Adaptive Informative Path Planning with Multimodal Sensing

Adaptive Informative Path Planning (AIPP) problems model an agent tasked with obtaining information subject to resource constraints in unknown, partially observable environments. Existing work on AIPP has focused on representing observations about the world as a result of agent movement. We formulat...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the International Conference on Automated Planning and Scheduling Vol. 30; pp. 57 - 65
Main Authors Choudhury, Shushman, Gruver, Nate, Kochenderfer, Mykel J.
Format Journal Article
LanguageEnglish
Published 01.06.2020
Online AccessGet full text
ISSN2334-0835
2334-0843
DOI10.1609/icaps.v30i1.6645

Cover

Loading…
Abstract Adaptive Informative Path Planning (AIPP) problems model an agent tasked with obtaining information subject to resource constraints in unknown, partially observable environments. Existing work on AIPP has focused on representing observations about the world as a result of agent movement. We formulate the more general setting where the agent may choose between different sensors at the cost of some energy, in addition to traversing the environment to gather information. We call this problem AIPPMS (MS for Multimodal Sensing). AIPPMS requires reasoning jointly about the effects of sensing and movement in terms of both energy expended and information gained. We frame AIPPMS as a Partially Observable Markov Decision Process (POMDP) and solve it with online planning. Our approach is based on the Partially Observable Monte Carlo Planning framework with modifications to ensure constraint feasibility and a heuristic rollout policy tailored for AIPPMS. We evaluate our method on two domains: a simulated search-and-rescue scenario and a challenging extension to the classic RockSample problem. We find that our approach outperforms a classic AIPP algorithm that is modified for AIPPMS, as well as online planning using a random rollout policy.
AbstractList Adaptive Informative Path Planning (AIPP) problems model an agent tasked with obtaining information subject to resource constraints in unknown, partially observable environments. Existing work on AIPP has focused on representing observations about the world as a result of agent movement. We formulate the more general setting where the agent may choose between different sensors at the cost of some energy, in addition to traversing the environment to gather information. We call this problem AIPPMS (MS for Multimodal Sensing). AIPPMS requires reasoning jointly about the effects of sensing and movement in terms of both energy expended and information gained. We frame AIPPMS as a Partially Observable Markov Decision Process (POMDP) and solve it with online planning. Our approach is based on the Partially Observable Monte Carlo Planning framework with modifications to ensure constraint feasibility and a heuristic rollout policy tailored for AIPPMS. We evaluate our method on two domains: a simulated search-and-rescue scenario and a challenging extension to the classic RockSample problem. We find that our approach outperforms a classic AIPP algorithm that is modified for AIPPMS, as well as online planning using a random rollout policy.
Author Choudhury, Shushman
Kochenderfer, Mykel J.
Gruver, Nate
Author_xml – sequence: 1
  givenname: Shushman
  surname: Choudhury
  fullname: Choudhury, Shushman
– sequence: 2
  givenname: Nate
  surname: Gruver
  fullname: Gruver, Nate
– sequence: 3
  givenname: Mykel J.
  surname: Kochenderfer
  fullname: Kochenderfer, Mykel J.
BookMark eNp1j8tKw0AUhgepYK3du8wLJM69ibtSvBQqFtT1cOamA8kkZGLFtzeN4kJwdf7zH74D3zmaxTY6hC4JLojE1VUw0KXiwHAghZRcnKA5ZYznuORs9puZOEPLlILGnK-ErASbo-u1hW4IB5dto2_7Bqa8h-Et29cQY4iv2UcYt4f3eghNa6HOnlxMY3-BTj3UyS1_5gK93N48b-7z3ePddrPe5YZiLHJmYMVKozFw6yUVlQembem1IzDeqObEUMfBVtxLT7GwoiIaWyBEGlMStkD4-6_p25R651XXhwb6T0WwOuqrSV9N-uqoPyLyD2LCMKq1cegh1P-DX6l3ZMw
CitedBy_id crossref_primary_10_3390_electronics10131605
crossref_primary_10_1016_j_robot_2024_104814
crossref_primary_10_1109_TRO_2023_3313811
crossref_primary_10_1016_j_robot_2024_104727
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1609/icaps.v30i1.6645
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2334-0843
EndPage 65
ExternalDocumentID 10_1609_icaps_v30i1_6645
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
M~E
ID FETCH-LOGICAL-c2005-3ca738cb0a4df6259fa3bd8fbe1a3ca2b41c2e4ad94f6f205d591b0da116cc813
ISSN 2334-0835
IngestDate Tue Jul 01 04:26:20 EDT 2025
Thu Apr 24 22:52:58 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2005-3ca738cb0a4df6259fa3bd8fbe1a3ca2b41c2e4ad94f6f205d591b0da116cc813
OpenAccessLink https://ojs.aaai.org/index.php/ICAPS/article/download/6645/6499
PageCount 9
ParticipantIDs crossref_primary_10_1609_icaps_v30i1_6645
crossref_citationtrail_10_1609_icaps_v30i1_6645
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Proceedings of the International Conference on Automated Planning and Scheduling
PublicationYear 2020
SSID ssib044756953
Score 1.8844252
Snippet Adaptive Informative Path Planning (AIPP) problems model an agent tasked with obtaining information subject to resource constraints in unknown, partially...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 57
Title Adaptive Informative Path Planning with Multimodal Sensing
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcuGCqABRoJUPXKrKqffhjd1bhApVUapKtFJv1j4Jok2ixkaCA2d-NrMPPyhUanuxrLUztjOfZmd3Zr5B6J0RQuZc4LSkTKbMEJUW3KpUGF6aCfjfwvMUzE740Tk7vsgvRqPfg6ylppZj9fO_dSUP0SqMgV5dlew9NNsJhQE4B_3CETQMxzvpeKrFyqf-xKIif34KPl3Xiyjss_oq26uldswfLmE9zlbRJz3t5rB1mzHw9z5hXxXoQgvTpl7Co8BR7R7i0z9B-9qltX_pMwaWjZ7HOP3nebOeX_VQ_HjdxNzRE1F34Prk-ne5chsbrs1-fDOXe8fj4d4EyfocqmDCCKXM8V-HuLUZjgVyptYGx9hMMKKBsTpOx6GTxD-GnnueVMDxaj3-TrOveMw5y_tJrQ3k35jrugxEt_YBGZWXUHkJlZPwCD0msOBwvTBmvw5by-RYEXnpKU27T4oxbxCyf_M1Bj7OwFk5e4aexlVGMg2Q2UQjs3iODlq4JAO4JA4uSavJxMEl6eGSRLi8QOcfDs_eH6WxdUaqPLcsVWJCCyUzwbR1S1wrqNSFlQYLuEYkw4oYJnTJLLcky3VeYplpgTFXqsD0JdpYLBfmFUqwFRMjlVV6IhnRtBTg0WFZUi0sKWS-hfbbj61U5JV37U0uq9v-4y202_1iFThVbr339T3ufYOe9CB8izbq68Zsg8tYyx2vzT_bCXOP
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Informative+Path+Planning+with+Multimodal+Sensing&rft.jtitle=Proceedings+of+the+International+Conference+on+Automated+Planning+and+Scheduling&rft.au=Choudhury%2C+Shushman&rft.au=Gruver%2C+Nate&rft.au=Kochenderfer%2C+Mykel+J.&rft.date=2020-06-01&rft.issn=2334-0835&rft.eissn=2334-0843&rft.volume=30&rft.spage=57&rft.epage=65&rft_id=info:doi/10.1609%2Ficaps.v30i1.6645&rft.externalDBID=n%2Fa&rft.externalDocID=10_1609_icaps_v30i1_6645
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2334-0835&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2334-0835&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2334-0835&client=summon