Combining Knowledge Graph and Artificial Intelligence to Conduct Financial Report Quality Detection Research

Since financial reports usually contain a large amount of data and complex information, traditional methods for quality inspection are not only slow but also difficult, which greatly affects the efficiency of quality inspection. This paper adopts knowledge graph and artificial intelligence methods t...

Full description

Saved in:
Bibliographic Details
Published inJournal of advanced computational intelligence and intelligent informatics Vol. 29; no. 4; pp. 787 - 795
Main Author Luo, Lan
Format Journal Article
LanguageEnglish
Published Tokyo Fuji Technology Press Co. Ltd 20.07.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Since financial reports usually contain a large amount of data and complex information, traditional methods for quality inspection are not only slow but also difficult, which greatly affects the efficiency of quality inspection. This paper adopts knowledge graph and artificial intelligence methods to convert unstructured data in financial reports into structured data that can be quickly processed, thereby improving the efficiency and performance of financial report quality inspection. Therefore, this paper proposes an ALBERT-BiGRU-CRF model algorithm to perform named entity recognition on financial reports, which can effectively identify complex entities in financial reports; in addition, a RoBERTa-BiGRU model algorithm is proposed to extract the relationship between entities and finally construct the relevant knowledge graph. By analyzing the knowledge graph, relevant data inside the financial report can be obtained. The F1 score of the ALBERT-BiGRU-CRF model proposed in this paper is 6.1% higher than that of the BERT-BiGRU-CRF model, and the F1 score of the RoBERTa-BiGRU model proposed in this paper is 4.1% higher than that of BiGRU. The model proposed in this paper is of great significance for the knowledge graph modeling and quality inspection of financial reports.
AbstractList Since financial reports usually contain a large amount of data and complex information, traditional methods for quality inspection are not only slow but also difficult, which greatly affects the efficiency of quality inspection. This paper adopts knowledge graph and artificial intelligence methods to convert unstructured data in financial reports into structured data that can be quickly processed, thereby improving the efficiency and performance of financial report quality inspection. Therefore, this paper proposes an ALBERT-BiGRU-CRF model algorithm to perform named entity recognition on financial reports, which can effectively identify complex entities in financial reports; in addition, a RoBERTa-BiGRU model algorithm is proposed to extract the relationship between entities and finally construct the relevant knowledge graph. By analyzing the knowledge graph, relevant data inside the financial report can be obtained. The F1 score of the ALBERT-BiGRU-CRF model proposed in this paper is 6.1% higher than that of the BERT-BiGRU-CRF model, and the F1 score of the RoBERTa-BiGRU model proposed in this paper is 4.1% higher than that of BiGRU. The model proposed in this paper is of great significance for the knowledge graph modeling and quality inspection of financial reports.
Author Luo, Lan
Author_xml – sequence: 1
  givenname: Lan
  surname: Luo
  fullname: Luo, Lan
  organization: School of Accounting, Shaanxi Technical College of Finance & Economics, 1st Wenlin Road, Qindu District, Xianyang City, Shaanxi 712000, China
BookMark eNotkF1LwzAUhoNMcM79Aa8CXnfmo23ay1HdHA5E0euSniRbRpfUNEX2762bV-c9vA_nwHOLJs47jdA9JQtGyjx7PEiw1o4LyxYdEYW4QlNaFDwpCE0nY-YpTwjl5AbN-_5AyJhZTlI6RW3lj4111u3wq_M_rVY7jddBdnssncLLEK2xYGWLNy7qtrU77UDj6HHlnRog4pV10p2JD935EPH7IFsbT_hJRw3RejcWvZYB9nfo2si21_P_OUNfq-fP6iXZvq031XKbAC1LkRggTWGKnEAhFS0hy4WEJjNgeJ5RAooaoWimCTS6UUyA4g1rZMoyaVQuFJ-hh8vdLvjvQfexPvghuPFlzRmnaSnKvBwpdqEg-L4P2tRdsEcZTjUl9VlsfRFb_4mtz2L5L4O4cU0
Cites_doi 10.1155/2019/9202457
10.1007/978-3-031-10983-6_10
10.1109/IRI54793.2022.00031
10.1007/978-3-030-87626-5_4
10.7717/peerj-cs.2004
10.1109/ICMLC.2015.7340672
10.1109/ICBK.2018.00012
10.3390/su15010105
10.1145/3397271.3401427
10.1109/ICSC56153.2023.00020
10.1108/EL-02-2023-0053
10.1109/ACCESS.2021.3052054
10.3115/v1/D14-1179
10.1016/j.eswa.2023.123126
10.1016/j.procs.2022.01.097
10.1109/TNNLS.2021.3070843
10.1155/2022/8353937
10.1109/ICSC59802.2024.00015
ContentType Journal Article
Copyright Copyright © 2025 Fuji Technology Press Ltd.
Copyright_xml – notice: Copyright © 2025 Fuji Technology Press Ltd.
DBID AAYXX
CITATION
7SC
7SP
8FD
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.20965/jaciii.2025.p0787
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1883-8014
EndPage 795
ExternalDocumentID 10_20965_jaciii_2025_p0787
GroupedDBID AAYXX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
JSI
JSP
K7-
P2P
PHGZM
PHGZT
PQGLB
RJT
RZJ
TUS
7SC
7SP
8FD
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L7M
L~C
L~D
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c1997-fc0b8f860c8ad19c567acb5fcf36510cd1f7d15e0cbebd27cd3b2ba425afd67d3
IEDL.DBID BENPR
ISSN 1343-0130
IngestDate Tue Aug 05 07:10:37 EDT 2025
Thu Jul 24 02:17:46 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1997-fc0b8f860c8ad19c567acb5fcf36510cd1f7d15e0cbebd27cd3b2ba425afd67d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doi.org/10.20965/jaciii.2025.p0787
PQID 3231497969
PQPubID 4911628
PageCount 9
ParticipantIDs proquest_journals_3231497969
crossref_primary_10_20965_jaciii_2025_p0787
PublicationCentury 2000
PublicationDate 2025-07-20
PublicationDateYYYYMMDD 2025-07-20
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-20
  day: 20
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Journal of advanced computational intelligence and intelligent informatics
PublicationYear 2025
Publisher Fuji Technology Press Co. Ltd
Publisher_xml – name: Fuji Technology Press Co. Ltd
References key-10.20965/jaciii.2025.p0787-20
key-10.20965/jaciii.2025.p0787-25
key-10.20965/jaciii.2025.p0787-26
key-10.20965/jaciii.2025.p0787-23
key-10.20965/jaciii.2025.p0787-24
key-10.20965/jaciii.2025.p0787-21
key-10.20965/jaciii.2025.p0787-22
key-10.20965/jaciii.2025.p0787-9
key-10.20965/jaciii.2025.p0787-18
key-10.20965/jaciii.2025.p0787-19
key-10.20965/jaciii.2025.p0787-3
key-10.20965/jaciii.2025.p0787-16
key-10.20965/jaciii.2025.p0787-4
key-10.20965/jaciii.2025.p0787-17
key-10.20965/jaciii.2025.p0787-1
key-10.20965/jaciii.2025.p0787-14
key-10.20965/jaciii.2025.p0787-2
key-10.20965/jaciii.2025.p0787-15
key-10.20965/jaciii.2025.p0787-7
key-10.20965/jaciii.2025.p0787-12
key-10.20965/jaciii.2025.p0787-8
key-10.20965/jaciii.2025.p0787-13
key-10.20965/jaciii.2025.p0787-5
key-10.20965/jaciii.2025.p0787-10
key-10.20965/jaciii.2025.p0787-6
key-10.20965/jaciii.2025.p0787-11
References_xml – ident: key-10.20965/jaciii.2025.p0787-10
  doi: 10.1155/2019/9202457
– ident: key-10.20965/jaciii.2025.p0787-11
  doi: 10.1007/978-3-031-10983-6_10
– ident: key-10.20965/jaciii.2025.p0787-19
  doi: 10.1109/IRI54793.2022.00031
– ident: key-10.20965/jaciii.2025.p0787-3
  doi: 10.1007/978-3-030-87626-5_4
– ident: key-10.20965/jaciii.2025.p0787-22
– ident: key-10.20965/jaciii.2025.p0787-17
  doi: 10.7717/peerj-cs.2004
– ident: key-10.20965/jaciii.2025.p0787-20
  doi: 10.1109/ICMLC.2015.7340672
– ident: key-10.20965/jaciii.2025.p0787-26
– ident: key-10.20965/jaciii.2025.p0787-24
– ident: key-10.20965/jaciii.2025.p0787-1
– ident: key-10.20965/jaciii.2025.p0787-13
  doi: 10.1109/ICBK.2018.00012
– ident: key-10.20965/jaciii.2025.p0787-15
  doi: 10.3390/su15010105
– ident: key-10.20965/jaciii.2025.p0787-18
  doi: 10.1145/3397271.3401427
– ident: key-10.20965/jaciii.2025.p0787-4
  doi: 10.1109/ICSC56153.2023.00020
– ident: key-10.20965/jaciii.2025.p0787-9
  doi: 10.1108/EL-02-2023-0053
– ident: key-10.20965/jaciii.2025.p0787-7
– ident: key-10.20965/jaciii.2025.p0787-12
  doi: 10.1109/ACCESS.2021.3052054
– ident: key-10.20965/jaciii.2025.p0787-23
  doi: 10.3115/v1/D14-1179
– ident: key-10.20965/jaciii.2025.p0787-21
– ident: key-10.20965/jaciii.2025.p0787-25
– ident: key-10.20965/jaciii.2025.p0787-16
  doi: 10.1016/j.eswa.2023.123126
– ident: key-10.20965/jaciii.2025.p0787-8
  doi: 10.1016/j.procs.2022.01.097
– ident: key-10.20965/jaciii.2025.p0787-2
  doi: 10.1109/TNNLS.2021.3070843
– ident: key-10.20965/jaciii.2025.p0787-6
– ident: key-10.20965/jaciii.2025.p0787-14
  doi: 10.1155/2022/8353937
– ident: key-10.20965/jaciii.2025.p0787-5
  doi: 10.1109/ICSC59802.2024.00015
SSID ssj0001326041
ssib051641541
Score 2.3295956
Snippet Since financial reports usually contain a large amount of data and complex information, traditional methods for quality inspection are not only slow but also...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 787
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Deep learning
Efficiency
Fraud
Graphs
Inspection
Internet stocks
Knowledge representation
Money laundering
Optimization techniques
Stock prices
Structured data
Unstructured data
Title Combining Knowledge Graph and Artificial Intelligence to Conduct Financial Report Quality Detection Research
URI https://www.proquest.com/docview/3231497969
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagXVh4Iwql8sCGQpPYTpwJQWlaQFQIUalb5Ec8IJQUGgb-PX5FpQuro2T47Lv77nL-DoDLDGHEcMkCHepUgBUPA5aWIqAMIWHUZKTVKXieJdM5flyQhS-4rXxbZesTraOWtTA18iHSRARnaZZkN8vPwEyNMn9X_QiNbdDVLpjSDujejWcvr-2JIjoZ0BwhWlddNFsJscvCsGkkQqG7SRMbFZThOxNG0iHWROB6qYNnuhmtNp21jUD5Ptj11BHeur0-AFtldQj22rEM0FvpEfjQS9zOfYBPbcUMTowwNWSVtO872Qj48EePEzY1HNWVkX-FeSvDAR0_h05p4wfel41t3apg27F3DOb5-G00DfxQhUBY5VUlQk4VTUJBmYwyQZKUCU6UUCjR9ilkpFIZkTIUvOQyToVEPOZMmzZTMkklOgGdqq7KUwAjohSTsZR6HWecZFjTHSJFyCKOKKY9cNWCVyyddkahcw4LdeGgLgzUhYW6B_otvoW3o1Wx3vWz_x-fgx3zKVN1jcM-6DRf3-WFpgsNH4Btmk8G_mQMbNL9C-KrwbU
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED7xGGDhjSgU8AATCiSx8xoQQkBpKTCBxBb8HBBKCxSh_il-I2e7FrCwsSaKhy9ffN9dzt8B7FWUUc40jzDUmYgZEUe80DIqOaXSusko51Nwc5t379nVQ_YwBZ_hLIxtqwx7otuo1UDaGvkRRSHCqqLKq5PhS2SnRtm_q2GEhqdFX48_MGV7O-6d4_vdT9POxd1ZN5pMFYiksx41MhalKfNYllwllczygkuRGWlojgSVKjGFSjIdS6GFSgupqEgFR25zo_JCUVx3GmYZxUhuT6Z3LgN_M0w9UJEk3zUe1EYx8zkfs21LNPbndlLruXL0xKU1kEhRdhwOMVQXv2Pj79Dg4l1nCRYmQpWcemYtw5RuVmAxDIEgkz1hFZ7xknBTJkg_1OfIpbXBJrxR7nlvUkF6P9w_yWhAzgaNNZslnWD6QXw2QLyvx5ic65FrFGtI6A9cg_t_AXsdZppBozeAJJkxXKVK4XVWiaxiKK4yJWOeCFqysgUHAbx66J06asxwHNS1h7q2UNcO6ha0A7715Kt9q785tvn37V2Y697dXNfXvdv-FszbZW29N43bMDN6fdfbKFRGYsexg8Djf9PxCwWa_fI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+Knowledge+Graph+and+Artificial+Intelligence+to+Conduct+Financial+Report+Quality+Detection+Research&rft.jtitle=Journal+of+advanced+computational+intelligence+and+intelligent+informatics&rft.au=Luo%2C+Lan&rft.date=2025-07-20&rft.pub=Fuji+Technology+Press+Co.+Ltd&rft.issn=1343-0130&rft.eissn=1883-8014&rft.volume=29&rft.issue=4&rft.spage=787&rft.epage=795&rft_id=info:doi/10.20965%2Fjaciii.2025.p0787
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1343-0130&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1343-0130&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1343-0130&client=summon