Measurement of cosmic muon-induced neutron background with ISMRAN detector in a non-reactor environment

The Indian Scintillator Matrix for Reactor Anti-Neutrinos (ISMRAN) is an above-ground, very short baseline reactor anti-neutrino (ν¯e) experiment, located inside the Dhruva research reactor facility, Mumbai, India. The primary goal of the ISMRAN experiment is the indirect detection of reactor ν¯e th...

Full description

Saved in:
Bibliographic Details
Published inAstroparticle physics Vol. 169; p. 103101
Main Authors Dey, R., Netrakanti, P.K., Mishra, D.K., Behera, S.P., Sehgal, R., Jha, V., Pant, L.M.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2025
Subjects
Online AccessGet full text
ISSN0927-6505
DOI10.1016/j.astropartphys.2025.103101

Cover

Loading…
Abstract The Indian Scintillator Matrix for Reactor Anti-Neutrinos (ISMRAN) is an above-ground, very short baseline reactor anti-neutrino (ν¯e) experiment, located inside the Dhruva research reactor facility, Mumbai, India. The primary goal of the ISMRAN experiment is the indirect detection of reactor ν¯e through an inverse beta decay (IBD) process, using a cluster of 90 optically segmented plastic scintillator detectors, weighing ∼1 ton. However, the most difficult to distinguish correlated background for the ISMRAN experiment is from fast neutrons, which cannot be actively rejected and as a consequence mimics the IBD process through proton recoil inside the detector’s volume. In this work, we present the neutron capture time response and energy deposition of neutron capture signals generated by cosmic muons in the ISMRAN geometry, and we compare these experimental results with Geant4-based Monte Carlo (MC) simulations. The obtained mean capture time of fast neutrons is 74.46 ± 5.98 μs and is comparable with the MC simulation results. The efficiency-corrected rate of muon-induced neutron background inside the ISMRAN geometry, due to the presence of a passive shielding structure of 10 cm lead followed by 10 cm borated polyethylene with a surface area of 600 cm2, deployed on top of the ISMRAN setup, is reported to be 1334 ± 64 (stat.) ± 70 (sys.) per day. This result shows good agreement with the expected background rate from MC simulations using Geant4. Additionally, we also estimate the muon-induced fast-neutron rate in the ISMRAN geometry for the actual shielding configuration of 9000 cm2 surface area to be 3335 ± 160 (stat.) ± 175 (sys.) neutrons day-1 through an extrapolation, after incorporating the model dependent acceptance correction factor from the Geant4 MC simulation. Finally, using these results, we evaluate the neutron production yield due to the composite shielding in the ISMRAN geometry, which is 2.81× 10-5 neutrons per μ per (g/cm2) at sea level. These results will be significant in the context of differentiating correlated background from true ν¯e events at the actual measurement site inside the reactor facility.
AbstractList The Indian Scintillator Matrix for Reactor Anti-Neutrinos (ISMRAN) is an above-ground, very short baseline reactor anti-neutrino (ν¯e) experiment, located inside the Dhruva research reactor facility, Mumbai, India. The primary goal of the ISMRAN experiment is the indirect detection of reactor ν¯e through an inverse beta decay (IBD) process, using a cluster of 90 optically segmented plastic scintillator detectors, weighing ∼1 ton. However, the most difficult to distinguish correlated background for the ISMRAN experiment is from fast neutrons, which cannot be actively rejected and as a consequence mimics the IBD process through proton recoil inside the detector’s volume. In this work, we present the neutron capture time response and energy deposition of neutron capture signals generated by cosmic muons in the ISMRAN geometry, and we compare these experimental results with Geant4-based Monte Carlo (MC) simulations. The obtained mean capture time of fast neutrons is 74.46 ± 5.98 μs and is comparable with the MC simulation results. The efficiency-corrected rate of muon-induced neutron background inside the ISMRAN geometry, due to the presence of a passive shielding structure of 10 cm lead followed by 10 cm borated polyethylene with a surface area of 600 cm2, deployed on top of the ISMRAN setup, is reported to be 1334 ± 64 (stat.) ± 70 (sys.) per day. This result shows good agreement with the expected background rate from MC simulations using Geant4. Additionally, we also estimate the muon-induced fast-neutron rate in the ISMRAN geometry for the actual shielding configuration of 9000 cm2 surface area to be 3335 ± 160 (stat.) ± 175 (sys.) neutrons day-1 through an extrapolation, after incorporating the model dependent acceptance correction factor from the Geant4 MC simulation. Finally, using these results, we evaluate the neutron production yield due to the composite shielding in the ISMRAN geometry, which is 2.81× 10-5 neutrons per μ per (g/cm2) at sea level. These results will be significant in the context of differentiating correlated background from true ν¯e events at the actual measurement site inside the reactor facility.
ArticleNumber 103101
Author Mishra, D.K.
Behera, S.P.
Sehgal, R.
Dey, R.
Netrakanti, P.K.
Pant, L.M.
Jha, V.
Author_xml – sequence: 1
  givenname: R.
  orcidid: 0000-0003-0513-9207
  surname: Dey
  fullname: Dey, R.
  email: neuphyroni@gmail.com
  organization: Nuclear Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
– sequence: 2
  givenname: P.K.
  surname: Netrakanti
  fullname: Netrakanti, P.K.
  organization: Nuclear Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
– sequence: 3
  givenname: D.K.
  surname: Mishra
  fullname: Mishra, D.K.
  organization: Nuclear Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
– sequence: 4
  givenname: S.P.
  surname: Behera
  fullname: Behera, S.P.
  organization: Nuclear Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
– sequence: 5
  givenname: R.
  surname: Sehgal
  fullname: Sehgal, R.
  organization: Nuclear Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
– sequence: 6
  givenname: V.
  surname: Jha
  fullname: Jha, V.
  organization: Nuclear Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
– sequence: 7
  givenname: L.M.
  surname: Pant
  fullname: Pant, L.M.
  organization: Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
BookMark eNqNkMtOwzAQRb0oEm3hHyyxTrHzcBKxqqoClVqQeKwtxx63LsSu7KSof49D2bBjNdKM7tGdM0Ej6ywgdEPJjBLKbvczETrvDsJ3h90pzFKSFvGSxeMIjUmdlgkrSHGJJiHsCaE5yfIx2m5AhN5DC7bDTmPpQmskbntnE2NVL0FhC30EW9wI-bH1rrcKf5luh1evm5f5E1bQgeycx8ZigWOrxIP4WYA9mhgc2FfoQovPANe_c4re75dvi8dk_fywWszXiaR13SWlkJpqplRaslTXjaKklKQq64oAyzUFVZCK6bTJKxBa5DKDlDa5IlAVQDOWTdHdmSu9C8GD5gdvWuFPnBI-eOJ7_scTHzzxs6eYXp7TECseDXgepAEbJRgff-TKmX9xvgHuaH_3
Cites_doi 10.1126/science.124.3212.103
10.1093/ptep/ptaa015
10.1103/PhysRevC.83.054615
10.1016/j.nima.2019.06.004
10.1016/j.astropartphys.2022.102729
10.1088/1748-0221/17/02/P02036
10.1103/PhysRevLett.123.111801
10.1016/j.nima.2006.04.047
10.1016/j.astropartphys.2009.03.008
10.1103/PhysRevD.50.5710
10.1016/j.nima.2006.12.015
10.1103/PhysRevD.100.112005
10.1146/annurev.nucl.54.070103.181248
10.1088/1748-0221/16/08/P08029
10.1016/0168-9002(90)91521-C
10.1103/PhysRevLett.122.232501
10.1103/PhysRevD.98.030001
10.1103/PhysRevD.93.112006
10.1038/s41586-022-05568-2
10.1016/j.astropartphys.2010.07.004
10.1016/j.nima.2019.162904
10.1016/j.nucengdes.2005.09.020
10.1103/PhysRevC.84.024617
10.1016/j.nima.2021.166126
10.1016/j.astropartphys.2017.01.011
10.1016/j.nima.2014.04.065
10.1103/PhysRevLett.122.251801
10.1016/S0168-9002(98)00787-6
10.1103/PhysRevD.29.1918
10.1103/PhysRevLett.128.081802
10.1103/PhysRevC.73.049906
10.1016/j.nima.2018.10.026
10.1088/1748-0221/15/04/P04021
10.1103/PhysRevLett.118.042502
10.1103/PhysRevD.64.013012
10.1103/PhysRevLett.116.061801
10.1016/j.nima.2022.167415
10.1103/PhysRevD.83.073006
10.1103/PhysRevLett.131.021802
10.1103/PhysRevD.46.5013
10.1016/S0168-9002(03)01368-8
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.astropartphys.2025.103101
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
ExternalDocumentID 10_1016_j_astropartphys_2025_103101
S0927650525000246
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABWVN
ABXDB
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HME
HVGLF
HZ~
IHE
J1W
KOM
LZ4
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SHN
SPC
SPCBC
SPD
SSH
SSQ
SSZ
T5K
WUQ
ZMT
~02
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
CITATION
EFKBS
ID FETCH-LOGICAL-c199t-7acf1f6dd2762f9bd107c087980e64f1ed5086f2b48eafa4c3e21b4d0e85e1363
IEDL.DBID .~1
ISSN 0927-6505
IngestDate Tue Aug 05 12:09:01 EDT 2025
Sat May 03 15:40:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Energy resolution
Efficiency
Acceptance correction
Fast neutrons
Systematic uncertainty
Anti-neutrinos
Capture time
Plastic scintillator
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c199t-7acf1f6dd2762f9bd107c087980e64f1ed5086f2b48eafa4c3e21b4d0e85e1363
ORCID 0000-0003-0513-9207
ParticipantIDs crossref_primary_10_1016_j_astropartphys_2025_103101
elsevier_sciencedirect_doi_10_1016_j_astropartphys_2025_103101
PublicationCentury 2000
PublicationDate July 2025
2025-07-00
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: July 2025
PublicationDecade 2020
PublicationTitle Astroparticle physics
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wen, Cao, Luk, Ma, Wang, Yang (b42) 2006; 564
Abe (b10) 2015; 74
Mention (b7) 2011; 83
Bowden (b13) 2007; 572
Mueller (b5) 2011; 83
An (b9) 2016; 116
Dey (b35) 2022; 1042
Lindote (b45) 2009; 31
An (b16) 2017; 118
ELJEN
Mulmule (b23) 2018; 911
Formaggio, Martoff (b41) 2004; 54
Wang (b25) 2001; 64
Dey (b28) 2021; 16
Sehgal (b36) 2022; 17
Dey (b51) 2021; 16
Tanaka (b47) 2020; 4
Behera (b37) 2022; 141
.
Abt (b27) 2017; 90
Ashenfelter (b53) 2016; 806
(b4) 2023; 613
9821B Series.
CRY.
Bak (b17) 2019; 122
Tanabashi (b2) 2018; 98
Galbiati, Beacom (b26) 2006; 73
Cowan, Reines, Harrison, Kruse, McGuire (b1) 1956; 124
Technical Meeting on Nuclear Data for Anti-Neutrino Spectra and their Applications, 23-26 April 2019, IAEA Headquarters, Vienna, Austria, .
Andriamirado (b11) 2023; 131
Ashenfelter (b19) 2019; 122
CAEN.
Becvar (b46) 1998; 417
Boireau (b14) 2016; 93
Mulmule, Netrakanti, Pant, Nayak (b55) 2020; 15
Hu (b38) 2019; 940
Desai (b39) 2011; Vol. 56
Fletcher, Gaisser, Lipari, Stanev (b49) 1994; 50
Adey (b20) 2019; 123
Vogel (b8) 1984; 29
Agarwal (b15) 2006; 236
Agostinelli (b30) 2003; 506
Huber (b18) 2017; 118
Oguri (b22) 2014; 757
Huber (b6) 2011; 84
9305KB Series.
Drexlin (b44) 1990; 289
Almazán (b3) 2022; 128
Engel, Gaisser, Stanev, Lipari (b50) 1992; 46
(b12) 2022; 123
Netrakanti (b24) 2022; 1024
(b40) 2008
Jollet, Meregaglia (b43) 2020; 949
Haichuan Cao, David Koltick Cosmic Ray Induced Neutron Production in a Lead Target arXiv.
Bonardi (b29) 2010; 34
Aharmim (b54) 2019; 100
Formaggio (10.1016/j.astropartphys.2025.103101_b41) 2004; 54
Bowden (10.1016/j.astropartphys.2025.103101_b13) 2007; 572
Mention (10.1016/j.astropartphys.2025.103101_b7) 2011; 83
Agarwal (10.1016/j.astropartphys.2025.103101_b15) 2006; 236
10.1016/j.astropartphys.2025.103101_b48
Abe (10.1016/j.astropartphys.2025.103101_b10) 2015; 74
Huber (10.1016/j.astropartphys.2025.103101_b18) 2017; 118
Andriamirado (10.1016/j.astropartphys.2025.103101_b11) 2023; 131
Dey (10.1016/j.astropartphys.2025.103101_b35) 2022; 1042
10.1016/j.astropartphys.2025.103101_b32
10.1016/j.astropartphys.2025.103101_b31
10.1016/j.astropartphys.2025.103101_b34
Huber (10.1016/j.astropartphys.2025.103101_b6) 2011; 84
Ashenfelter (10.1016/j.astropartphys.2025.103101_b19) 2019; 122
10.1016/j.astropartphys.2025.103101_b33
Almazán (10.1016/j.astropartphys.2025.103101_b3) 2022; 128
Mulmule (10.1016/j.astropartphys.2025.103101_b23) 2018; 911
(10.1016/j.astropartphys.2025.103101_b40) 2008
Aharmim (10.1016/j.astropartphys.2025.103101_b54) 2019; 100
Bak (10.1016/j.astropartphys.2025.103101_b17) 2019; 122
(10.1016/j.astropartphys.2025.103101_b12) 2022; 123
Adey (10.1016/j.astropartphys.2025.103101_b20) 2019; 123
Bonardi (10.1016/j.astropartphys.2025.103101_b29) 2010; 34
Hu (10.1016/j.astropartphys.2025.103101_b38) 2019; 940
10.1016/j.astropartphys.2025.103101_b21
Desai (10.1016/j.astropartphys.2025.103101_b39) 2011; Vol. 56
Wen (10.1016/j.astropartphys.2025.103101_b42) 2006; 564
Netrakanti (10.1016/j.astropartphys.2025.103101_b24) 2022; 1024
Dey (10.1016/j.astropartphys.2025.103101_b51) 2021; 16
Lindote (10.1016/j.astropartphys.2025.103101_b45) 2009; 31
Jollet (10.1016/j.astropartphys.2025.103101_b43) 2020; 949
Fletcher (10.1016/j.astropartphys.2025.103101_b49) 1994; 50
An (10.1016/j.astropartphys.2025.103101_b16) 2017; 118
Wang (10.1016/j.astropartphys.2025.103101_b25) 2001; 64
Drexlin (10.1016/j.astropartphys.2025.103101_b44) 1990; 289
Mueller (10.1016/j.astropartphys.2025.103101_b5) 2011; 83
Vogel (10.1016/j.astropartphys.2025.103101_b8) 1984; 29
Agostinelli (10.1016/j.astropartphys.2025.103101_b30) 2003; 506
Abt (10.1016/j.astropartphys.2025.103101_b27) 2017; 90
Cowan (10.1016/j.astropartphys.2025.103101_b1) 1956; 124
10.1016/j.astropartphys.2025.103101_b52
Mulmule (10.1016/j.astropartphys.2025.103101_b55) 2020; 15
Tanaka (10.1016/j.astropartphys.2025.103101_b47) 2020; 4
Tanabashi (10.1016/j.astropartphys.2025.103101_b2) 2018; 98
Ashenfelter (10.1016/j.astropartphys.2025.103101_b53) 2016; 806
An (10.1016/j.astropartphys.2025.103101_b9) 2016; 116
Becvar (10.1016/j.astropartphys.2025.103101_b46) 1998; 417
Behera (10.1016/j.astropartphys.2025.103101_b37) 2022; 141
Galbiati (10.1016/j.astropartphys.2025.103101_b26) 2006; 73
Dey (10.1016/j.astropartphys.2025.103101_b28) 2021; 16
Engel (10.1016/j.astropartphys.2025.103101_b50) 1992; 46
Oguri (10.1016/j.astropartphys.2025.103101_b22) 2014; 757
Boireau (10.1016/j.astropartphys.2025.103101_b14) 2016; 93
Sehgal (10.1016/j.astropartphys.2025.103101_b36) 2022; 17
(10.1016/j.astropartphys.2025.103101_b4) 2023; 613
References_xml – volume: 34
  year: 2010
  ident: b29
  article-title: Direct measurement of the atmospheric neutron flux in the energy range 10–500 MeV
  publication-title: Astropart. Phys.
– reference: CRY.
– volume: 46
  start-page: 5013
  year: 1992
  ident: b50
  article-title: Nucleus–nucleus collisions and interpretation of cosmic-ray cascades
  publication-title: Phys. Rev. D
– volume: 124
  start-page: 103
  year: 1956
  ident: b1
  article-title: Detection of the free neutrino: a confirmation
  publication-title: Science
– volume: 84
  year: 2011
  ident: b6
  article-title: Determination of antineutrino spectra from nuclear reactors
  publication-title: Phys. Rev. C
– volume: 31
  year: 2009
  ident: b45
  article-title: Simulation of neutrons produced by high-energy muons underground
  publication-title: Astropart. Phys.
– volume: Vol. 56
  start-page: 1
  year: 2011
  end-page: 1183
  ident: b39
  article-title: Characterization of liquid scintillation detectors using
  publication-title: Proceedings, 56th DAE-BRNS Symposium on Nuclear Physics: Visakhapatnam, A.P., India, December 26-30, 2011, DAE Symp. Nucl. Phys.
– volume: 83
  year: 2011
  ident: b5
  article-title: Improved predictions of reactor antineutrino spectra
  publication-title: Phys. Rev. C
– volume: 64
  year: 2001
  ident: b25
  article-title: Predicting neutron production from cosmic-ray muons
  publication-title: Phys. Rev. D
– volume: 911
  start-page: 104
  year: 2018
  end-page: 114
  ident: b23
  article-title: A plastic scintillator array for reactor based anti-neutrino studies
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrometers Detect. Assoc. Equip.
– volume: 83
  year: 2011
  ident: b7
  article-title: Reactor antineutrino anomaly
  publication-title: Phys. Rev. D
– volume: 506
  start-page: 250
  year: 2003
  end-page: 303
  ident: b30
  article-title: Geant4 - a simulation toolkit
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A
– volume: 141
  year: 2022
  ident: b37
  article-title: Cosmic ray measurements using the ISMRAN setup in a non-reactor environment
  publication-title: Astropart. Phys.
– volume: 74
  year: 2015
  ident: b10
  article-title: Improved measurements of the neutrino mixing angle
  publication-title: JHEP
– volume: 73
  year: 2006
  ident: b26
  article-title: Measuring the cosmic ray muon-induced fast neutron spectrum by (n, p) isotope production reactions in underground detectors
  publication-title: Phys. Rev. C
– volume: 98
  year: 2018
  ident: b2
  article-title: Review of particle physics
  publication-title: Phys. Rev. D
– reference: ELJEN,
– volume: 17
  year: 2022
  ident: b36
  article-title: A new technique to enhance the position resolution of large area plastic scinitillators to reconstruct the cosmic muon tracks
  publication-title: J. Instrum.
– volume: 123
  year: 2022
  ident: b12
  article-title: JUNO physics and detector
  publication-title: Prog. Part. Nucl. Phys.
– volume: 4
  start-page: 043D02
  year: 2020
  ident: b47
  article-title: Gamma-ray spectra from thermal neutron capture on gadolinium-155 and natural gadolinium
  publication-title: Prog. Theor. Exp. Phys.
– volume: 613
  start-page: 257
  year: 2023
  end-page: 261
  ident: b4
  article-title: STEREO neutrino spectrum of
  publication-title: Nature
– volume: 100
  year: 2019
  ident: b54
  article-title: Cosmogenic neutron production at the sudbury neutrino observatory
  publication-title: Phys. Rev. D
– reference: 9305KB Series.
– volume: 564
  start-page: 471
  year: 2006
  end-page: 474
  ident: b42
  article-title: Measuring cosmogenic
  publication-title: NIMA
– volume: 572
  start-page: 985
  year: 2007
  ident: b13
  article-title: Experimental results from an antineutrino detector for cooperative monitoring of nuclear reactors
  publication-title: NIMA
– volume: 16
  year: 2021
  ident: b28
  article-title: Characterization of plastic scintillator bars using fast neutrons from
  publication-title: J. Instrum.
– volume: 757
  start-page: 33
  year: 2014
  end-page: 39
  ident: b22
  article-title: Reactor antineutrino monitoring with a plastic scintillatorarray as a new safeguards method
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrometers Detect. Assoc. Equip.
– volume: 417
  start-page: 434
  year: 1998
  end-page: 449
  ident: b46
  article-title: Simulation of
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A
– reference: CAEN.
– volume: 940
  start-page: 78
  year: 2019
  end-page: 82
  ident: b38
  article-title: Measurements of cosmic ray induced background neutrons near the ground using a Bonner sphere spectrometer
  publication-title: NIMA
– volume: 54
  start-page: 361
  year: 2004
  end-page: 412
  ident: b41
  article-title: Backgrounds to sensitive experiments underground
  publication-title: Annu. Rev. Nucl. Part. Sci.
– volume: 949
  year: 2020
  ident: b43
  article-title: Li and
  publication-title: NIMA
– volume: 131
  year: 2023
  ident: b11
  article-title: Final measurement of
  publication-title: Phys. Rev. Lett.
– volume: 1024
  year: 2022
  ident: b24
  article-title: Measurements using a prototype array of plastic scintillator bars for reactor base electron anti-neutrino detection
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrometers Detect. Assoc. Equip.
– volume: 122
  year: 2019
  ident: b19
  article-title: Measurement of the antineutrino spectrum from
  publication-title: Phys. Rev. Lett.
– volume: 289
  start-page: 490
  year: 1990
  end-page: 495
  ident: b44
  article-title: The high resolution neutrino calorimeter KARMEN
  publication-title: NIMA
– volume: 1042
  year: 2022
  ident: b35
  article-title: Evaluation of the response of plastic scintillator bars and measurement of neutron capture time in non-reactor environment for the ISMRAN experiment
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrometers Detect. Assoc. Equip.
– volume: 122
  year: 2019
  ident: b17
  article-title: Fuel-composition dependent reactor antineutrino yield at RENO
  publication-title: Phys. Rev. Lett.
– volume: 50
  start-page: 5710
  year: 1994
  ident: b49
  article-title: An event generator for simulation of high-energy cosmic ray cascades
  publication-title: Phys. Rev. D
– volume: 128
  year: 2022
  ident: b3
  article-title: Joint measurement of the
  publication-title: Phys. Rev. Lett.
– volume: 116
  year: 2016
  ident: b9
  article-title: Measurement of the reactor antineutrino flux and spectrum at daya bay
  publication-title: Phys. Rev. Lett.
– year: 2008
  ident: b40
  article-title: Thorsten lammers and dieter horns studies of muon induced background at the DoubleChooz detector
  publication-title: Proceedings
– volume: 236
  start-page: 747
  year: 2006
  end-page: 757
  ident: b15
  article-title: Dhruva: Main design features, operational experience and utilization
  publication-title: Nucl. Eng. Des.
– volume: 118
  year: 2017
  ident: b18
  article-title: NEOS data and the origin of the 5 MeV bump in the reactor antineutrino spectrum
  publication-title: Phys. Rev. Lett.
– volume: 29
  start-page: 1918
  year: 1984
  ident: b8
  article-title: Analysis of the anti-neutrino capture on protons
  publication-title: Phys. Rev. D
– reference: Technical Meeting on Nuclear Data for Anti-Neutrino Spectra and their Applications, 23-26 April 2019, IAEA Headquarters, Vienna, Austria, .
– volume: 90
  year: 2017
  ident: b27
  article-title: The muon-induced neutron indirect detection experiment, MINIDEX
  publication-title: Astropart. Phys.
– reference: .
– volume: 16
  year: 2021
  ident: b51
  article-title: Characterization of plastic scintillator bars using fast neutrons from
  publication-title: J. Instrum.
– volume: 15
  year: 2020
  ident: b55
  article-title: Machine learning technique to improve anti-neutrino detection efficiency for the ISMRAN experiment
  publication-title: J. Instrum.
– reference: Haichuan Cao, David Koltick Cosmic Ray Induced Neutron Production in a Lead Target arXiv.
– volume: 118
  year: 2017
  ident: b16
  article-title: Evolution of the reactor antineutrino flux and spectrum at daya bay
  publication-title: Phys. Rev. Lett.
– volume: 123
  year: 2019
  ident: b20
  article-title: Extraction of the
  publication-title: Phys. Rev. Lett.
– volume: 93
  year: 2016
  ident: b14
  article-title: Online monitoring of the osiris reactor with the nucifer neutrino detector
  publication-title: Phys. Rev. D
– volume: 806
  year: 2016
  ident: b53
  article-title: Background radiation measurements at high power research reactors
  publication-title: Nucl. Instrum. Methods Phys. Res. - Sect. A ( NIM-A)
– reference: 9821B Series.
– volume: 124
  start-page: 103
  year: 1956
  ident: 10.1016/j.astropartphys.2025.103101_b1
  article-title: Detection of the free neutrino: a confirmation
  publication-title: Science
  doi: 10.1126/science.124.3212.103
– volume: 4
  start-page: 043D02
  year: 2020
  ident: 10.1016/j.astropartphys.2025.103101_b47
  article-title: Gamma-ray spectra from thermal neutron capture on gadolinium-155 and natural gadolinium
  publication-title: Prog. Theor. Exp. Phys.
  doi: 10.1093/ptep/ptaa015
– ident: 10.1016/j.astropartphys.2025.103101_b21
– volume: 83
  year: 2011
  ident: 10.1016/j.astropartphys.2025.103101_b5
  article-title: Improved predictions of reactor antineutrino spectra
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.83.054615
– volume: Vol. 56
  start-page: 1
  year: 2011
  ident: 10.1016/j.astropartphys.2025.103101_b39
  article-title: Characterization of liquid scintillation detectors using 252Cf source
– ident: 10.1016/j.astropartphys.2025.103101_b34
– volume: 940
  start-page: 78
  year: 2019
  ident: 10.1016/j.astropartphys.2025.103101_b38
  article-title: Measurements of cosmic ray induced background neutrons near the ground using a Bonner sphere spectrometer
  publication-title: NIMA
  doi: 10.1016/j.nima.2019.06.004
– volume: 141
  year: 2022
  ident: 10.1016/j.astropartphys.2025.103101_b37
  article-title: Cosmic ray measurements using the ISMRAN setup in a non-reactor environment
  publication-title: Astropart. Phys.
  doi: 10.1016/j.astropartphys.2022.102729
– ident: 10.1016/j.astropartphys.2025.103101_b48
– volume: 17
  year: 2022
  ident: 10.1016/j.astropartphys.2025.103101_b36
  article-title: A new technique to enhance the position resolution of large area plastic scinitillators to reconstruct the cosmic muon tracks
  publication-title: J. Instrum.
  doi: 10.1088/1748-0221/17/02/P02036
– volume: 123
  year: 2019
  ident: 10.1016/j.astropartphys.2025.103101_b20
  article-title: Extraction of the 235U and 239Pu antineutrino spectra at daya bay
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.111801
– volume: 564
  start-page: 471
  year: 2006
  ident: 10.1016/j.astropartphys.2025.103101_b42
  article-title: Measuring cosmogenic 9Li background in a reactor neutrino experiment
  publication-title: NIMA
  doi: 10.1016/j.nima.2006.04.047
– volume: 31
  year: 2009
  ident: 10.1016/j.astropartphys.2025.103101_b45
  article-title: Simulation of neutrons produced by high-energy muons underground
  publication-title: Astropart. Phys.
  doi: 10.1016/j.astropartphys.2009.03.008
– volume: 50
  start-page: 5710
  year: 1994
  ident: 10.1016/j.astropartphys.2025.103101_b49
  article-title: An event generator for simulation of high-energy cosmic ray cascades
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.50.5710
– volume: 74
  year: 2015
  ident: 10.1016/j.astropartphys.2025.103101_b10
  article-title: Improved measurements of the neutrino mixing angle θ13 with the double chooz detector
  publication-title: JHEP
– volume: 572
  start-page: 985
  year: 2007
  ident: 10.1016/j.astropartphys.2025.103101_b13
  article-title: Experimental results from an antineutrino detector for cooperative monitoring of nuclear reactors
  publication-title: NIMA
  doi: 10.1016/j.nima.2006.12.015
– volume: 100
  year: 2019
  ident: 10.1016/j.astropartphys.2025.103101_b54
  article-title: Cosmogenic neutron production at the sudbury neutrino observatory
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.100.112005
– volume: 54
  start-page: 361
  year: 2004
  ident: 10.1016/j.astropartphys.2025.103101_b41
  article-title: Backgrounds to sensitive experiments underground
  publication-title: Annu. Rev. Nucl. Part. Sci.
  doi: 10.1146/annurev.nucl.54.070103.181248
– volume: 16
  year: 2021
  ident: 10.1016/j.astropartphys.2025.103101_b28
  article-title: Characterization of plastic scintillator bars using fast neutrons from D-D and D-T reactions
  publication-title: J. Instrum.
  doi: 10.1088/1748-0221/16/08/P08029
– ident: 10.1016/j.astropartphys.2025.103101_b33
– volume: 289
  start-page: 490
  year: 1990
  ident: 10.1016/j.astropartphys.2025.103101_b44
  article-title: The high resolution neutrino calorimeter KARMEN
  publication-title: NIMA
  doi: 10.1016/0168-9002(90)91521-C
– volume: 122
  year: 2019
  ident: 10.1016/j.astropartphys.2025.103101_b17
  article-title: Fuel-composition dependent reactor antineutrino yield at RENO
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.232501
– volume: 98
  year: 2018
  ident: 10.1016/j.astropartphys.2025.103101_b2
  article-title: Review of particle physics
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.98.030001
– volume: 93
  year: 2016
  ident: 10.1016/j.astropartphys.2025.103101_b14
  article-title: Online monitoring of the osiris reactor with the nucifer neutrino detector
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.93.112006
– volume: 613
  start-page: 257
  year: 2023
  ident: 10.1016/j.astropartphys.2025.103101_b4
  article-title: STEREO neutrino spectrum of 235U fission rejects sterile neutrino hypothesis
  publication-title: Nature
  doi: 10.1038/s41586-022-05568-2
– volume: 118
  year: 2017
  ident: 10.1016/j.astropartphys.2025.103101_b16
  article-title: Evolution of the reactor antineutrino flux and spectrum at daya bay
  publication-title: Phys. Rev. Lett.
– volume: 34
  year: 2010
  ident: 10.1016/j.astropartphys.2025.103101_b29
  article-title: Direct measurement of the atmospheric neutron flux in the energy range 10–500 MeV
  publication-title: Astropart. Phys.
  doi: 10.1016/j.astropartphys.2010.07.004
– volume: 949
  year: 2020
  ident: 10.1016/j.astropartphys.2025.103101_b43
  article-title: 9Li and 8He decays in GEANT4
  publication-title: NIMA
  doi: 10.1016/j.nima.2019.162904
– volume: 236
  start-page: 747
  year: 2006
  ident: 10.1016/j.astropartphys.2025.103101_b15
  article-title: Dhruva: Main design features, operational experience and utilization
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2005.09.020
– volume: 84
  year: 2011
  ident: 10.1016/j.astropartphys.2025.103101_b6
  article-title: Determination of antineutrino spectra from nuclear reactors
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.84.024617
– volume: 123
  year: 2022
  ident: 10.1016/j.astropartphys.2025.103101_b12
  article-title: JUNO physics and detector
  publication-title: Prog. Part. Nucl. Phys.
– volume: 1024
  year: 2022
  ident: 10.1016/j.astropartphys.2025.103101_b24
  article-title: Measurements using a prototype array of plastic scintillator bars for reactor base electron anti-neutrino detection
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrometers Detect. Assoc. Equip.
  doi: 10.1016/j.nima.2021.166126
– volume: 90
  year: 2017
  ident: 10.1016/j.astropartphys.2025.103101_b27
  article-title: The muon-induced neutron indirect detection experiment, MINIDEX
  publication-title: Astropart. Phys.
  doi: 10.1016/j.astropartphys.2017.01.011
– volume: 757
  start-page: 33
  year: 2014
  ident: 10.1016/j.astropartphys.2025.103101_b22
  article-title: Reactor antineutrino monitoring with a plastic scintillatorarray as a new safeguards method
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrometers Detect. Assoc. Equip.
  doi: 10.1016/j.nima.2014.04.065
– volume: 122
  year: 2019
  ident: 10.1016/j.astropartphys.2025.103101_b19
  article-title: Measurement of the antineutrino spectrum from 235U fission at HFIR with PROSPECT
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.251801
– ident: 10.1016/j.astropartphys.2025.103101_b52
– volume: 417
  start-page: 434
  year: 1998
  ident: 10.1016/j.astropartphys.2025.103101_b46
  article-title: Simulation of γ cascades in complex nuclei with emphasis on assessment of uncertainties of cascade-related quantities
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A
  doi: 10.1016/S0168-9002(98)00787-6
– volume: 29
  start-page: 1918
  year: 1984
  ident: 10.1016/j.astropartphys.2025.103101_b8
  article-title: Analysis of the anti-neutrino capture on protons
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.29.1918
– ident: 10.1016/j.astropartphys.2025.103101_b32
– volume: 128
  year: 2022
  ident: 10.1016/j.astropartphys.2025.103101_b3
  article-title: Joint measurement of the 235U antineutrino spectrum by PROSPECT and STEREO
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.128.081802
– volume: 73
  year: 2006
  ident: 10.1016/j.astropartphys.2025.103101_b26
  article-title: Measuring the cosmic ray muon-induced fast neutron spectrum by (n, p) isotope production reactions in underground detectors
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.73.049906
– volume: 911
  start-page: 104
  year: 2018
  ident: 10.1016/j.astropartphys.2025.103101_b23
  article-title: A plastic scintillator array for reactor based anti-neutrino studies
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrometers Detect. Assoc. Equip.
  doi: 10.1016/j.nima.2018.10.026
– volume: 15
  year: 2020
  ident: 10.1016/j.astropartphys.2025.103101_b55
  article-title: Machine learning technique to improve anti-neutrino detection efficiency for the ISMRAN experiment
  publication-title: J. Instrum.
  doi: 10.1088/1748-0221/15/04/P04021
– year: 2008
  ident: 10.1016/j.astropartphys.2025.103101_b40
  article-title: Thorsten lammers and dieter horns studies of muon induced background at the DoubleChooz detector
– volume: 118
  year: 2017
  ident: 10.1016/j.astropartphys.2025.103101_b18
  article-title: NEOS data and the origin of the 5 MeV bump in the reactor antineutrino spectrum
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.042502
– volume: 64
  year: 2001
  ident: 10.1016/j.astropartphys.2025.103101_b25
  article-title: Predicting neutron production from cosmic-ray muons
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.64.013012
– volume: 116
  year: 2016
  ident: 10.1016/j.astropartphys.2025.103101_b9
  article-title: Measurement of the reactor antineutrino flux and spectrum at daya bay
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.061801
– volume: 1042
  year: 2022
  ident: 10.1016/j.astropartphys.2025.103101_b35
  article-title: Evaluation of the response of plastic scintillator bars and measurement of neutron capture time in non-reactor environment for the ISMRAN experiment
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrometers Detect. Assoc. Equip.
  doi: 10.1016/j.nima.2022.167415
– volume: 83
  year: 2011
  ident: 10.1016/j.astropartphys.2025.103101_b7
  article-title: Reactor antineutrino anomaly
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.83.073006
– volume: 131
  year: 2023
  ident: 10.1016/j.astropartphys.2025.103101_b11
  article-title: Final measurement of 235U the antineutrino energy spectrum with the PROSPECT-I detector at HFIR
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.131.021802
– volume: 46
  start-page: 5013
  year: 1992
  ident: 10.1016/j.astropartphys.2025.103101_b50
  article-title: Nucleus–nucleus collisions and interpretation of cosmic-ray cascades
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.46.5013
– ident: 10.1016/j.astropartphys.2025.103101_b31
– volume: 16
  year: 2021
  ident: 10.1016/j.astropartphys.2025.103101_b51
  article-title: Characterization of plastic scintillator bars using fast neutrons from D-D and D-T reactions
  publication-title: J. Instrum.
  doi: 10.1088/1748-0221/16/08/P08029
– volume: 806
  year: 2016
  ident: 10.1016/j.astropartphys.2025.103101_b53
  article-title: Background radiation measurements at high power research reactors
  publication-title: Nucl. Instrum. Methods Phys. Res. - Sect. A ( NIM-A)
– volume: 506
  start-page: 250
  year: 2003
  ident: 10.1016/j.astropartphys.2025.103101_b30
  article-title: Geant4 - a simulation toolkit
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A
  doi: 10.1016/S0168-9002(03)01368-8
SSID ssj0014034
Score 2.4440951
Snippet The Indian Scintillator Matrix for Reactor Anti-Neutrinos (ISMRAN) is an above-ground, very short baseline reactor anti-neutrino (ν¯e) experiment, located...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 103101
SubjectTerms Acceptance correction
Anti-neutrinos
Capture time
Efficiency
Energy resolution
Fast neutrons
Plastic scintillator
Systematic uncertainty
Title Measurement of cosmic muon-induced neutron background with ISMRAN detector in a non-reactor environment
URI https://dx.doi.org/10.1016/j.astropartphys.2025.103101
Volume 169
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LSsNAcCiK4kW0Kj7LguJtbXazm8dFKMXSKi3iA7yFfUqVptKmV7_d3ST1gRfB22bZTMLM7LyYB8BZwhOqaMgx1TrCLNYEC8tTbEwQCEO5jMpamOEo6j-y6yf-1IDushbGp1XWsr-S6aW0rnfaNTbbb-Nx-z5IaRyVc9j8tWa-7TZjsefyi_fPNA_fjq5sIeUOY396HU6_crzEvJg533RW-DCCcxYp90XopJ4Q80tLfdM8vS3YrE1G1Kn-ahsaJm_CfscD9QUJ6ByV6ypGMW_C2m212oHn4VcEEE0tUtP5ZKzQZDHNsfPFHVU1ys3CA0JSqFdf4pFr5GOzaHA_vOuMkDZFGddH4xwJlLsXnZVZbnwrkduFx97VQ7eP68kKWJE0LXAslCU20tphkNpUaucEqiCJ0yQwEbPEaGe3RZZKlhhhBVOhoUQyHZiEGxJG4R6suC-afUBOvWsurRWhIu7-y1TKUCachb6zvSHqANgSk9lb1UAjW2aWvWQ_CJB5AmQVAQ7gcon17Ac_ZE7U_wXA4X8BHMGGf6pSc49hpZgtzIkzQArZKjmsBaudwU1_9AFP6t87
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1ZS8Mw-EMnHi_iybwDim9hTZpk7YswRNnUDfEA30pOmWInW_f_TdrOA18E30LafA3fl35XvgPgJOEJ1TTmmBojMGsbgqXjKbY2iqSlXIkyF6Y_EN1HdvXEn-bgfJYLE8Iqa95f8fSSW9czrRqbrffhsHUfpbQtyj5s4bdmYh4WQnUq3oCFTu-6O_i8TGBRebkc3sdhwRIcf4V5yUkx9ubpuAieBG8vUh7y0EndJOaXoPomfC7XYLXWGlGn2tg6zNl8A5qdADTkJKBTVI4rN8VkAxZvq9EmPPe_nIBo5JAeTd6GGr1NRzn25rgnrEG5nQZASEn9GrI8coOCexb17vt3nQEytihd-2iYI4lyv9ArmuXEtyy5LXi8vHg47-K6uQLWJE0L3JbaESeM8UikLlXG24E6StppElnBHLHGq27CUcUSK51kOraUKGYim3BLYhFvQ8N_0TYBeQlvuHJOxpp4FqBSpWKVcBaH4vaW6B1gM0xm71UNjWwWXPaS_SBAFgiQVQTYgbMZ1rMfRyLz3P4vAHb_C-AIlrsP_Zvspje43oOV8KSK1N2HRjGe2gOvjxTqsD5vH_R74ew
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measurement+of+cosmic+muon-induced+neutron+background+with+ISMRAN+detector+in+a+non-reactor+environment&rft.jtitle=Astroparticle+physics&rft.au=Dey%2C+R.&rft.au=Netrakanti%2C+P.K.&rft.au=Mishra%2C+D.K.&rft.au=Behera%2C+S.P.&rft.date=2025-07-01&rft.pub=Elsevier+B.V&rft.issn=0927-6505&rft.volume=169&rft_id=info:doi/10.1016%2Fj.astropartphys.2025.103101&rft.externalDocID=S0927650525000246
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-6505&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-6505&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-6505&client=summon