Combining Knowledge Graph and Artificial Intelligence to Conduct Financial Report Quality Detection Research
Since financial reports usually contain a large amount of data and complex information, traditional methods for quality inspection are not only slow but also difficult, which greatly affects the efficiency of quality inspection. This paper adopts knowledge graph and artificial intelligence methods t...
Saved in:
Published in | Journal of advanced computational intelligence and intelligent informatics Vol. 29; no. 4; pp. 787 - 795 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Tokyo
Fuji Technology Press Co. Ltd
20.07.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Since financial reports usually contain a large amount of data and complex information, traditional methods for quality inspection are not only slow but also difficult, which greatly affects the efficiency of quality inspection. This paper adopts knowledge graph and artificial intelligence methods to convert unstructured data in financial reports into structured data that can be quickly processed, thereby improving the efficiency and performance of financial report quality inspection. Therefore, this paper proposes an ALBERT-BiGRU-CRF model algorithm to perform named entity recognition on financial reports, which can effectively identify complex entities in financial reports; in addition, a RoBERTa-BiGRU model algorithm is proposed to extract the relationship between entities and finally construct the relevant knowledge graph. By analyzing the knowledge graph, relevant data inside the financial report can be obtained. The F1 score of the ALBERT-BiGRU-CRF model proposed in this paper is 6.1% higher than that of the BERT-BiGRU-CRF model, and the F1 score of the RoBERTa-BiGRU model proposed in this paper is 4.1% higher than that of BiGRU. The model proposed in this paper is of great significance for the knowledge graph modeling and quality inspection of financial reports. |
---|---|
AbstractList | Since financial reports usually contain a large amount of data and complex information, traditional methods for quality inspection are not only slow but also difficult, which greatly affects the efficiency of quality inspection. This paper adopts knowledge graph and artificial intelligence methods to convert unstructured data in financial reports into structured data that can be quickly processed, thereby improving the efficiency and performance of financial report quality inspection. Therefore, this paper proposes an ALBERT-BiGRU-CRF model algorithm to perform named entity recognition on financial reports, which can effectively identify complex entities in financial reports; in addition, a RoBERTa-BiGRU model algorithm is proposed to extract the relationship between entities and finally construct the relevant knowledge graph. By analyzing the knowledge graph, relevant data inside the financial report can be obtained. The F1 score of the ALBERT-BiGRU-CRF model proposed in this paper is 6.1% higher than that of the BERT-BiGRU-CRF model, and the F1 score of the RoBERTa-BiGRU model proposed in this paper is 4.1% higher than that of BiGRU. The model proposed in this paper is of great significance for the knowledge graph modeling and quality inspection of financial reports. |
Author | Luo, Lan |
Author_xml | – sequence: 1 givenname: Lan surname: Luo fullname: Luo, Lan organization: School of Accounting, Shaanxi Technical College of Finance & Economics, 1st Wenlin Road, Qindu District, Xianyang City, Shaanxi 712000, China |
BookMark | eNotkF1LwzAUhoNMcM79Aa8CXnfmo23ay1HdHA5E0euSniRbRpfUNEX2762bV-c9vA_nwHOLJs47jdA9JQtGyjx7PEiw1o4LyxYdEYW4QlNaFDwpCE0nY-YpTwjl5AbN-_5AyJhZTlI6RW3lj4111u3wq_M_rVY7jddBdnssncLLEK2xYGWLNy7qtrU77UDj6HHlnRog4pV10p2JD935EPH7IFsbT_hJRw3RejcWvZYB9nfo2si21_P_OUNfq-fP6iXZvq031XKbAC1LkRggTWGKnEAhFS0hy4WEJjNgeJ5RAooaoWimCTS6UUyA4g1rZMoyaVQuFJ-hh8vdLvjvQfexPvghuPFlzRmnaSnKvBwpdqEg-L4P2tRdsEcZTjUl9VlsfRFb_4mtz2L5L4O4cU0 |
Cites_doi | 10.1155/2019/9202457 10.1007/978-3-031-10983-6_10 10.1109/IRI54793.2022.00031 10.1007/978-3-030-87626-5_4 10.7717/peerj-cs.2004 10.1109/ICMLC.2015.7340672 10.1109/ICBK.2018.00012 10.3390/su15010105 10.1145/3397271.3401427 10.1109/ICSC56153.2023.00020 10.1108/EL-02-2023-0053 10.1109/ACCESS.2021.3052054 10.3115/v1/D14-1179 10.1016/j.eswa.2023.123126 10.1016/j.procs.2022.01.097 10.1109/TNNLS.2021.3070843 10.1155/2022/8353937 10.1109/ICSC59802.2024.00015 |
ContentType | Journal Article |
Copyright | Copyright © 2025 Fuji Technology Press Ltd. |
Copyright_xml | – notice: Copyright © 2025 Fuji Technology Press Ltd. |
DBID | AAYXX CITATION 7SC 7SP 8FD 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.20965/jaciii.2025.p0787 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Computer Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1883-8014 |
EndPage | 795 |
ExternalDocumentID | 10_20965_jaciii_2025_p0787 |
GroupedDBID | AAYXX AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ JSI JSP K7- P2P PHGZM PHGZT PQGLB RJT RZJ TUS 7SC 7SP 8FD 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L7M L~C L~D P62 PKEHL PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c1997-fc0b8f860c8ad19c567acb5fcf36510cd1f7d15e0cbebd27cd3b2ba425afd67d3 |
IEDL.DBID | BENPR |
ISSN | 1343-0130 |
IngestDate | Tue Aug 05 07:10:37 EDT 2025 Thu Jul 24 02:17:46 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1997-fc0b8f860c8ad19c567acb5fcf36510cd1f7d15e0cbebd27cd3b2ba425afd67d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doi.org/10.20965/jaciii.2025.p0787 |
PQID | 3231497969 |
PQPubID | 4911628 |
PageCount | 9 |
ParticipantIDs | proquest_journals_3231497969 crossref_primary_10_20965_jaciii_2025_p0787 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-20 |
PublicationDateYYYYMMDD | 2025-07-20 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo |
PublicationTitle | Journal of advanced computational intelligence and intelligent informatics |
PublicationYear | 2025 |
Publisher | Fuji Technology Press Co. Ltd |
Publisher_xml | – name: Fuji Technology Press Co. Ltd |
References | key-10.20965/jaciii.2025.p0787-20 key-10.20965/jaciii.2025.p0787-25 key-10.20965/jaciii.2025.p0787-26 key-10.20965/jaciii.2025.p0787-23 key-10.20965/jaciii.2025.p0787-24 key-10.20965/jaciii.2025.p0787-21 key-10.20965/jaciii.2025.p0787-22 key-10.20965/jaciii.2025.p0787-9 key-10.20965/jaciii.2025.p0787-18 key-10.20965/jaciii.2025.p0787-19 key-10.20965/jaciii.2025.p0787-3 key-10.20965/jaciii.2025.p0787-16 key-10.20965/jaciii.2025.p0787-4 key-10.20965/jaciii.2025.p0787-17 key-10.20965/jaciii.2025.p0787-1 key-10.20965/jaciii.2025.p0787-14 key-10.20965/jaciii.2025.p0787-2 key-10.20965/jaciii.2025.p0787-15 key-10.20965/jaciii.2025.p0787-7 key-10.20965/jaciii.2025.p0787-12 key-10.20965/jaciii.2025.p0787-8 key-10.20965/jaciii.2025.p0787-13 key-10.20965/jaciii.2025.p0787-5 key-10.20965/jaciii.2025.p0787-10 key-10.20965/jaciii.2025.p0787-6 key-10.20965/jaciii.2025.p0787-11 |
References_xml | – ident: key-10.20965/jaciii.2025.p0787-10 doi: 10.1155/2019/9202457 – ident: key-10.20965/jaciii.2025.p0787-11 doi: 10.1007/978-3-031-10983-6_10 – ident: key-10.20965/jaciii.2025.p0787-19 doi: 10.1109/IRI54793.2022.00031 – ident: key-10.20965/jaciii.2025.p0787-3 doi: 10.1007/978-3-030-87626-5_4 – ident: key-10.20965/jaciii.2025.p0787-22 – ident: key-10.20965/jaciii.2025.p0787-17 doi: 10.7717/peerj-cs.2004 – ident: key-10.20965/jaciii.2025.p0787-20 doi: 10.1109/ICMLC.2015.7340672 – ident: key-10.20965/jaciii.2025.p0787-26 – ident: key-10.20965/jaciii.2025.p0787-24 – ident: key-10.20965/jaciii.2025.p0787-1 – ident: key-10.20965/jaciii.2025.p0787-13 doi: 10.1109/ICBK.2018.00012 – ident: key-10.20965/jaciii.2025.p0787-15 doi: 10.3390/su15010105 – ident: key-10.20965/jaciii.2025.p0787-18 doi: 10.1145/3397271.3401427 – ident: key-10.20965/jaciii.2025.p0787-4 doi: 10.1109/ICSC56153.2023.00020 – ident: key-10.20965/jaciii.2025.p0787-9 doi: 10.1108/EL-02-2023-0053 – ident: key-10.20965/jaciii.2025.p0787-7 – ident: key-10.20965/jaciii.2025.p0787-12 doi: 10.1109/ACCESS.2021.3052054 – ident: key-10.20965/jaciii.2025.p0787-23 doi: 10.3115/v1/D14-1179 – ident: key-10.20965/jaciii.2025.p0787-21 – ident: key-10.20965/jaciii.2025.p0787-25 – ident: key-10.20965/jaciii.2025.p0787-16 doi: 10.1016/j.eswa.2023.123126 – ident: key-10.20965/jaciii.2025.p0787-8 doi: 10.1016/j.procs.2022.01.097 – ident: key-10.20965/jaciii.2025.p0787-2 doi: 10.1109/TNNLS.2021.3070843 – ident: key-10.20965/jaciii.2025.p0787-6 – ident: key-10.20965/jaciii.2025.p0787-14 doi: 10.1155/2022/8353937 – ident: key-10.20965/jaciii.2025.p0787-5 doi: 10.1109/ICSC59802.2024.00015 |
SSID | ssj0001326041 ssib051641541 |
Score | 2.3295956 |
Snippet | Since financial reports usually contain a large amount of data and complex information, traditional methods for quality inspection are not only slow but also... |
SourceID | proquest crossref |
SourceType | Aggregation Database Index Database |
StartPage | 787 |
SubjectTerms | Accuracy Algorithms Artificial intelligence Deep learning Efficiency Fraud Graphs Inspection Internet stocks Knowledge representation Money laundering Optimization techniques Stock prices Structured data Unstructured data |
Title | Combining Knowledge Graph and Artificial Intelligence to Conduct Financial Report Quality Detection Research |
URI | https://www.proquest.com/docview/3231497969 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagXVh4Iwql8sCGQpPYTpwJQWlaQFQIUalb5Ec8IJQUGgb-PX5FpQuro2T47Lv77nL-DoDLDGHEcMkCHepUgBUPA5aWIqAMIWHUZKTVKXieJdM5flyQhS-4rXxbZesTraOWtTA18iHSRARnaZZkN8vPwEyNMn9X_QiNbdDVLpjSDujejWcvr-2JIjoZ0BwhWlddNFsJscvCsGkkQqG7SRMbFZThOxNG0iHWROB6qYNnuhmtNp21jUD5Ptj11BHeur0-AFtldQj22rEM0FvpEfjQS9zOfYBPbcUMTowwNWSVtO872Qj48EePEzY1HNWVkX-FeSvDAR0_h05p4wfel41t3apg27F3DOb5-G00DfxQhUBY5VUlQk4VTUJBmYwyQZKUCU6UUCjR9ilkpFIZkTIUvOQyToVEPOZMmzZTMkklOgGdqq7KUwAjohSTsZR6HWecZFjTHSJFyCKOKKY9cNWCVyyddkahcw4LdeGgLgzUhYW6B_otvoW3o1Wx3vWz_x-fgx3zKVN1jcM-6DRf3-WFpgsNH4Btmk8G_mQMbNL9C-KrwbU |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED7xGGDhjSgU8AATCiSx8xoQQkBpKTCBxBb8HBBKCxSh_il-I2e7FrCwsSaKhy9ffN9dzt8B7FWUUc40jzDUmYgZEUe80DIqOaXSusko51Nwc5t379nVQ_YwBZ_hLIxtqwx7otuo1UDaGvkRRSHCqqLKq5PhS2SnRtm_q2GEhqdFX48_MGV7O-6d4_vdT9POxd1ZN5pMFYiksx41MhalKfNYllwllczygkuRGWlojgSVKjGFSjIdS6GFSgupqEgFR25zo_JCUVx3GmYZxUhuT6Z3LgN_M0w9UJEk3zUe1EYx8zkfs21LNPbndlLruXL0xKU1kEhRdhwOMVQXv2Pj79Dg4l1nCRYmQpWcemYtw5RuVmAxDIEgkz1hFZ7xknBTJkg_1OfIpbXBJrxR7nlvUkF6P9w_yWhAzgaNNZslnWD6QXw2QLyvx5ic65FrFGtI6A9cg_t_AXsdZppBozeAJJkxXKVK4XVWiaxiKK4yJWOeCFqysgUHAbx66J06asxwHNS1h7q2UNcO6ha0A7715Kt9q785tvn37V2Y697dXNfXvdv-FszbZW29N43bMDN6fdfbKFRGYsexg8Djf9PxCwWa_fI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+Knowledge+Graph+and+Artificial+Intelligence+to+Conduct+Financial+Report+Quality+Detection+Research&rft.jtitle=Journal+of+advanced+computational+intelligence+and+intelligent+informatics&rft.au=Luo%2C+Lan&rft.date=2025-07-20&rft.pub=Fuji+Technology+Press+Co.+Ltd&rft.issn=1343-0130&rft.eissn=1883-8014&rft.volume=29&rft.issue=4&rft.spage=787&rft.epage=795&rft_id=info:doi/10.20965%2Fjaciii.2025.p0787 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1343-0130&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1343-0130&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1343-0130&client=summon |