_CR5 publication-title: J. Mater. Sci. doi: 10.1007/BF00548166 – volume: 5 start-page: 97 year: 1957 ident: 6866_CR23 publication-title: Acta Metall. doi: 10.1016/0001-6160(57)90136-0 – volume: 305 start-page: 229 year: 2004 ident: 6866_CR28 publication-title: Science doi: 10.1126/science.1098627 – volume: 53A start-page: 3507 year: 2022 ident: 6866_CR25 publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-022-06742-x – volume: 486 start-page: 50 year: 2018 ident: 6866_CR33 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2018.01.010 – volume: 197 start-page: 447 year: 1953 ident: 6866_CR20 publication-title: Trans. AIME – volume: 219 start-page: 012039 year: 2017 ident: 6866_CR32 publication-title: IOP Conf. Ser. Mater. Sci. Eng. doi: 10.1088/1757-899X/219/1/012039 – volume: 5 start-page: 366 year: 1972 ident: 6866_CR19 publication-title: Metallography doi: 10.1016/0026-0800(72)90018-3 – volume: 7 start-page: 42 year: 1970 ident: 6866_CR9 publication-title: J. Cryst. Growth doi: 10.1016/0022-0248(70)90112-0 – volume: 96 start-page: 190 year: 1968 ident: 6866_CR21 publication-title: J. Inst. Met. – volume: 19 start-page: 237 year: 1979 ident: 6866_CR12 publication-title: Appl. Phys. doi: 10.1007/BF00932404 – start-page: 201 volume-title: Quantitative Microscopy year: 1968 ident: 6866_CR24 – volume: 95 start-page: 1814 year: 2014 ident: 6866_CR34 publication-title: Philos. Mag. doi: 10.1080/14786435.2014.984004 – volume: 102 start-page: 75 year: 1999 ident: 6866_CR17 publication-title: Powder Technol. doi: 10.1016/S0032-5910(98)00197-1 – start-page: 1 volume-title: Steels—Microstructure and Properties year: 2006 ident: 6866_CR2 – volume: 55 start-page: 5988 year: 2007 ident: 6866_CR15 publication-title: Acta Mater. doi: 10.1016/j.actamat.2007.07.019 – volume: 118 start-page: 266 year: 1926 ident: 6866_CR3 publication-title: Nature doi: 10.1038/118266a0 – volume: 6 start-page: 403 year: 1975 ident: 6866_CR11 publication-title: Metall. Trans. A doi: 10.1007/BF02667297 – volume: 55 start-page: 128 year: 2014 ident: 6866_CR31 publication-title: Mater. Trans. doi: 10.2320/matertrans.M2013227 – volume: 13 start-page: 275 year: 1974 ident: 6866_CR16 publication-title: Can. Metall. Q. doi: 10.1179/cmq.1974.13.1.275 – volume: 2 start-page: 871 year: 1967 ident: 6866_CR4 publication-title: Mater. Res. Bull. doi: 10.1016/0025-5408(67)90097-9 |
SSID | ssj0001936 |
Score | 2.3333335 |
Snippet | Experimental studies on single crystals of pure metals are essential for understanding the mechanisms governing their plastic deformation as well as for... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 439 |
SubjectTerms | Allotropic transformation Annealing Characterization and Evaluation of Materials Chemistry and Materials Science Cold Electron backscatter diffraction Ferromagnetism Grain size Iron Low temperature Materials Science Metallic Materials Nanotechnology Normal distribution Original Research Article Plastic deformation Polycrystals Single crystals Size distribution Statistical analysis Structural Materials Surfaces and Interfaces Thin Films |
SummonAdditionalLinks | – databaseName: ProQuest Central (ProQuest) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagXWBAPEWhIA9sYJHEjpNMqFQtBYmqQkXqFtmxM6GkpGXov-cuDwJIMEaOPJzt-757E3LFo9CEvoH3rVPBhHTgSSkRMe5ZZXlqjdLoGnieysmreFr4i9rhtqrTKhudWCpqkyfoI7_1wN4uG6BFd8t3hlOjMLpaj9DYJl1QwWHYId370XT28qWLgZ7IKuuQM0T6umymKp5zAZsYZrNjmQTY1T-hqeWbv0KkJfKM98leTRnpoDrjA7Jls0Oy-62R4BGZP-CkBzrMwUy16OmgeQpfoHgyVdDHIs_oLH_bJMUGyODbiuoNBeaNBWag7PBHQ9FrTlVm6AA0r8Ii9WMyH4_mwwmr5yWwBO76mkmFUc8k0NxaVwVKpJ6bcKW04ymp_VQkGPSUUluAqNR6gEs84BxJjCs9h5-QTpZn9pTQwDMmsmhOhamwwtFK-5HgidSA7jwUPXLdSCpeVl0x4rb_Mco1BrnGpVxjp0f6jTDj-oWs4vY8e-SmEXC7_PduZ__vdk52cCJ8lVjdJ5118WEvgDes9WV9OT4BHUC9Gg priority: 102 providerName: ProQuest |
Title | Grain Coarsening of Columnar Iron Polycrystals by Repetitive Cold Work and Annealing |
URI | https://link.springer.com/article/10.1007/s11661-022-06866-0 https://www.proquest.com/docview/2761001029 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RdoEB8RSFUnlgg0hJ7DjJGKo-AFFVqJXKFNmJM1UJasvQf89dmlBAMDBFUSwPF9993z0NcMPDIA28FPVbZ8IS0kaVUiK0uGuU4ZlJlabQwPNYjmbice7Nq6awVV3tXqckS0u9a3ZzEEssqj6ntgb0gxvQ8tB3p0KumRt92l-kJHJbacgtQveqVeb3Pb7D0Y5j_kiLlmgzOILDiiayaPtfj2HP5Cdw8GV44ClMh3S7A-sV6Joaim6wIsM3NDa5WrKHZZGzSbHYJMsNEsDFiukNQ7ZNTWVo4GhhyihSzlSesgitraLG9DOYDvrT3siq7kiwEjzfa0sqynQmvubGOMpXInOdhCulbVdJ7WUioUSnlNogLGXGRSziPudEXBzp2vwcmnmRmwtgvpumoSEXKsiEEbZW2gsFT6RGROeBaMNtLan4bTsJI97NPCa5xijXuJRrbLehUwszrrRiFbu-dMohdmEb7moB7z7_vdvl_5ZfwT7dCr8tru5Ac718N9fIHda6C41gMOxCKxq-PvXxed8fT1665QH6AGq9vM8 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED7xGIAB8RSFAh5ggojUdt1mQKgC-qCAGIrEZtmJM1UJtEUoP4r_yF3SUECCjTFK5OFy_u67N8CRCJpRsx7h_bax9KTy8UoZGXiCO-NE7CJjKTRwd6-6j_Lmqf40B-9lLwyVVZaYmAN1lIYUIz_j6G_nA9CCi-cXj7ZGUXa1XKFRqEXfZW_oso3Pe1f4f485b18PLrvedKuAF6JGTDxlKDcYNqxwrmYaRsa8FgpjrM-NsvVYhpQaVMo6BPLYcURv0UCvX9FgGe4LPHYeFqVAQ06N6e3OJ_AjF1JFiaPwiFZMe3SKTr0aGkKPSuepJwOd-O92cEZuf-RjczPXXoPVKT9lrUKh1mHOJRuw8mVq4SYMOrRWgl2m6BM7CquwNMYnRLnEjFhvlCbsIR1m4ShD5jkcM5sxpPnUzYbISh9GjEL0zCQRayHMG-qI34LBf4hxGxaSNHE7wBo8igJHvlszlk761th6IEWoLFIJ0ZQVOCklpZ-LERx6NmyZ5KpRrjqXq_YrUC2FqafXcaxnylOB01LAs9e_n7b792mHsNQd3N3q2959fw-WaRV9UdFdhYXJ6NXtI2GZ2INcTRjof1bLDz8p9jA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB60guhBfGJ97kFPGkx3t5vmIOKrWh-lSAVvy26yOZVE24r0p_nvnGkSq4LePIaEPXyZnfnmDbAnwkbcqMd4v20iPal8vFJGhp7gzjiRuNhYCg3ct9X1o7x5qj9NwXvZC0NllaVOHCvqOIsoRn7E0d8eD0ALj5KiLKJz0Tx5fvFogxRlWst1GrmI3LrRG7pvg-PWBf7rfc6bl93za6_YMOBFKB1DTxnKE0aBFc7VTGBkwmuRMMb63ChbT2REaUKlrEOlnjiOmlwEQpDZrynuCzx2GmYCcooqMHN22e48fJoBZEYqL3gUHpGMomMn79uroVn0qJCeOjTQpf9uFSdU90d2dmz0mouwULBVdpqL1xJMuXQZ5r_MMFyB7hUtmWDnGXrIjoIsLEvwCXVeavqs1c9S1sl6o6g_Qh7aGzA7Ykj6qbcN9Sx9GDMK2DOTxuwUlb6h_vhV6P4HkGtQSbPUrQMLeByHjjy5RiKd9K2x9VCKSFkkFqIhq3BQIqWf84EcejJ6mXDViKse46r9KmyVYOricg70RJSqcFgCPHn9-2kbf5-2C7Mokvqu1b7dhDnaS5-Xd29BZdh_ddvIXoZ2p5ATBvqfJfMDEJv7wg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Grain+Coarsening+of+Columnar+Iron+Polycrystals+by+Repetitive+Cold+Work+and+Annealing&rft.jtitle=Metallurgical+and+materials+transactions.+A%2C+Physical+metallurgy+and+materials+science&rft.au=Holzer%2C+Jakub&rft.au=Hus%C5%A5%C3%A1k%2C+Miroslav&rft.au=Hegrov%C3%A1%2C+Jitka&rft.au=Gr%C3%B6ger%2C+Roman&rft.date=2023-02-01&rft.pub=Springer+US&rft.issn=1073-5623&rft.eissn=1543-1940&rft.volume=54&rft.issue=2&rft.spage=439&rft.epage=449&rft_id=info:doi/10.1007%2Fs11661-022-06866-0&rft.externalDocID=10_1007_s11661_022_06866_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1073-5623&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1073-5623&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1073-5623&client=summon |