Measurement of cosmic muon-induced neutron background with ISMRAN detector in a non-reactor environment
The Indian Scintillator Matrix for Reactor Anti-Neutrinos (ISMRAN) is an above-ground, very short baseline reactor anti-neutrino (ν¯e) experiment, located inside the Dhruva research reactor facility, Mumbai, India. The primary goal of the ISMRAN experiment is the indirect detection of reactor ν¯e th...
Saved in:
Published in | Astroparticle physics Vol. 169; p. 103101 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0927-6505 |
DOI | 10.1016/j.astropartphys.2025.103101 |
Cover
Loading…
Abstract | The Indian Scintillator Matrix for Reactor Anti-Neutrinos (ISMRAN) is an above-ground, very short baseline reactor anti-neutrino (ν¯e) experiment, located inside the Dhruva research reactor facility, Mumbai, India. The primary goal of the ISMRAN experiment is the indirect detection of reactor ν¯e through an inverse beta decay (IBD) process, using a cluster of 90 optically segmented plastic scintillator detectors, weighing ∼1 ton. However, the most difficult to distinguish correlated background for the ISMRAN experiment is from fast neutrons, which cannot be actively rejected and as a consequence mimics the IBD process through proton recoil inside the detector’s volume. In this work, we present the neutron capture time response and energy deposition of neutron capture signals generated by cosmic muons in the ISMRAN geometry, and we compare these experimental results with Geant4-based Monte Carlo (MC) simulations. The obtained mean capture time of fast neutrons is 74.46 ± 5.98 μs and is comparable with the MC simulation results. The efficiency-corrected rate of muon-induced neutron background inside the ISMRAN geometry, due to the presence of a passive shielding structure of 10 cm lead followed by 10 cm borated polyethylene with a surface area of 600 cm2, deployed on top of the ISMRAN setup, is reported to be 1334 ± 64 (stat.) ± 70 (sys.) per day. This result shows good agreement with the expected background rate from MC simulations using Geant4. Additionally, we also estimate the muon-induced fast-neutron rate in the ISMRAN geometry for the actual shielding configuration of 9000 cm2 surface area to be 3335 ± 160 (stat.) ± 175 (sys.) neutrons day-1 through an extrapolation, after incorporating the model dependent acceptance correction factor from the Geant4 MC simulation. Finally, using these results, we evaluate the neutron production yield due to the composite shielding in the ISMRAN geometry, which is 2.81× 10-5 neutrons per μ per (g/cm2) at sea level. These results will be significant in the context of differentiating correlated background from true ν¯e events at the actual measurement site inside the reactor facility. |
---|---|
AbstractList | The Indian Scintillator Matrix for Reactor Anti-Neutrinos (ISMRAN) is an above-ground, very short baseline reactor anti-neutrino (ν¯e) experiment, located inside the Dhruva research reactor facility, Mumbai, India. The primary goal of the ISMRAN experiment is the indirect detection of reactor ν¯e through an inverse beta decay (IBD) process, using a cluster of 90 optically segmented plastic scintillator detectors, weighing ∼1 ton. However, the most difficult to distinguish correlated background for the ISMRAN experiment is from fast neutrons, which cannot be actively rejected and as a consequence mimics the IBD process through proton recoil inside the detector’s volume. In this work, we present the neutron capture time response and energy deposition of neutron capture signals generated by cosmic muons in the ISMRAN geometry, and we compare these experimental results with Geant4-based Monte Carlo (MC) simulations. The obtained mean capture time of fast neutrons is 74.46 ± 5.98 μs and is comparable with the MC simulation results. The efficiency-corrected rate of muon-induced neutron background inside the ISMRAN geometry, due to the presence of a passive shielding structure of 10 cm lead followed by 10 cm borated polyethylene with a surface area of 600 cm2, deployed on top of the ISMRAN setup, is reported to be 1334 ± 64 (stat.) ± 70 (sys.) per day. This result shows good agreement with the expected background rate from MC simulations using Geant4. Additionally, we also estimate the muon-induced fast-neutron rate in the ISMRAN geometry for the actual shielding configuration of 9000 cm2 surface area to be 3335 ± 160 (stat.) ± 175 (sys.) neutrons day-1 through an extrapolation, after incorporating the model dependent acceptance correction factor from the Geant4 MC simulation. Finally, using these results, we evaluate the neutron production yield due to the composite shielding in the ISMRAN geometry, which is 2.81× 10-5 neutrons per μ per (g/cm2) at sea level. These results will be significant in the context of differentiating correlated background from true ν¯e events at the actual measurement site inside the reactor facility. |
ArticleNumber | 103101 |
Author | Mishra, D.K. Behera, S.P. Sehgal, R. Dey, R. Netrakanti, P.K. Pant, L.M. Jha, V. |
Author_xml | – sequence: 1 givenname: R. orcidid: 0000-0003-0513-9207 surname: Dey fullname: Dey, R. email: neuphyroni@gmail.com organization: Nuclear Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India – sequence: 2 givenname: P.K. surname: Netrakanti fullname: Netrakanti, P.K. organization: Nuclear Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India – sequence: 3 givenname: D.K. surname: Mishra fullname: Mishra, D.K. organization: Nuclear Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India – sequence: 4 givenname: S.P. surname: Behera fullname: Behera, S.P. organization: Nuclear Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India – sequence: 5 givenname: R. surname: Sehgal fullname: Sehgal, R. organization: Nuclear Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India – sequence: 6 givenname: V. surname: Jha fullname: Jha, V. organization: Nuclear Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India – sequence: 7 givenname: L.M. surname: Pant fullname: Pant, L.M. organization: Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India |
BookMark | eNqNkMtOwzAQRb0oEm3hHyyxTrHzcBKxqqoClVqQeKwtxx63LsSu7KSof49D2bBjNdKM7tGdM0Ej6ywgdEPJjBLKbvczETrvDsJ3h90pzFKSFvGSxeMIjUmdlgkrSHGJJiHsCaE5yfIx2m5AhN5DC7bDTmPpQmskbntnE2NVL0FhC30EW9wI-bH1rrcKf5luh1evm5f5E1bQgeycx8ZigWOrxIP4WYA9mhgc2FfoQovPANe_c4re75dvi8dk_fywWszXiaR13SWlkJpqplRaslTXjaKklKQq64oAyzUFVZCK6bTJKxBa5DKDlDa5IlAVQDOWTdHdmSu9C8GD5gdvWuFPnBI-eOJ7_scTHzzxs6eYXp7TECseDXgepAEbJRgff-TKmX9xvgHuaH_3 |
Cites_doi | 10.1126/science.124.3212.103 10.1093/ptep/ptaa015 10.1103/PhysRevC.83.054615 10.1016/j.nima.2019.06.004 10.1016/j.astropartphys.2022.102729 10.1088/1748-0221/17/02/P02036 10.1103/PhysRevLett.123.111801 10.1016/j.nima.2006.04.047 10.1016/j.astropartphys.2009.03.008 10.1103/PhysRevD.50.5710 10.1016/j.nima.2006.12.015 10.1103/PhysRevD.100.112005 10.1146/annurev.nucl.54.070103.181248 10.1088/1748-0221/16/08/P08029 10.1016/0168-9002(90)91521-C 10.1103/PhysRevLett.122.232501 10.1103/PhysRevD.98.030001 10.1103/PhysRevD.93.112006 10.1038/s41586-022-05568-2 10.1016/j.astropartphys.2010.07.004 10.1016/j.nima.2019.162904 10.1016/j.nucengdes.2005.09.020 10.1103/PhysRevC.84.024617 10.1016/j.nima.2021.166126 10.1016/j.astropartphys.2017.01.011 10.1016/j.nima.2014.04.065 10.1103/PhysRevLett.122.251801 10.1016/S0168-9002(98)00787-6 10.1103/PhysRevD.29.1918 10.1103/PhysRevLett.128.081802 10.1103/PhysRevC.73.049906 10.1016/j.nima.2018.10.026 10.1088/1748-0221/15/04/P04021 10.1103/PhysRevLett.118.042502 10.1103/PhysRevD.64.013012 10.1103/PhysRevLett.116.061801 10.1016/j.nima.2022.167415 10.1103/PhysRevD.83.073006 10.1103/PhysRevLett.131.021802 10.1103/PhysRevD.46.5013 10.1016/S0168-9002(03)01368-8 |
ContentType | Journal Article |
Copyright | 2025 Elsevier B.V. |
Copyright_xml | – notice: 2025 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.astropartphys.2025.103101 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
ExternalDocumentID | 10_1016_j_astropartphys_2025_103101 S0927650525000246 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO ABFNM ABJNI ABMAC ABNEU ABWVN ABXDB ACDAQ ACFVG ACGFS ACNNM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AFFNX AFJKZ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HME HVGLF HZ~ IHE J1W KOM LZ4 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SHN SPC SPCBC SPD SSH SSQ SSZ T5K WUQ ZMT ~02 ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGRNS AIGII AIIUN AKBMS AKYEP CITATION EFKBS |
ID | FETCH-LOGICAL-c199t-7acf1f6dd2762f9bd107c087980e64f1ed5086f2b48eafa4c3e21b4d0e85e1363 |
IEDL.DBID | .~1 |
ISSN | 0927-6505 |
IngestDate | Tue Aug 05 12:09:01 EDT 2025 Sat May 03 15:40:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Energy resolution Efficiency Acceptance correction Fast neutrons Systematic uncertainty Anti-neutrinos Capture time Plastic scintillator |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c199t-7acf1f6dd2762f9bd107c087980e64f1ed5086f2b48eafa4c3e21b4d0e85e1363 |
ORCID | 0000-0003-0513-9207 |
ParticipantIDs | crossref_primary_10_1016_j_astropartphys_2025_103101 elsevier_sciencedirect_doi_10_1016_j_astropartphys_2025_103101 |
PublicationCentury | 2000 |
PublicationDate | July 2025 2025-07-00 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: July 2025 |
PublicationDecade | 2020 |
PublicationTitle | Astroparticle physics |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Wen, Cao, Luk, Ma, Wang, Yang (b42) 2006; 564 Abe (b10) 2015; 74 Mention (b7) 2011; 83 Bowden (b13) 2007; 572 Mueller (b5) 2011; 83 An (b9) 2016; 116 Dey (b35) 2022; 1042 Lindote (b45) 2009; 31 An (b16) 2017; 118 ELJEN Mulmule (b23) 2018; 911 Formaggio, Martoff (b41) 2004; 54 Wang (b25) 2001; 64 Dey (b28) 2021; 16 Sehgal (b36) 2022; 17 Dey (b51) 2021; 16 Tanaka (b47) 2020; 4 Behera (b37) 2022; 141 . Abt (b27) 2017; 90 Ashenfelter (b53) 2016; 806 (b4) 2023; 613 9821B Series. CRY. Bak (b17) 2019; 122 Tanabashi (b2) 2018; 98 Galbiati, Beacom (b26) 2006; 73 Cowan, Reines, Harrison, Kruse, McGuire (b1) 1956; 124 Technical Meeting on Nuclear Data for Anti-Neutrino Spectra and their Applications, 23-26 April 2019, IAEA Headquarters, Vienna, Austria, . Andriamirado (b11) 2023; 131 Ashenfelter (b19) 2019; 122 CAEN. Becvar (b46) 1998; 417 Boireau (b14) 2016; 93 Mulmule, Netrakanti, Pant, Nayak (b55) 2020; 15 Hu (b38) 2019; 940 Desai (b39) 2011; Vol. 56 Fletcher, Gaisser, Lipari, Stanev (b49) 1994; 50 Adey (b20) 2019; 123 Vogel (b8) 1984; 29 Agarwal (b15) 2006; 236 Agostinelli (b30) 2003; 506 Huber (b18) 2017; 118 Oguri (b22) 2014; 757 Huber (b6) 2011; 84 9305KB Series. Drexlin (b44) 1990; 289 Almazán (b3) 2022; 128 Engel, Gaisser, Stanev, Lipari (b50) 1992; 46 (b12) 2022; 123 Netrakanti (b24) 2022; 1024 (b40) 2008 Jollet, Meregaglia (b43) 2020; 949 Haichuan Cao, David Koltick Cosmic Ray Induced Neutron Production in a Lead Target arXiv. Bonardi (b29) 2010; 34 Aharmim (b54) 2019; 100 Formaggio (10.1016/j.astropartphys.2025.103101_b41) 2004; 54 Bowden (10.1016/j.astropartphys.2025.103101_b13) 2007; 572 Mention (10.1016/j.astropartphys.2025.103101_b7) 2011; 83 Agarwal (10.1016/j.astropartphys.2025.103101_b15) 2006; 236 10.1016/j.astropartphys.2025.103101_b48 Abe (10.1016/j.astropartphys.2025.103101_b10) 2015; 74 Huber (10.1016/j.astropartphys.2025.103101_b18) 2017; 118 Andriamirado (10.1016/j.astropartphys.2025.103101_b11) 2023; 131 Dey (10.1016/j.astropartphys.2025.103101_b35) 2022; 1042 10.1016/j.astropartphys.2025.103101_b32 10.1016/j.astropartphys.2025.103101_b31 10.1016/j.astropartphys.2025.103101_b34 Huber (10.1016/j.astropartphys.2025.103101_b6) 2011; 84 Ashenfelter (10.1016/j.astropartphys.2025.103101_b19) 2019; 122 10.1016/j.astropartphys.2025.103101_b33 Almazán (10.1016/j.astropartphys.2025.103101_b3) 2022; 128 Mulmule (10.1016/j.astropartphys.2025.103101_b23) 2018; 911 (10.1016/j.astropartphys.2025.103101_b40) 2008 Aharmim (10.1016/j.astropartphys.2025.103101_b54) 2019; 100 Bak (10.1016/j.astropartphys.2025.103101_b17) 2019; 122 (10.1016/j.astropartphys.2025.103101_b12) 2022; 123 Adey (10.1016/j.astropartphys.2025.103101_b20) 2019; 123 Bonardi (10.1016/j.astropartphys.2025.103101_b29) 2010; 34 Hu (10.1016/j.astropartphys.2025.103101_b38) 2019; 940 10.1016/j.astropartphys.2025.103101_b21 Desai (10.1016/j.astropartphys.2025.103101_b39) 2011; Vol. 56 Wen (10.1016/j.astropartphys.2025.103101_b42) 2006; 564 Netrakanti (10.1016/j.astropartphys.2025.103101_b24) 2022; 1024 Dey (10.1016/j.astropartphys.2025.103101_b51) 2021; 16 Lindote (10.1016/j.astropartphys.2025.103101_b45) 2009; 31 Jollet (10.1016/j.astropartphys.2025.103101_b43) 2020; 949 Fletcher (10.1016/j.astropartphys.2025.103101_b49) 1994; 50 An (10.1016/j.astropartphys.2025.103101_b16) 2017; 118 Wang (10.1016/j.astropartphys.2025.103101_b25) 2001; 64 Drexlin (10.1016/j.astropartphys.2025.103101_b44) 1990; 289 Mueller (10.1016/j.astropartphys.2025.103101_b5) 2011; 83 Vogel (10.1016/j.astropartphys.2025.103101_b8) 1984; 29 Agostinelli (10.1016/j.astropartphys.2025.103101_b30) 2003; 506 Abt (10.1016/j.astropartphys.2025.103101_b27) 2017; 90 Cowan (10.1016/j.astropartphys.2025.103101_b1) 1956; 124 10.1016/j.astropartphys.2025.103101_b52 Mulmule (10.1016/j.astropartphys.2025.103101_b55) 2020; 15 Tanaka (10.1016/j.astropartphys.2025.103101_b47) 2020; 4 Tanabashi (10.1016/j.astropartphys.2025.103101_b2) 2018; 98 Ashenfelter (10.1016/j.astropartphys.2025.103101_b53) 2016; 806 An (10.1016/j.astropartphys.2025.103101_b9) 2016; 116 Becvar (10.1016/j.astropartphys.2025.103101_b46) 1998; 417 Behera (10.1016/j.astropartphys.2025.103101_b37) 2022; 141 Galbiati (10.1016/j.astropartphys.2025.103101_b26) 2006; 73 Dey (10.1016/j.astropartphys.2025.103101_b28) 2021; 16 Engel (10.1016/j.astropartphys.2025.103101_b50) 1992; 46 Oguri (10.1016/j.astropartphys.2025.103101_b22) 2014; 757 Boireau (10.1016/j.astropartphys.2025.103101_b14) 2016; 93 Sehgal (10.1016/j.astropartphys.2025.103101_b36) 2022; 17 (10.1016/j.astropartphys.2025.103101_b4) 2023; 613 |
References_xml | – volume: 34 year: 2010 ident: b29 article-title: Direct measurement of the atmospheric neutron flux in the energy range 10–500 MeV publication-title: Astropart. Phys. – reference: CRY. – volume: 46 start-page: 5013 year: 1992 ident: b50 article-title: Nucleus–nucleus collisions and interpretation of cosmic-ray cascades publication-title: Phys. Rev. D – volume: 124 start-page: 103 year: 1956 ident: b1 article-title: Detection of the free neutrino: a confirmation publication-title: Science – volume: 84 year: 2011 ident: b6 article-title: Determination of antineutrino spectra from nuclear reactors publication-title: Phys. Rev. C – volume: 31 year: 2009 ident: b45 article-title: Simulation of neutrons produced by high-energy muons underground publication-title: Astropart. Phys. – volume: Vol. 56 start-page: 1 year: 2011 end-page: 1183 ident: b39 article-title: Characterization of liquid scintillation detectors using publication-title: Proceedings, 56th DAE-BRNS Symposium on Nuclear Physics: Visakhapatnam, A.P., India, December 26-30, 2011, DAE Symp. Nucl. Phys. – volume: 83 year: 2011 ident: b5 article-title: Improved predictions of reactor antineutrino spectra publication-title: Phys. Rev. C – volume: 64 year: 2001 ident: b25 article-title: Predicting neutron production from cosmic-ray muons publication-title: Phys. Rev. D – volume: 911 start-page: 104 year: 2018 end-page: 114 ident: b23 article-title: A plastic scintillator array for reactor based anti-neutrino studies publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrometers Detect. Assoc. Equip. – volume: 83 year: 2011 ident: b7 article-title: Reactor antineutrino anomaly publication-title: Phys. Rev. D – volume: 506 start-page: 250 year: 2003 end-page: 303 ident: b30 article-title: Geant4 - a simulation toolkit publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A – volume: 141 year: 2022 ident: b37 article-title: Cosmic ray measurements using the ISMRAN setup in a non-reactor environment publication-title: Astropart. Phys. – volume: 74 year: 2015 ident: b10 article-title: Improved measurements of the neutrino mixing angle publication-title: JHEP – volume: 73 year: 2006 ident: b26 article-title: Measuring the cosmic ray muon-induced fast neutron spectrum by (n, p) isotope production reactions in underground detectors publication-title: Phys. Rev. C – volume: 98 year: 2018 ident: b2 article-title: Review of particle physics publication-title: Phys. Rev. D – reference: ELJEN, – volume: 17 year: 2022 ident: b36 article-title: A new technique to enhance the position resolution of large area plastic scinitillators to reconstruct the cosmic muon tracks publication-title: J. Instrum. – volume: 123 year: 2022 ident: b12 article-title: JUNO physics and detector publication-title: Prog. Part. Nucl. Phys. – volume: 4 start-page: 043D02 year: 2020 ident: b47 article-title: Gamma-ray spectra from thermal neutron capture on gadolinium-155 and natural gadolinium publication-title: Prog. Theor. Exp. Phys. – volume: 613 start-page: 257 year: 2023 end-page: 261 ident: b4 article-title: STEREO neutrino spectrum of publication-title: Nature – volume: 100 year: 2019 ident: b54 article-title: Cosmogenic neutron production at the sudbury neutrino observatory publication-title: Phys. Rev. D – reference: 9305KB Series. – volume: 564 start-page: 471 year: 2006 end-page: 474 ident: b42 article-title: Measuring cosmogenic publication-title: NIMA – volume: 572 start-page: 985 year: 2007 ident: b13 article-title: Experimental results from an antineutrino detector for cooperative monitoring of nuclear reactors publication-title: NIMA – volume: 16 year: 2021 ident: b28 article-title: Characterization of plastic scintillator bars using fast neutrons from publication-title: J. Instrum. – volume: 757 start-page: 33 year: 2014 end-page: 39 ident: b22 article-title: Reactor antineutrino monitoring with a plastic scintillatorarray as a new safeguards method publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrometers Detect. Assoc. Equip. – volume: 417 start-page: 434 year: 1998 end-page: 449 ident: b46 article-title: Simulation of publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A – reference: CAEN. – volume: 940 start-page: 78 year: 2019 end-page: 82 ident: b38 article-title: Measurements of cosmic ray induced background neutrons near the ground using a Bonner sphere spectrometer publication-title: NIMA – volume: 54 start-page: 361 year: 2004 end-page: 412 ident: b41 article-title: Backgrounds to sensitive experiments underground publication-title: Annu. Rev. Nucl. Part. Sci. – volume: 949 year: 2020 ident: b43 article-title: Li and publication-title: NIMA – volume: 131 year: 2023 ident: b11 article-title: Final measurement of publication-title: Phys. Rev. Lett. – volume: 1024 year: 2022 ident: b24 article-title: Measurements using a prototype array of plastic scintillator bars for reactor base electron anti-neutrino detection publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrometers Detect. Assoc. Equip. – volume: 122 year: 2019 ident: b19 article-title: Measurement of the antineutrino spectrum from publication-title: Phys. Rev. Lett. – volume: 289 start-page: 490 year: 1990 end-page: 495 ident: b44 article-title: The high resolution neutrino calorimeter KARMEN publication-title: NIMA – volume: 1042 year: 2022 ident: b35 article-title: Evaluation of the response of plastic scintillator bars and measurement of neutron capture time in non-reactor environment for the ISMRAN experiment publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrometers Detect. Assoc. Equip. – volume: 122 year: 2019 ident: b17 article-title: Fuel-composition dependent reactor antineutrino yield at RENO publication-title: Phys. Rev. Lett. – volume: 50 start-page: 5710 year: 1994 ident: b49 article-title: An event generator for simulation of high-energy cosmic ray cascades publication-title: Phys. Rev. D – volume: 128 year: 2022 ident: b3 article-title: Joint measurement of the publication-title: Phys. Rev. Lett. – volume: 116 year: 2016 ident: b9 article-title: Measurement of the reactor antineutrino flux and spectrum at daya bay publication-title: Phys. Rev. Lett. – year: 2008 ident: b40 article-title: Thorsten lammers and dieter horns studies of muon induced background at the DoubleChooz detector publication-title: Proceedings – volume: 236 start-page: 747 year: 2006 end-page: 757 ident: b15 article-title: Dhruva: Main design features, operational experience and utilization publication-title: Nucl. Eng. Des. – volume: 118 year: 2017 ident: b18 article-title: NEOS data and the origin of the 5 MeV bump in the reactor antineutrino spectrum publication-title: Phys. Rev. Lett. – volume: 29 start-page: 1918 year: 1984 ident: b8 article-title: Analysis of the anti-neutrino capture on protons publication-title: Phys. Rev. D – reference: Technical Meeting on Nuclear Data for Anti-Neutrino Spectra and their Applications, 23-26 April 2019, IAEA Headquarters, Vienna, Austria, . – volume: 90 year: 2017 ident: b27 article-title: The muon-induced neutron indirect detection experiment, MINIDEX publication-title: Astropart. Phys. – reference: . – volume: 16 year: 2021 ident: b51 article-title: Characterization of plastic scintillator bars using fast neutrons from publication-title: J. Instrum. – volume: 15 year: 2020 ident: b55 article-title: Machine learning technique to improve anti-neutrino detection efficiency for the ISMRAN experiment publication-title: J. Instrum. – reference: Haichuan Cao, David Koltick Cosmic Ray Induced Neutron Production in a Lead Target arXiv. – volume: 118 year: 2017 ident: b16 article-title: Evolution of the reactor antineutrino flux and spectrum at daya bay publication-title: Phys. Rev. Lett. – volume: 123 year: 2019 ident: b20 article-title: Extraction of the publication-title: Phys. Rev. Lett. – volume: 93 year: 2016 ident: b14 article-title: Online monitoring of the osiris reactor with the nucifer neutrino detector publication-title: Phys. Rev. D – volume: 806 year: 2016 ident: b53 article-title: Background radiation measurements at high power research reactors publication-title: Nucl. Instrum. Methods Phys. Res. - Sect. A ( NIM-A) – reference: 9821B Series. – volume: 124 start-page: 103 year: 1956 ident: 10.1016/j.astropartphys.2025.103101_b1 article-title: Detection of the free neutrino: a confirmation publication-title: Science doi: 10.1126/science.124.3212.103 – volume: 4 start-page: 043D02 year: 2020 ident: 10.1016/j.astropartphys.2025.103101_b47 article-title: Gamma-ray spectra from thermal neutron capture on gadolinium-155 and natural gadolinium publication-title: Prog. Theor. Exp. Phys. doi: 10.1093/ptep/ptaa015 – ident: 10.1016/j.astropartphys.2025.103101_b21 – volume: 83 year: 2011 ident: 10.1016/j.astropartphys.2025.103101_b5 article-title: Improved predictions of reactor antineutrino spectra publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.83.054615 – volume: Vol. 56 start-page: 1 year: 2011 ident: 10.1016/j.astropartphys.2025.103101_b39 article-title: Characterization of liquid scintillation detectors using 252Cf source – ident: 10.1016/j.astropartphys.2025.103101_b34 – volume: 940 start-page: 78 year: 2019 ident: 10.1016/j.astropartphys.2025.103101_b38 article-title: Measurements of cosmic ray induced background neutrons near the ground using a Bonner sphere spectrometer publication-title: NIMA doi: 10.1016/j.nima.2019.06.004 – volume: 141 year: 2022 ident: 10.1016/j.astropartphys.2025.103101_b37 article-title: Cosmic ray measurements using the ISMRAN setup in a non-reactor environment publication-title: Astropart. Phys. doi: 10.1016/j.astropartphys.2022.102729 – ident: 10.1016/j.astropartphys.2025.103101_b48 – volume: 17 year: 2022 ident: 10.1016/j.astropartphys.2025.103101_b36 article-title: A new technique to enhance the position resolution of large area plastic scinitillators to reconstruct the cosmic muon tracks publication-title: J. Instrum. doi: 10.1088/1748-0221/17/02/P02036 – volume: 123 year: 2019 ident: 10.1016/j.astropartphys.2025.103101_b20 article-title: Extraction of the 235U and 239Pu antineutrino spectra at daya bay publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.111801 – volume: 564 start-page: 471 year: 2006 ident: 10.1016/j.astropartphys.2025.103101_b42 article-title: Measuring cosmogenic 9Li background in a reactor neutrino experiment publication-title: NIMA doi: 10.1016/j.nima.2006.04.047 – volume: 31 year: 2009 ident: 10.1016/j.astropartphys.2025.103101_b45 article-title: Simulation of neutrons produced by high-energy muons underground publication-title: Astropart. Phys. doi: 10.1016/j.astropartphys.2009.03.008 – volume: 50 start-page: 5710 year: 1994 ident: 10.1016/j.astropartphys.2025.103101_b49 article-title: An event generator for simulation of high-energy cosmic ray cascades publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.50.5710 – volume: 74 year: 2015 ident: 10.1016/j.astropartphys.2025.103101_b10 article-title: Improved measurements of the neutrino mixing angle θ13 with the double chooz detector publication-title: JHEP – volume: 572 start-page: 985 year: 2007 ident: 10.1016/j.astropartphys.2025.103101_b13 article-title: Experimental results from an antineutrino detector for cooperative monitoring of nuclear reactors publication-title: NIMA doi: 10.1016/j.nima.2006.12.015 – volume: 100 year: 2019 ident: 10.1016/j.astropartphys.2025.103101_b54 article-title: Cosmogenic neutron production at the sudbury neutrino observatory publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.100.112005 – volume: 54 start-page: 361 year: 2004 ident: 10.1016/j.astropartphys.2025.103101_b41 article-title: Backgrounds to sensitive experiments underground publication-title: Annu. Rev. Nucl. Part. Sci. doi: 10.1146/annurev.nucl.54.070103.181248 – volume: 16 year: 2021 ident: 10.1016/j.astropartphys.2025.103101_b28 article-title: Characterization of plastic scintillator bars using fast neutrons from D-D and D-T reactions publication-title: J. Instrum. doi: 10.1088/1748-0221/16/08/P08029 – ident: 10.1016/j.astropartphys.2025.103101_b33 – volume: 289 start-page: 490 year: 1990 ident: 10.1016/j.astropartphys.2025.103101_b44 article-title: The high resolution neutrino calorimeter KARMEN publication-title: NIMA doi: 10.1016/0168-9002(90)91521-C – volume: 122 year: 2019 ident: 10.1016/j.astropartphys.2025.103101_b17 article-title: Fuel-composition dependent reactor antineutrino yield at RENO publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.232501 – volume: 98 year: 2018 ident: 10.1016/j.astropartphys.2025.103101_b2 article-title: Review of particle physics publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.98.030001 – volume: 93 year: 2016 ident: 10.1016/j.astropartphys.2025.103101_b14 article-title: Online monitoring of the osiris reactor with the nucifer neutrino detector publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.93.112006 – volume: 613 start-page: 257 year: 2023 ident: 10.1016/j.astropartphys.2025.103101_b4 article-title: STEREO neutrino spectrum of 235U fission rejects sterile neutrino hypothesis publication-title: Nature doi: 10.1038/s41586-022-05568-2 – volume: 118 year: 2017 ident: 10.1016/j.astropartphys.2025.103101_b16 article-title: Evolution of the reactor antineutrino flux and spectrum at daya bay publication-title: Phys. Rev. Lett. – volume: 34 year: 2010 ident: 10.1016/j.astropartphys.2025.103101_b29 article-title: Direct measurement of the atmospheric neutron flux in the energy range 10–500 MeV publication-title: Astropart. Phys. doi: 10.1016/j.astropartphys.2010.07.004 – volume: 949 year: 2020 ident: 10.1016/j.astropartphys.2025.103101_b43 article-title: 9Li and 8He decays in GEANT4 publication-title: NIMA doi: 10.1016/j.nima.2019.162904 – volume: 236 start-page: 747 year: 2006 ident: 10.1016/j.astropartphys.2025.103101_b15 article-title: Dhruva: Main design features, operational experience and utilization publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2005.09.020 – volume: 84 year: 2011 ident: 10.1016/j.astropartphys.2025.103101_b6 article-title: Determination of antineutrino spectra from nuclear reactors publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.84.024617 – volume: 123 year: 2022 ident: 10.1016/j.astropartphys.2025.103101_b12 article-title: JUNO physics and detector publication-title: Prog. Part. Nucl. Phys. – volume: 1024 year: 2022 ident: 10.1016/j.astropartphys.2025.103101_b24 article-title: Measurements using a prototype array of plastic scintillator bars for reactor base electron anti-neutrino detection publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrometers Detect. Assoc. Equip. doi: 10.1016/j.nima.2021.166126 – volume: 90 year: 2017 ident: 10.1016/j.astropartphys.2025.103101_b27 article-title: The muon-induced neutron indirect detection experiment, MINIDEX publication-title: Astropart. Phys. doi: 10.1016/j.astropartphys.2017.01.011 – volume: 757 start-page: 33 year: 2014 ident: 10.1016/j.astropartphys.2025.103101_b22 article-title: Reactor antineutrino monitoring with a plastic scintillatorarray as a new safeguards method publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrometers Detect. Assoc. Equip. doi: 10.1016/j.nima.2014.04.065 – volume: 122 year: 2019 ident: 10.1016/j.astropartphys.2025.103101_b19 article-title: Measurement of the antineutrino spectrum from 235U fission at HFIR with PROSPECT publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.251801 – ident: 10.1016/j.astropartphys.2025.103101_b52 – volume: 417 start-page: 434 year: 1998 ident: 10.1016/j.astropartphys.2025.103101_b46 article-title: Simulation of γ cascades in complex nuclei with emphasis on assessment of uncertainties of cascade-related quantities publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A doi: 10.1016/S0168-9002(98)00787-6 – volume: 29 start-page: 1918 year: 1984 ident: 10.1016/j.astropartphys.2025.103101_b8 article-title: Analysis of the anti-neutrino capture on protons publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.29.1918 – ident: 10.1016/j.astropartphys.2025.103101_b32 – volume: 128 year: 2022 ident: 10.1016/j.astropartphys.2025.103101_b3 article-title: Joint measurement of the 235U antineutrino spectrum by PROSPECT and STEREO publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.128.081802 – volume: 73 year: 2006 ident: 10.1016/j.astropartphys.2025.103101_b26 article-title: Measuring the cosmic ray muon-induced fast neutron spectrum by (n, p) isotope production reactions in underground detectors publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.73.049906 – volume: 911 start-page: 104 year: 2018 ident: 10.1016/j.astropartphys.2025.103101_b23 article-title: A plastic scintillator array for reactor based anti-neutrino studies publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrometers Detect. Assoc. Equip. doi: 10.1016/j.nima.2018.10.026 – volume: 15 year: 2020 ident: 10.1016/j.astropartphys.2025.103101_b55 article-title: Machine learning technique to improve anti-neutrino detection efficiency for the ISMRAN experiment publication-title: J. Instrum. doi: 10.1088/1748-0221/15/04/P04021 – year: 2008 ident: 10.1016/j.astropartphys.2025.103101_b40 article-title: Thorsten lammers and dieter horns studies of muon induced background at the DoubleChooz detector – volume: 118 year: 2017 ident: 10.1016/j.astropartphys.2025.103101_b18 article-title: NEOS data and the origin of the 5 MeV bump in the reactor antineutrino spectrum publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.042502 – volume: 64 year: 2001 ident: 10.1016/j.astropartphys.2025.103101_b25 article-title: Predicting neutron production from cosmic-ray muons publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.64.013012 – volume: 116 year: 2016 ident: 10.1016/j.astropartphys.2025.103101_b9 article-title: Measurement of the reactor antineutrino flux and spectrum at daya bay publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.061801 – volume: 1042 year: 2022 ident: 10.1016/j.astropartphys.2025.103101_b35 article-title: Evaluation of the response of plastic scintillator bars and measurement of neutron capture time in non-reactor environment for the ISMRAN experiment publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrometers Detect. Assoc. Equip. doi: 10.1016/j.nima.2022.167415 – volume: 83 year: 2011 ident: 10.1016/j.astropartphys.2025.103101_b7 article-title: Reactor antineutrino anomaly publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.83.073006 – volume: 131 year: 2023 ident: 10.1016/j.astropartphys.2025.103101_b11 article-title: Final measurement of 235U the antineutrino energy spectrum with the PROSPECT-I detector at HFIR publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.131.021802 – volume: 46 start-page: 5013 year: 1992 ident: 10.1016/j.astropartphys.2025.103101_b50 article-title: Nucleus–nucleus collisions and interpretation of cosmic-ray cascades publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.46.5013 – ident: 10.1016/j.astropartphys.2025.103101_b31 – volume: 16 year: 2021 ident: 10.1016/j.astropartphys.2025.103101_b51 article-title: Characterization of plastic scintillator bars using fast neutrons from D-D and D-T reactions publication-title: J. Instrum. doi: 10.1088/1748-0221/16/08/P08029 – volume: 806 year: 2016 ident: 10.1016/j.astropartphys.2025.103101_b53 article-title: Background radiation measurements at high power research reactors publication-title: Nucl. Instrum. Methods Phys. Res. - Sect. A ( NIM-A) – volume: 506 start-page: 250 year: 2003 ident: 10.1016/j.astropartphys.2025.103101_b30 article-title: Geant4 - a simulation toolkit publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A doi: 10.1016/S0168-9002(03)01368-8 |
SSID | ssj0014034 |
Score | 2.4440951 |
Snippet | The Indian Scintillator Matrix for Reactor Anti-Neutrinos (ISMRAN) is an above-ground, very short baseline reactor anti-neutrino (ν¯e) experiment, located... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 103101 |
SubjectTerms | Acceptance correction Anti-neutrinos Capture time Efficiency Energy resolution Fast neutrons Plastic scintillator Systematic uncertainty |
Title | Measurement of cosmic muon-induced neutron background with ISMRAN detector in a non-reactor environment |
URI | https://dx.doi.org/10.1016/j.astropartphys.2025.103101 |
Volume | 169 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LSsNAcCiK4kW0Kj7LguJtbXazm8dFKMXSKi3iA7yFfUqVptKmV7_d3ST1gRfB22bZTMLM7LyYB8BZwhOqaMgx1TrCLNYEC8tTbEwQCEO5jMpamOEo6j-y6yf-1IDushbGp1XWsr-S6aW0rnfaNTbbb-Nx-z5IaRyVc9j8tWa-7TZjsefyi_fPNA_fjq5sIeUOY396HU6_crzEvJg533RW-DCCcxYp90XopJ4Q80tLfdM8vS3YrE1G1Kn-ahsaJm_CfscD9QUJ6ByV6ypGMW_C2m212oHn4VcEEE0tUtP5ZKzQZDHNsfPFHVU1ys3CA0JSqFdf4pFr5GOzaHA_vOuMkDZFGddH4xwJlLsXnZVZbnwrkduFx97VQ7eP68kKWJE0LXAslCU20tphkNpUaucEqiCJ0yQwEbPEaGe3RZZKlhhhBVOhoUQyHZiEGxJG4R6suC-afUBOvWsurRWhIu7-y1TKUCachb6zvSHqANgSk9lb1UAjW2aWvWQ_CJB5AmQVAQ7gcon17Ac_ZE7U_wXA4X8BHMGGf6pSc49hpZgtzIkzQArZKjmsBaudwU1_9AFP6t87 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1ZS8Mw-EMnHi_iybwDim9hTZpk7YswRNnUDfEA30pOmWInW_f_TdrOA18E30LafA3fl35XvgPgJOEJ1TTmmBojMGsbgqXjKbY2iqSlXIkyF6Y_EN1HdvXEn-bgfJYLE8Iqa95f8fSSW9czrRqbrffhsHUfpbQtyj5s4bdmYh4WQnUq3oCFTu-6O_i8TGBRebkc3sdhwRIcf4V5yUkx9ubpuAieBG8vUh7y0EndJOaXoPomfC7XYLXWGlGn2tg6zNl8A5qdADTkJKBTVI4rN8VkAxZvq9EmPPe_nIBo5JAeTd6GGr1NRzn25rgnrEG5nQZASEn9GrI8coOCexb17vt3nQEytihd-2iYI4lyv9ArmuXEtyy5LXi8vHg47-K6uQLWJE0L3JbaESeM8UikLlXG24E6StppElnBHLHGq27CUcUSK51kOraUKGYim3BLYhFvQ8N_0TYBeQlvuHJOxpp4FqBSpWKVcBaH4vaW6B1gM0xm71UNjWwWXPaS_SBAFgiQVQTYgbMZ1rMfRyLz3P4vAHb_C-AIlrsP_Zvspje43oOV8KSK1N2HRjGe2gOvjxTqsD5vH_R74ew |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measurement+of+cosmic+muon-induced+neutron+background+with+ISMRAN+detector+in+a+non-reactor+environment&rft.jtitle=Astroparticle+physics&rft.au=Dey%2C+R.&rft.au=Netrakanti%2C+P.K.&rft.au=Mishra%2C+D.K.&rft.au=Behera%2C+S.P.&rft.date=2025-07-01&rft.pub=Elsevier+B.V&rft.issn=0927-6505&rft.volume=169&rft_id=info:doi/10.1016%2Fj.astropartphys.2025.103101&rft.externalDocID=S0927650525000246 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-6505&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-6505&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-6505&client=summon |