Facet synergy dominant Z-scheme transition in BiOCl with enhanced 1O2 generation
BiOCl powders with different morphology were obtained through self-assembling. Their photocatalytic performance was tested through degradation of organic dye and mechanism of photocatalytic for obtained samples were investigated. Relevant characterization demonstrated that facet synergy was a main r...
Saved in:
Published in | Chemosphere (Oxford) Vol. 307; p. 135663 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | BiOCl powders with different morphology were obtained through self-assembling. Their photocatalytic performance was tested through degradation of organic dye and mechanism of photocatalytic for obtained samples were investigated. Relevant characterization demonstrated that facet synergy was a main reason of photocatalytic performance promotion due to changed facet exposure and proportion under self-assembling. Theory and experimental analysis manifested that synergistic facet stimulated Z scheme transition in samples with lower (001) facet proportion, which provided favorable condition of 1O2 generation and simultaneously generated prominent charge separation. This work unveiled the facet synergy dominant photocatalytic performance improvement in self-assembling system of BiOCl and verified decisive role of facet proportion in constructing Z-scheme facet junction, which also prompted possibility of improving 1O2 generation through facet engineering under self-assembling.
[Display omitted]
•Self-assembling could trigger facet synergy on obtained samples, dominating the photocatalytic process.•Facet proportion is a decisive factor in facet junction and only weak enough (001) facet orientation would stimulate Z-scheme junction.•Z-scheme transition enhanced 1O2 generation due to exciton generation improvement. |
---|---|
AbstractList | BiOCl powders with different morphology were obtained through self-assembling. Their photocatalytic performance was tested through degradation of organic dye and mechanism of photocatalytic for obtained samples were investigated. Relevant characterization demonstrated that facet synergy was a main reason of photocatalytic performance promotion due to changed facet exposure and proportion under self-assembling. Theory and experimental analysis manifested that synergistic facet stimulated Z scheme transition in samples with lower (001) facet proportion, which provided favorable condition of 1O2 generation and simultaneously generated prominent charge separation. This work unveiled the facet synergy dominant photocatalytic performance improvement in self-assembling system of BiOCl and verified decisive role of facet proportion in constructing Z-scheme facet junction, which also prompted possibility of improving 1O2 generation through facet engineering under self-assembling.
[Display omitted]
•Self-assembling could trigger facet synergy on obtained samples, dominating the photocatalytic process.•Facet proportion is a decisive factor in facet junction and only weak enough (001) facet orientation would stimulate Z-scheme junction.•Z-scheme transition enhanced 1O2 generation due to exciton generation improvement. |
ArticleNumber | 135663 |
Author | Zhang, Qian Nie, Wuyang Zhao, Xiaoru Duan, Libing Guan, Chongshang Hou, Tian |
Author_xml | – sequence: 1 givenname: Chongshang orcidid: 0000-0001-5839-2420 surname: Guan fullname: Guan, Chongshang – sequence: 2 givenname: Tian surname: Hou fullname: Hou, Tian – sequence: 3 givenname: Wuyang orcidid: 0000-0002-7766-9373 surname: Nie fullname: Nie, Wuyang – sequence: 4 givenname: Qian surname: Zhang fullname: Zhang, Qian – sequence: 5 givenname: Libing surname: Duan fullname: Duan, Libing – sequence: 6 givenname: Xiaoru surname: Zhao fullname: Zhao, Xiaoru email: xrzhao@nwpu.edu.cn |
BookMark | eNqNkDFPwzAYRC1UJErhP5iNJcV2YiceIaKAVKkMsLBYrvOlcZXYxU5B_fckCgMj0y33Trp3iWbOO0DohpIlJVTc7Zemgc7HQwMBlowwtqQpFyI9Q3Na5DKhTBYzNCck44ngKb9AlzHuCRlgLufodaUN9DieHITdCVe-s067Hn8kcRwG3Aftou2td9g6_GA3ZYu_bd9gcI12BipMNwzvYOD12LpC57VuI1z_5gK9rx7fyudkvXl6Ke_XiaFSZokomDGpMJk2umYUcq4544XQOZfbOq9JxWpTUTBSEs3yPGei2tZgBCGGyS1JF-h22j0E_3mE2KvORgNtqx34Y1RMSEo4kSIbqnKqmuBjDFCrQ7CdDidFiRotqr36Y1GNFtVkcWDLiYXhy5eFoKKxMP62AUyvKm__sfIDrLeDBg |
CitedBy_id | crossref_primary_10_1016_j_cej_2023_145507 crossref_primary_10_1021_acsanm_3c04327 crossref_primary_10_1016_j_jiec_2024_04_036 crossref_primary_10_3390_nano12152700 |
Cites_doi | 10.1016/j.jclepro.2022.130634 10.1021/acsami.0c05008 10.1016/j.cej.2020.125813 10.1016/j.apcatb.2021.120436 10.1016/j.jhazmat.2019.121858 10.1016/j.cej.2020.126363 10.1021/cr60272a004 10.1007/s10953-010-9551-8 10.1016/j.ccr.2017.08.010 10.1016/j.jhazmat.2020.123070 10.1016/0022-1902(60)80092-9 10.1039/C4SC03229B 10.1002/anie.201904921 10.1002/adma.201501200 10.1016/j.apcatb.2018.08.064 10.1016/j.cis.2018.03.004 10.1016/j.apcatb.2020.118735 10.1039/c2ta01004f 10.1021/acsami.0c03037 10.1016/j.jcis.2020.02.065 10.1016/j.apcatb.2015.09.050 10.1016/j.apcatb.2020.119341 10.1002/anie.201916510 10.1007/s10562-017-2118-1 10.1038/ncomms9340 10.1016/j.apcatb.2019.118545 10.1002/cctc.201800859 10.1021/ja065970m 10.1016/j.jhazmat.2021.126577 10.1039/C4CP03166K 10.1016/j.jcis.2022.02.082 10.1246/cl.2004.1534 10.1039/C3TA14494A 10.1021/jacs.1c10112 10.1038/s41586-020-2539-7 10.1016/j.apcatb.2021.120679 10.1021/acsami.0c08687 10.1021/jacs.0c05097 10.1016/j.jcis.2021.09.002 10.1016/j.apcatb.2018.01.018 10.1016/j.cej.2020.126844 10.1002/cssc.201301194 10.1002/anie.201705628 10.1016/j.nanoen.2020.105340 10.1016/j.apcatb.2018.11.020 10.1021/jacs.9b09411 10.1038/s41467-021-26219-6 10.1016/j.apcatb.2020.119365 10.1016/j.jhazmat.2020.123457 10.1016/j.nanoen.2021.106671 10.1021/acsaem.9b01961 10.1016/j.cclet.2021.02.006 10.1021/acsami.0c04838 10.1016/j.cej.2020.124877 10.1016/j.nanoen.2020.104939 10.1039/D0DT02372H 10.1016/j.apcatb.2016.06.020 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1016/j.chemosphere.2022.135663 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Ecology |
EISSN | 1879-1298 |
EndPage | 135663 |
ExternalDocumentID | 10_1016_j_chemosphere_2022_135663 S0045653522021567 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ H~9 IHE J1W K-O KCYFY KOM LY3 LY9 M41 MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCC SCU SDF SDG SDP SEN SEP SES SEW SPCBC SSJ SSZ T5K TWZ WH7 WUQ XPP Y6R ZCG ZMT ZXP ~02 ~G- ~KM AAHBH AAXKI AAYXX AFJKZ AKRWK CITATION 7X8 |
ID | FETCH-LOGICAL-c1994-682cc36c4acaf21e75a52586a759bf7f0d2fcd1ec990a277726dbfec600c29b03 |
IEDL.DBID | .~1 |
ISSN | 0045-6535 |
IngestDate | Fri Oct 25 04:34:37 EDT 2024 Wed Nov 13 12:53:49 EST 2024 Fri Feb 23 02:39:48 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Z-Scheme BiOCl Facet synergy 1O2 Self-assembling |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1994-682cc36c4acaf21e75a52586a759bf7f0d2fcd1ec990a277726dbfec600c29b03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7766-9373 0000-0001-5839-2420 |
PQID | 2691050964 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_2691050964 crossref_primary_10_1016_j_chemosphere_2022_135663 elsevier_sciencedirect_doi_10_1016_j_chemosphere_2022_135663 |
PublicationCentury | 2000 |
PublicationDate | November 2022 2022-11-00 20221101 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: November 2022 |
PublicationDecade | 2020 |
PublicationTitle | Chemosphere (Oxford) |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Wang (bib40) 2021; 2 Zhang (bib53) 2021; 2 Kearns (bib22) 1971; 7 Jiang, Sun, Wu (bib20) 2017; 1 Zhou (bib57) 2020; 2 Cho (bib9) 2021; 4 Liu (bib29) 2022; 6 Sun (bib38) 2021; 4 Zhou (bib56) 2015; 6 Wu (bib42) 2015; 6 Zhao (bib55) 2021; 4 Yang (bib47) 2020; 3 Cao (bib7) 2022; 144 Weng (bib41) 2013; 1 Gibson (bib13) 2020; 1 Bao, Yuan (bib4) 2020; 4 He (bib14) 2018; 2 Yu (bib48) 2014; 2 An, Li, Tang (bib2) 2014; 7 Yang (bib46) 2020; 2 Zhao (bib54) 2020; 12 Gao (bib12) 2020; 5 Jańczyk (bib19) 2006; 1 Iborra-Torres (bib18) 2020; 12 Yu (bib49) 2020; 1 Li (bib25) 2018; 1 Zhang (bib51) 2019; 2 Wang (bib39) 2020; 1 Bian (bib5) 2021; 3 Qiu (bib35) 2020; 3 Li (bib23) 2016; 1 Yan (bib44) 2010; 3 Zhu (bib58) 2020; 7 Mamaghani, Haghighat, Lee (bib32) 2020; 2 Gao (bib11) 2019; 2 Ma (bib31) 2022; 6 Mao (bib33) 2018; 2 Cao (bib6) 2020; 4 Yang (bib45) 2018; 2 Huang (bib16) 2016; 1 Jin (bib21) 2017; 3 Zhang (bib52) 2020; 7 Li (bib27) 2020; 1 Shi (bib37) 2021; 1 Akihiko, Hideki, Issei (bib1) 2004; 3 Meng (bib34) 2022; 9 Li (bib24) 2018; 5 Shi (bib36) 2020; 5 Dighe (bib10) 2020; 584 Li (bib28) 2020; 3 Wu (bib43) 2020; 1 Huo (bib17) 2021; 4 Li (bib26) 2019; 5 Chen (bib8) 2020; 2 Bai (bib3) 2015; 2 Zhang (bib50) 2014; 1 He (bib15) 2022; 3 Lotgering (bib30) 1960; 1 Zhao (10.1016/j.chemosphere.2022.135663_bib54) 2020; 12 Zhang (10.1016/j.chemosphere.2022.135663_bib51) 2019; 2 Li (10.1016/j.chemosphere.2022.135663_bib28) 2020; 394 Zhang (10.1016/j.chemosphere.2022.135663_bib50) 2014; 16 Wang (10.1016/j.chemosphere.2022.135663_bib39) 2020; 12 Zhou (10.1016/j.chemosphere.2022.135663_bib57) 2020; 279 Zhang (10.1016/j.chemosphere.2022.135663_bib52) 2020; 78 Cao (10.1016/j.chemosphere.2022.135663_bib6) 2020; 400 Weng (10.1016/j.chemosphere.2022.135663_bib41) 2013; 1 Yu (10.1016/j.chemosphere.2022.135663_bib49) 2020; 12 Kearns (10.1016/j.chemosphere.2022.135663_bib22) 1971; 71 Shi (10.1016/j.chemosphere.2022.135663_bib37) 2021; 12 Mamaghani (10.1016/j.chemosphere.2022.135663_bib32) 2020; 269 Yang (10.1016/j.chemosphere.2022.135663_bib47) 2020; 399 Li (10.1016/j.chemosphere.2022.135663_bib25) 2018; 10 Iborra-Torres (10.1016/j.chemosphere.2022.135663_bib18) 2020; 12 Jin (10.1016/j.chemosphere.2022.135663_bib21) 2017; 349 Wang (10.1016/j.chemosphere.2022.135663_bib40) 2021; 297 Huang (10.1016/j.chemosphere.2022.135663_bib16) 2016; 199 Jańczyk (10.1016/j.chemosphere.2022.135663_bib19) 2006; 128 Wu (10.1016/j.chemosphere.2022.135663_bib42) 2015; 6 Dighe (10.1016/j.chemosphere.2022.135663_bib10) 2020; 584 Yang (10.1016/j.chemosphere.2022.135663_bib46) 2020; 279 Shi (10.1016/j.chemosphere.2022.135663_bib36) 2020; 59 An (10.1016/j.chemosphere.2022.135663_bib2) 2014; 7 Mao (10.1016/j.chemosphere.2022.135663_bib33) 2018; 228 Huo (10.1016/j.chemosphere.2022.135663_bib17) 2021; 403 Liu (10.1016/j.chemosphere.2022.135663_bib29) 2022; 607 Gibson (10.1016/j.chemosphere.2022.135663_bib13) 2020; 142 Yan (10.1016/j.chemosphere.2022.135663_bib44) 2010; 39 Akihiko (10.1016/j.chemosphere.2022.135663_bib1) 2004; 33 Jiang (10.1016/j.chemosphere.2022.135663_bib20) 2017; 147 Yu (10.1016/j.chemosphere.2022.135663_bib48) 2014; 2 Gao (10.1016/j.chemosphere.2022.135663_bib12) 2020; 570 Sun (10.1016/j.chemosphere.2022.135663_bib38) 2021; 406 Cao (10.1016/j.chemosphere.2022.135663_bib7) 2022; 144 Zhou (10.1016/j.chemosphere.2022.135663_bib56) 2015; 6 Gao (10.1016/j.chemosphere.2022.135663_bib11) 2019; 243 Li (10.1016/j.chemosphere.2022.135663_bib27) 2020; 142 Li (10.1016/j.chemosphere.2022.135663_bib26) 2019; 58 Bai (10.1016/j.chemosphere.2022.135663_bib3) 2015; 27 Zhang (10.1016/j.chemosphere.2022.135663_bib53) 2021; 299 Yang (10.1016/j.chemosphere.2022.135663_bib45) 2018; 254 He (10.1016/j.chemosphere.2022.135663_bib14) 2018; 239 Bao (10.1016/j.chemosphere.2022.135663_bib4) 2020; 49 Zhao (10.1016/j.chemosphere.2022.135663_bib55) 2021; 420 Lotgering (10.1016/j.chemosphere.2022.135663_bib30) 1960; 16 Li (10.1016/j.chemosphere.2022.135663_bib23) 2016; 182 Zhu (10.1016/j.chemosphere.2022.135663_bib58) 2020; 75 Cho (10.1016/j.chemosphere.2022.135663_bib9) 2021; 402 Ma (10.1016/j.chemosphere.2022.135663_bib31) 2022; 617 Qiu (10.1016/j.chemosphere.2022.135663_bib35) 2020; 389 Bian (10.1016/j.chemosphere.2022.135663_bib5) 2021; 32 He (10.1016/j.chemosphere.2022.135663_bib15) 2022; 339 Li (10.1016/j.chemosphere.2022.135663_bib24) 2018; 57 Meng (10.1016/j.chemosphere.2022.135663_bib34) 2022; 92 Wu (10.1016/j.chemosphere.2022.135663_bib43) 2020; 10 Chen (10.1016/j.chemosphere.2022.135663_bib8) 2020; 264 |
References_xml | – volume: 1 start-page: 15574 year: 2006 end-page: 15575 ident: bib19 article-title: Singlet oxygen photogeneration at surface modified titanium dioxide publication-title: J. Am. Chem. Soc. contributor: fullname: Jańczyk – volume: 5 start-page: 122 year: 2018 end-page: 138 ident: bib24 article-title: Oxygen vacancy-mediated photocatalysis of BiOCl: reactivity, selectivity, and perspectives publication-title: Angew. Chem. Int. Ed. contributor: fullname: Li – volume: 1 start-page: 3068 year: 2013 end-page: 3075 ident: bib41 article-title: Facile in situ synthesis of a Bi/BiOCl nanocomposite with high photocatalytic activity publication-title: J. Mater. Chem. contributor: fullname: Weng – volume: 7 start-page: 395 year: 1971 end-page: 427 ident: bib22 article-title: Physical and chemical properties of singlet molecular oxygen publication-title: Chem. Rev. contributor: fullname: Kearns – volume: 12 start-page: 31532 year: 2020 end-page: 31541 ident: bib54 article-title: Fabrication of a Z-scheme {001}/{110} facet heterojunction in BiOCl to promote spatial charge separation publication-title: ACS Appl. Mater. Interfaces contributor: fullname: Zhao – volume: 7 start-page: 1086 year: 2014 end-page: 1093 ident: bib2 article-title: Cu2O/Reduced graphene oxide composites for the photocatalytic conversion of CO2 publication-title: ChemSusChem contributor: fullname: Tang – volume: 2 start-page: 734 year: 2019 end-page: 740 ident: bib11 article-title: Persian buttercup-like BiOBrxCl1-x solid solution for photocatalytic overall CO2 reduction to CO and O2 publication-title: Appl. Catal., B contributor: fullname: Gao – volume: 5 start-page: 6590 year: 2020 end-page: 6595 ident: bib36 article-title: Intrinsic facet-dependent reactivity of well-defined BiOBr nanosheets on photocatalytic water splitting publication-title: Angew. Chem. Int. Ed. contributor: fullname: Shi – volume: 3 year: 2022 ident: bib15 article-title: Novel Z-scheme In2S3/Bi2WO6 core-shell heterojunctions with synergistic enhanced photocatalytic degradation of tetracycline hydrochloride publication-title: J. Clean. Prod. contributor: fullname: He – volume: 1 start-page: 24777 year: 2020 end-page: 24785 ident: bib49 article-title: Design of MoS2/graphene van der Waals heterostructure as highly efficient and stable electrocatalyst for hydrogen evolution in acidic and alkaline media publication-title: ACS Appl. Mater. Interfaces contributor: fullname: Yu – volume: 4 year: 2020 ident: bib6 article-title: Facile synthesis of Mn-doped BiOCl for metronidazole photodegradation: optimization, degradation pathway, and mechanism publication-title: Chem. Eng. J. contributor: fullname: Cao – volume: 3 year: 2020 ident: bib47 article-title: In-situ fabrication of a spherical-shaped Zn-Al hydrotalcite with BiOCl and study on its enhanced photocatalytic mechanism for perfluorooctanoic acid removal performed with a response surface methodology publication-title: J. Hazard Mater. contributor: fullname: Yang – volume: 1 start-page: 4477 year: 2018 end-page: 4496 ident: bib25 article-title: Facet, junction and electric field engineering of bismuth-based materials for photocatalysis publication-title: ChemCatChem contributor: fullname: Li – volume: 6 start-page: 1873 year: 2015 end-page: 1878 ident: bib42 article-title: Well-defined BiOCl colloidal ultrathin nanosheets: synthesis, characterization, and application in photocatalytic aerobic oxidation of secondary amines publication-title: Chem. Sci. contributor: fullname: Wu – volume: 1 start-page: 847 year: 2020 end-page: 856 ident: bib13 article-title: Modular design via multiple anion chemistry of the high mobility van der Waals semiconductor Bi4O4SeCl2 publication-title: J. Am. Chem. Soc. contributor: fullname: Gibson – volume: 4 year: 2021 ident: bib55 article-title: Efficient photocatalytic toluene degradation over heterojunction of GQDs@BiOCl ultrathin nanosheets with selective benzoic acid activation publication-title: J. Hazard Mater. contributor: fullname: Zhao – volume: 2 start-page: 87 year: 2018 end-page: 96 ident: bib33 article-title: Visible light driven selective oxidation of amines to imines with BiOCl: does oxygen vacancy concentration matter? publication-title: Appl. Catal., B contributor: fullname: Mao – volume: 3 start-page: 84 year: 2017 end-page: 101 ident: bib21 article-title: Bismuth-rich bismuth oxyhalides for environmental and energy photocatalysis publication-title: Coord. Chem. Rev. contributor: fullname: Jin – volume: 2 start-page: 76 year: 2018 end-page: 93 ident: bib45 article-title: BiOX (X = Cl, Br, I) photocatalytic nanomaterials: applications for fuels and environmental management publication-title: Adv. Colloid Interface Sci. contributor: fullname: Yang – volume: 1 start-page: 75 year: 2016 end-page: 86 ident: bib16 article-title: In situ assembly of BiOI@Bi12O17Cl2 p-n junction: charge induced unique front-lateral surfaces coupling heterostructure with high exposure of BiOI {001} active facets for robust and nonselective photocatalysis publication-title: Appl. Catal., B contributor: fullname: Huang – volume: 1 start-page: 19581 year: 2020 end-page: 19586 ident: bib39 article-title: Ultrasmall Ni–ZnO/SiO2 synergistic catalyst for highly efficient hydrogenation of NaHCO3 to formic acid publication-title: ACS Appl. Mater. Interfaces contributor: fullname: Wang – volume: 2 year: 2021 ident: bib40 article-title: Efficient photocatalytic chlorine production on bismuth oxychloride in chloride solution publication-title: Appl. Catal., B contributor: fullname: Wang – volume: 6 start-page: 8340 year: 2015 ident: bib56 article-title: Monolayered Bi2WO6 nanosheets mimicking heterojunction interface with open surfaces for photocatalysis publication-title: Nat. Commun. contributor: fullname: Zhou – volume: 6 start-page: 73 year: 2022 end-page: 83 ident: bib31 article-title: A dual strategy for synthesizing crystal plane/defect co-modified BiOCl microsphere and photodegradation mechanism insights publication-title: J. Colloid Interface Sci. contributor: fullname: Ma – volume: 2 start-page: 1677 year: 2014 end-page: 1681 ident: bib48 article-title: A Bi/BiOCl heterojunction photocatalyst with enhanced electron–hole separation and excellent visible light photodegrading activity publication-title: J. Mater. Chem. contributor: fullname: Yu – volume: 3 start-page: 1534 year: 2004 end-page: 1539 ident: bib1 article-title: Strategies for the development of visible-light-driven photocatalysts for water splitting publication-title: Chem. Lett. contributor: fullname: Issei – volume: 2 start-page: 8394 year: 2019 end-page: 8398 ident: bib51 article-title: Fe-doped BiOCl nanosheets with light-switchable oxygen vacancies for photocatalytic nitrogen fixation publication-title: ACS Appl. Energy Mater. contributor: fullname: Zhang – volume: 3 start-page: 2837 year: 2021 end-page: 2840 ident: bib5 article-title: Engineering BiOBrxI1−x solid solutions with enhanced singlet oxygen production for photocatalytic benzylic CH bond activation mediated by N-hydroxyl compounds publication-title: Chin. Chem. Lett. contributor: fullname: Bian – volume: 1 start-page: 2006 year: 2017 end-page: 2012 ident: bib20 article-title: BiOCl nanosheets with controlled exposed facets and improved photocatalytic activity publication-title: Catal. Lett. contributor: fullname: Wu – volume: 7 year: 2020 ident: bib58 article-title: Bilayer nanosheets of unusual stoichiometric bismuth oxychloride for potassium ion storage and CO2 reduction publication-title: Nano Energy contributor: fullname: Zhu – volume: 3 year: 2020 ident: bib35 article-title: Bismuth sulfide bridged hierarchical Bi2S3/BiOCl@ZnIn2S4 for efficient photocatalytic Cr(VI) reduction publication-title: J. Hazard Mater. contributor: fullname: Qiu – volume: 2 start-page: 3444 year: 2015 end-page: 3452 ident: bib3 article-title: Toward enhanced photocatalytic oxygen evolution: synergetic utilization of plasmonic effect and Schottky junction via interfacing facet selection publication-title: Adv. Mater. contributor: fullname: Bai – volume: 1 start-page: 12430 year: 2020 end-page: 12439 ident: bib27 article-title: Visible-light-driven nitrogen fixation catalyzed by Bi5O7Br nanostructures: enhanced performance by oxygen vacancies publication-title: J. Am. Chem. Soc. contributor: fullname: Li – volume: 4 start-page: 11536 year: 2020 end-page: 11542 ident: bib4 article-title: Highly dispersed BiOCl decahedra with a highly exposed (001) facet and exceptional photocatalytic performance publication-title: Dalton Trans. contributor: fullname: Yuan – volume: 2 year: 2020 ident: bib8 article-title: Bi metal prevents the deactivation of oxygen vacancies in Bi2O2CO3 for stable and efficient photocatalytic NO abatement publication-title: Appl. Catal., B contributor: fullname: Chen – volume: 2 year: 2021 ident: bib53 article-title: Unveiling the activity origin of ultrathin BiOCl nanosheets for photocatalytic CO2 reduction publication-title: Appl. Catal., B contributor: fullname: Zhang – volume: 3 start-page: 1501 year: 2010 end-page: 1508 ident: bib44 article-title: Investigation of the thermodynamic properties of the cationic surfactant CTAC in EG + water binary mixtures publication-title: J. Solut. Chem. contributor: fullname: Yan – volume: 2 year: 2020 ident: bib46 article-title: Porous Sn3O4 nanosheets on PPy hollow rod with photo-induced electrons oriented migration for enhanced visible-light hydrogen production publication-title: Appl. Catal., B contributor: fullname: Yang – volume: 5 start-page: 9517 year: 2019 end-page: 9521 ident: bib26 article-title: Unprecedented eighteen-faceted BiOCl with a ternary facet junction boosting cascade charge flow and photo-redox publication-title: Angew. Chem. Int. Ed. contributor: fullname: Li – volume: 2 year: 2020 ident: bib32 article-title: Role of titanium dioxide (TiO2) structural design/morphology in photocatalytic air purification publication-title: Appl. Catal., B contributor: fullname: Lee – volume: 12 start-page: 33603 year: 2020 end-page: 33612 ident: bib18 article-title: Demonstration of visible light-activated photocatalytic self-cleaning by thin films of perovskite tantalum and niobium oxynitrides publication-title: ACS Appl. Mater. Interfaces contributor: fullname: Iborra-Torres – volume: 2 start-page: 619 year: 2018 end-page: 627 ident: bib14 article-title: Defective Bi4MoO9/Bi metal core/shell heterostructure: enhanced visible light photocatalysis and reaction mechanism publication-title: Appl. Catal., B contributor: fullname: He – volume: 2 year: 2020 ident: bib57 article-title: Z-scheme photo-Fenton system for efficiency synchronous oxidation of organic contaminants and reduction of metal ions publication-title: Appl. Catal., B contributor: fullname: Zhou – volume: 3 year: 2020 ident: bib28 article-title: Efficient and regenerative near-infrared glass-ceramic photocatalyst fabricated by a facile in-situ etching method publication-title: Chem. Eng. J. contributor: fullname: Li – volume: 4 year: 2021 ident: bib9 article-title: Co2 publication-title: J. Hazard Mater. contributor: fullname: Cho – volume: 1 start-page: 5923 year: 2021 ident: bib37 article-title: Van Der Waals gap-rich BiOCl atomic layers realizing efficient, pure-water CO2-to-CO photocatalysis publication-title: Nat. Commun. contributor: fullname: Shi – volume: 7 year: 2020 ident: bib52 article-title: BiOCl nanosheets with periodic nanochannels for high-efficiency photooxidation publication-title: Nano Energy contributor: fullname: Zhang – volume: 6 start-page: 423 year: 2022 end-page: 430 ident: bib29 article-title: Flowerlike BiOCl nanospheres fabricated by an in situ self-assembly strategy for efficiently enhancing photocatalysis publication-title: J. Colloid Interface Sci. contributor: fullname: Liu – volume: 144 start-page: 3386 year: 2022 end-page: 3397 ident: bib7 article-title: Engineering lattice disorder on a photocatalyst: photochromic BiOBr nanosheets enhance activation of aromatic C–H bonds via water oxidation publication-title: J. Am. Chem. Soc. contributor: fullname: Cao – volume: 1 start-page: 25854 year: 2014 end-page: 25861 ident: bib50 article-title: The stabilities and electronic structures of single-layer bismuth oxyhalides for photocatalytic water splitting publication-title: Phys. Chem. Chem. Phys. contributor: fullname: Zhang – volume: 1 start-page: 431 year: 2016 end-page: 438 ident: bib23 article-title: Thickness-dependent photocatalytic activity of bismuth oxybromide nanosheets with highly exposed (010) facets publication-title: Appl. Catal., B contributor: fullname: Li – volume: 584 start-page: 75 year: 2020 end-page: 81 ident: bib10 article-title: A photochemical dehydrogenative strategy for aniline synthesis publication-title: Nature contributor: fullname: Dighe – volume: 5 start-page: 242 year: 2020 end-page: 250 ident: bib12 article-title: TBAOH assisted synthesis of ultrathin BiOCl nanosheets with enhanced charge separation efficiency for superior photocatalytic activity in carbamazepine degradation publication-title: J. Colloid Interface Sci. contributor: fullname: Gao – volume: 9 year: 2022 ident: bib34 article-title: Facet junction of BiOBr nanosheets boosting spatial charge separation for CO2 photoreduction publication-title: Nano Energy contributor: fullname: Meng – volume: 4 year: 2021 ident: bib38 article-title: One-pot thermal polymerization route to prepare N-deficient modified g-C3N4 for the degradation of tetracycline by the synergistic effect of photocatalysis and persulfate-based advanced oxidation process publication-title: Chem. Eng. J. contributor: fullname: Sun – volume: 4 year: 2021 ident: bib17 article-title: A direct Z-scheme oxygen vacant BWO/oxygen-enriched graphitic carbon nitride polymer heterojunction with enhanced photocatalytic activity publication-title: Chem. Eng. J. contributor: fullname: Huo – volume: 1 start-page: 100 year: 1960 end-page: 108 ident: bib30 article-title: Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures—II publication-title: J. Inorg. Nucl. Chem. contributor: fullname: Lotgering – volume: 1 year: 2020 ident: bib43 article-title: Beyond d orbits: steering the selectivity of electrochemical CO2 reduction via hybridized sp band of sulfur-incorporated porous Cd architectures with dual collaborative sites publication-title: Adv. Energy Mater. contributor: fullname: Wu – volume: 339 year: 2022 ident: 10.1016/j.chemosphere.2022.135663_bib15 article-title: Novel Z-scheme In2S3/Bi2WO6 core-shell heterojunctions with synergistic enhanced photocatalytic degradation of tetracycline hydrochloride publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.130634 contributor: fullname: He – volume: 12 start-page: 33603 issue: 30 year: 2020 ident: 10.1016/j.chemosphere.2022.135663_bib18 article-title: Demonstration of visible light-activated photocatalytic self-cleaning by thin films of perovskite tantalum and niobium oxynitrides publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c05008 contributor: fullname: Iborra-Torres – volume: 400 year: 2020 ident: 10.1016/j.chemosphere.2022.135663_bib6 article-title: Facile synthesis of Mn-doped BiOCl for metronidazole photodegradation: optimization, degradation pathway, and mechanism publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125813 contributor: fullname: Cao – volume: 297 year: 2021 ident: 10.1016/j.chemosphere.2022.135663_bib40 article-title: Efficient photocatalytic chlorine production on bismuth oxychloride in chloride solution publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2021.120436 contributor: fullname: Wang – volume: 10 year: 2020 ident: 10.1016/j.chemosphere.2022.135663_bib43 article-title: Beyond d orbits: steering the selectivity of electrochemical CO2 reduction via hybridized sp band of sulfur-incorporated porous Cd architectures with dual collaborative sites publication-title: Adv. Energy Mater. contributor: fullname: Wu – volume: 389 year: 2020 ident: 10.1016/j.chemosphere.2022.135663_bib35 article-title: Bismuth sulfide bridged hierarchical Bi2S3/BiOCl@ZnIn2S4 for efficient photocatalytic Cr(VI) reduction publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2019.121858 contributor: fullname: Qiu – volume: 403 year: 2021 ident: 10.1016/j.chemosphere.2022.135663_bib17 article-title: A direct Z-scheme oxygen vacant BWO/oxygen-enriched graphitic carbon nitride polymer heterojunction with enhanced photocatalytic activity publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126363 contributor: fullname: Huo – volume: 71 start-page: 395 year: 1971 ident: 10.1016/j.chemosphere.2022.135663_bib22 article-title: Physical and chemical properties of singlet molecular oxygen publication-title: Chem. Rev. doi: 10.1021/cr60272a004 contributor: fullname: Kearns – volume: 39 start-page: 1501 year: 2010 ident: 10.1016/j.chemosphere.2022.135663_bib44 article-title: Investigation of the thermodynamic properties of the cationic surfactant CTAC in EG + water binary mixtures publication-title: J. Solut. Chem. doi: 10.1007/s10953-010-9551-8 contributor: fullname: Yan – volume: 349 start-page: 84 year: 2017 ident: 10.1016/j.chemosphere.2022.135663_bib21 article-title: Bismuth-rich bismuth oxyhalides for environmental and energy photocatalysis publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2017.08.010 contributor: fullname: Jin – volume: 399 year: 2020 ident: 10.1016/j.chemosphere.2022.135663_bib47 article-title: In-situ fabrication of a spherical-shaped Zn-Al hydrotalcite with BiOCl and study on its enhanced photocatalytic mechanism for perfluorooctanoic acid removal performed with a response surface methodology publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2020.123070 contributor: fullname: Yang – volume: 16 start-page: 100 year: 1960 ident: 10.1016/j.chemosphere.2022.135663_bib30 article-title: Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures—II publication-title: J. Inorg. Nucl. Chem. doi: 10.1016/0022-1902(60)80092-9 contributor: fullname: Lotgering – volume: 6 start-page: 1873 year: 2015 ident: 10.1016/j.chemosphere.2022.135663_bib42 article-title: Well-defined BiOCl colloidal ultrathin nanosheets: synthesis, characterization, and application in photocatalytic aerobic oxidation of secondary amines publication-title: Chem. Sci. doi: 10.1039/C4SC03229B contributor: fullname: Wu – volume: 58 start-page: 9517 year: 2019 ident: 10.1016/j.chemosphere.2022.135663_bib26 article-title: Unprecedented eighteen-faceted BiOCl with a ternary facet junction boosting cascade charge flow and photo-redox publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201904921 contributor: fullname: Li – volume: 27 start-page: 3444 year: 2015 ident: 10.1016/j.chemosphere.2022.135663_bib3 article-title: Toward enhanced photocatalytic oxygen evolution: synergetic utilization of plasmonic effect and Schottky junction via interfacing facet selection publication-title: Adv. Mater. doi: 10.1002/adma.201501200 contributor: fullname: Bai – volume: 239 start-page: 619 year: 2018 ident: 10.1016/j.chemosphere.2022.135663_bib14 article-title: Defective Bi4MoO9/Bi metal core/shell heterostructure: enhanced visible light photocatalysis and reaction mechanism publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2018.08.064 contributor: fullname: He – volume: 254 start-page: 76 year: 2018 ident: 10.1016/j.chemosphere.2022.135663_bib45 article-title: BiOX (X = Cl, Br, I) photocatalytic nanomaterials: applications for fuels and environmental management publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2018.03.004 contributor: fullname: Yang – volume: 269 year: 2020 ident: 10.1016/j.chemosphere.2022.135663_bib32 article-title: Role of titanium dioxide (TiO2) structural design/morphology in photocatalytic air purification publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2020.118735 contributor: fullname: Mamaghani – volume: 1 start-page: 3068 year: 2013 ident: 10.1016/j.chemosphere.2022.135663_bib41 article-title: Facile in situ synthesis of a Bi/BiOCl nanocomposite with high photocatalytic activity publication-title: J. Mater. Chem. doi: 10.1039/c2ta01004f contributor: fullname: Weng – volume: 12 start-page: 19581 year: 2020 ident: 10.1016/j.chemosphere.2022.135663_bib39 article-title: Ultrasmall Ni–ZnO/SiO2 synergistic catalyst for highly efficient hydrogenation of NaHCO3 to formic acid publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c03037 contributor: fullname: Wang – volume: 570 start-page: 242 year: 2020 ident: 10.1016/j.chemosphere.2022.135663_bib12 article-title: TBAOH assisted synthesis of ultrathin BiOCl nanosheets with enhanced charge separation efficiency for superior photocatalytic activity in carbamazepine degradation publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.02.065 contributor: fullname: Gao – volume: 182 start-page: 431 year: 2016 ident: 10.1016/j.chemosphere.2022.135663_bib23 article-title: Thickness-dependent photocatalytic activity of bismuth oxybromide nanosheets with highly exposed (010) facets publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2015.09.050 contributor: fullname: Li – volume: 279 year: 2020 ident: 10.1016/j.chemosphere.2022.135663_bib46 article-title: Porous Sn3O4 nanosheets on PPy hollow rod with photo-induced electrons oriented migration for enhanced visible-light hydrogen production publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2020.119341 contributor: fullname: Yang – volume: 59 start-page: 6590 year: 2020 ident: 10.1016/j.chemosphere.2022.135663_bib36 article-title: Intrinsic facet-dependent reactivity of well-defined BiOBr nanosheets on photocatalytic water splitting publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201916510 contributor: fullname: Shi – volume: 147 start-page: 2006 year: 2017 ident: 10.1016/j.chemosphere.2022.135663_bib20 article-title: BiOCl nanosheets with controlled exposed facets and improved photocatalytic activity publication-title: Catal. Lett. doi: 10.1007/s10562-017-2118-1 contributor: fullname: Jiang – volume: 6 start-page: 8340 year: 2015 ident: 10.1016/j.chemosphere.2022.135663_bib56 article-title: Monolayered Bi2WO6 nanosheets mimicking heterojunction interface with open surfaces for photocatalysis publication-title: Nat. Commun. doi: 10.1038/ncomms9340 contributor: fullname: Zhou – volume: 264 year: 2020 ident: 10.1016/j.chemosphere.2022.135663_bib8 article-title: Bi metal prevents the deactivation of oxygen vacancies in Bi2O2CO3 for stable and efficient photocatalytic NO abatement publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2019.118545 contributor: fullname: Chen – volume: 10 start-page: 4477 year: 2018 ident: 10.1016/j.chemosphere.2022.135663_bib25 article-title: Facet, junction and electric field engineering of bismuth-based materials for photocatalysis publication-title: ChemCatChem doi: 10.1002/cctc.201800859 contributor: fullname: Li – volume: 128 start-page: 15574 year: 2006 ident: 10.1016/j.chemosphere.2022.135663_bib19 article-title: Singlet oxygen photogeneration at surface modified titanium dioxide publication-title: J. Am. Chem. Soc. doi: 10.1021/ja065970m contributor: fullname: Jańczyk – volume: 420 year: 2021 ident: 10.1016/j.chemosphere.2022.135663_bib55 article-title: Efficient photocatalytic toluene degradation over heterojunction of GQDs@BiOCl ultrathin nanosheets with selective benzoic acid activation publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2021.126577 contributor: fullname: Zhao – volume: 16 start-page: 25854 year: 2014 ident: 10.1016/j.chemosphere.2022.135663_bib50 article-title: The stabilities and electronic structures of single-layer bismuth oxyhalides for photocatalytic water splitting publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP03166K contributor: fullname: Zhang – volume: 617 start-page: 73 year: 2022 ident: 10.1016/j.chemosphere.2022.135663_bib31 article-title: A dual strategy for synthesizing crystal plane/defect co-modified BiOCl microsphere and photodegradation mechanism insights publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2022.02.082 contributor: fullname: Ma – volume: 33 start-page: 1534 year: 2004 ident: 10.1016/j.chemosphere.2022.135663_bib1 article-title: Strategies for the development of visible-light-driven photocatalysts for water splitting publication-title: Chem. Lett. doi: 10.1246/cl.2004.1534 contributor: fullname: Akihiko – volume: 2 start-page: 1677 year: 2014 ident: 10.1016/j.chemosphere.2022.135663_bib48 article-title: A Bi/BiOCl heterojunction photocatalyst with enhanced electron–hole separation and excellent visible light photodegrading activity publication-title: J. Mater. Chem. doi: 10.1039/C3TA14494A contributor: fullname: Yu – volume: 144 start-page: 3386 issue: 8 year: 2022 ident: 10.1016/j.chemosphere.2022.135663_bib7 article-title: Engineering lattice disorder on a photocatalyst: photochromic BiOBr nanosheets enhance activation of aromatic C–H bonds via water oxidation publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c10112 contributor: fullname: Cao – volume: 584 start-page: 75 year: 2020 ident: 10.1016/j.chemosphere.2022.135663_bib10 article-title: A photochemical dehydrogenative strategy for aniline synthesis publication-title: Nature doi: 10.1038/s41586-020-2539-7 contributor: fullname: Dighe – volume: 299 year: 2021 ident: 10.1016/j.chemosphere.2022.135663_bib53 article-title: Unveiling the activity origin of ultrathin BiOCl nanosheets for photocatalytic CO2 reduction publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2021.120679 contributor: fullname: Zhang – volume: 12 start-page: 31532 issue: 28 year: 2020 ident: 10.1016/j.chemosphere.2022.135663_bib54 article-title: Fabrication of a Z-scheme {001}/{110} facet heterojunction in BiOCl to promote spatial charge separation publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c08687 contributor: fullname: Zhao – volume: 142 start-page: 12430 year: 2020 ident: 10.1016/j.chemosphere.2022.135663_bib27 article-title: Visible-light-driven nitrogen fixation catalyzed by Bi5O7Br nanostructures: enhanced performance by oxygen vacancies publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c05097 contributor: fullname: Li – volume: 607 start-page: 423 year: 2022 ident: 10.1016/j.chemosphere.2022.135663_bib29 article-title: Flowerlike BiOCl nanospheres fabricated by an in situ self-assembly strategy for efficiently enhancing photocatalysis publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.09.002 contributor: fullname: Liu – volume: 228 start-page: 87 year: 2018 ident: 10.1016/j.chemosphere.2022.135663_bib33 article-title: Visible light driven selective oxidation of amines to imines with BiOCl: does oxygen vacancy concentration matter? publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2018.01.018 contributor: fullname: Mao – volume: 406 year: 2021 ident: 10.1016/j.chemosphere.2022.135663_bib38 article-title: One-pot thermal polymerization route to prepare N-deficient modified g-C3N4 for the degradation of tetracycline by the synergistic effect of photocatalysis and persulfate-based advanced oxidation process publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126844 contributor: fullname: Sun – volume: 7 start-page: 1086 year: 2014 ident: 10.1016/j.chemosphere.2022.135663_bib2 article-title: Cu2O/Reduced graphene oxide composites for the photocatalytic conversion of CO2 publication-title: ChemSusChem doi: 10.1002/cssc.201301194 contributor: fullname: An – volume: 57 start-page: 122 year: 2018 ident: 10.1016/j.chemosphere.2022.135663_bib24 article-title: Oxygen vacancy-mediated photocatalysis of BiOCl: reactivity, selectivity, and perspectives publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201705628 contributor: fullname: Li – volume: 78 year: 2020 ident: 10.1016/j.chemosphere.2022.135663_bib52 article-title: BiOCl nanosheets with periodic nanochannels for high-efficiency photooxidation publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105340 contributor: fullname: Zhang – volume: 243 start-page: 734 year: 2019 ident: 10.1016/j.chemosphere.2022.135663_bib11 article-title: Persian buttercup-like BiOBrxCl1-x solid solution for photocatalytic overall CO2 reduction to CO and O2 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2018.11.020 contributor: fullname: Gao – volume: 142 start-page: 847 year: 2020 ident: 10.1016/j.chemosphere.2022.135663_bib13 article-title: Modular design via multiple anion chemistry of the high mobility van der Waals semiconductor Bi4O4SeCl2 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b09411 contributor: fullname: Gibson – volume: 12 start-page: 5923 year: 2021 ident: 10.1016/j.chemosphere.2022.135663_bib37 article-title: Van Der Waals gap-rich BiOCl atomic layers realizing efficient, pure-water CO2-to-CO photocatalysis publication-title: Nat. Commun. doi: 10.1038/s41467-021-26219-6 contributor: fullname: Shi – volume: 279 year: 2020 ident: 10.1016/j.chemosphere.2022.135663_bib57 article-title: Z-scheme photo-Fenton system for efficiency synchronous oxidation of organic contaminants and reduction of metal ions publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2020.119365 contributor: fullname: Zhou – volume: 402 year: 2021 ident: 10.1016/j.chemosphere.2022.135663_bib9 article-title: Co2+-Doped BiOBrxCl1-x hierarchical microspheres display enhanced visible-light photocatalytic performance in the degradation of rhodamine B and antibiotics and the inactivation of E. coli publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2020.123457 contributor: fullname: Cho – volume: 92 year: 2022 ident: 10.1016/j.chemosphere.2022.135663_bib34 article-title: Facet junction of BiOBr nanosheets boosting spatial charge separation for CO2 photoreduction publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106671 contributor: fullname: Meng – volume: 2 start-page: 8394 year: 2019 ident: 10.1016/j.chemosphere.2022.135663_bib51 article-title: Fe-doped BiOCl nanosheets with light-switchable oxygen vacancies for photocatalytic nitrogen fixation publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.9b01961 contributor: fullname: Zhang – volume: 32 start-page: 2837 year: 2021 ident: 10.1016/j.chemosphere.2022.135663_bib5 article-title: Engineering BiOBrxI1−x solid solutions with enhanced singlet oxygen production for photocatalytic benzylic CH bond activation mediated by N-hydroxyl compounds publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2021.02.006 contributor: fullname: Bian – volume: 12 start-page: 24777 year: 2020 ident: 10.1016/j.chemosphere.2022.135663_bib49 article-title: Design of MoS2/graphene van der Waals heterostructure as highly efficient and stable electrocatalyst for hydrogen evolution in acidic and alkaline media publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c04838 contributor: fullname: Yu – volume: 394 year: 2020 ident: 10.1016/j.chemosphere.2022.135663_bib28 article-title: Efficient and regenerative near-infrared glass-ceramic photocatalyst fabricated by a facile in-situ etching method publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124877 contributor: fullname: Li – volume: 75 year: 2020 ident: 10.1016/j.chemosphere.2022.135663_bib58 article-title: Bilayer nanosheets of unusual stoichiometric bismuth oxychloride for potassium ion storage and CO2 reduction publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104939 contributor: fullname: Zhu – volume: 49 start-page: 11536 year: 2020 ident: 10.1016/j.chemosphere.2022.135663_bib4 article-title: Highly dispersed BiOCl decahedra with a highly exposed (001) facet and exceptional photocatalytic performance publication-title: Dalton Trans. doi: 10.1039/D0DT02372H contributor: fullname: Bao – volume: 199 start-page: 75 year: 2016 ident: 10.1016/j.chemosphere.2022.135663_bib16 article-title: In situ assembly of BiOI@Bi12O17Cl2 p-n junction: charge induced unique front-lateral surfaces coupling heterostructure with high exposure of BiOI {001} active facets for robust and nonselective photocatalysis publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2016.06.020 contributor: fullname: Huang |
SSID | ssj0001659 |
Score | 2.444559 |
Snippet | BiOCl powders with different morphology were obtained through self-assembling. Their photocatalytic performance was tested through degradation of organic dye... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 135663 |
SubjectTerms | 1O2 BiOCl Facet synergy Self-assembling Z-Scheme |
Title | Facet synergy dominant Z-scheme transition in BiOCl with enhanced 1O2 generation |
URI | https://dx.doi.org/10.1016/j.chemosphere.2022.135663 https://search.proquest.com/docview/2691050964 |
Volume | 307 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH4MxR8X0ak4f4wMvNZ1WZqu4GWOjam4eXAwvIQ0TXWi3bDbYRf_dvPSlqkgCNJTS0rDl_S9L-33vgCcS8rDwKwcHF8ps0BpxqHT0gp3c5csdrl0PVvHfTfg_RG7GXvjEnSKWhiUVeaxP4vpNlrnV-o5mvXZZII1vshGkEBg3uJYUc5M-jNz-uJjJfNocC-jwMxzsPUm1FYaL4PL2zTF-n10zKQUd4HgvPlbjvoRrW0K6u3CTs4dSTvr3h6UdFKGrU6xZVsZNrrWg3q5D_c9qfScpEtb2keiaaZ4IY9Oir3RZI45ysq1yCQhV5Nh55XgN1mik2crCiCNISVP1pQaWx3AqNd96PSdfPMER1m7X96iSjW5YlLJmDa070mPei0ufS8IYz92IxqrqKGVSUeS-oZk8yiMtTIESNEgdJuHsJZME30EJGgFLpOB9M3BmImQoR-Z1zxU6Nblu7oCtIBLzDKPDFGIx17EF4wFYiwyjCtwWQArvg24MLH8L7fXisEQBmT8yyETPV2kgnLDgNDUhh3_7xEnsI1nWeHhKazN3xf6zDCQeVi1U6wK6-3r2_7gE0Yn2vk |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD5Mh84X8YrzGsHXsi5rkxV80bGxuYs-OBi-hDRNdaLdcPXBf29O2noDQZC-pQ0NX5LvnLTnfAfgTFIWBubk4HClzAGlEYdOUyus5i692GXS9W0e93DEumPvauJPStAqcmEwrDLn_ozTLVvnLbUczdp8OsUcX_RG0IFAu8X4EpRNQ2B2Z_mi1--OPgi5zvzMC_Z8BzuswulnmJeB5nm2wBR-FM2kFAtBMNb4zUz9IGxrhTobsJ67j-QiG-EmlHSyBZVWUbVtC1baVob6bRtuOlLplCzebHYfiWZZ0Au5cxY4Gk1SNFM2YotME3I5vW49EfwsS3TyYOMCSP2aknurS41P7cC4075tdZ28foKjrOIva1KlGkx5UsmY1jX3pU_9JpPcD8KYx25EYxXVtTIWSVJu_GwWhbFWxgdSNAjdxi4sJ7NE7wEJmoHryUByc3meIcmQR2anhwoFu7irq0ALuMQ8k8kQRfzYo_iCsUCMRYZxFc4LYMW3OReGzv_S_bSYDGFAxh8dMtGz14WgZhVYXRtv_3-vOIFK93Y4EIPeqH8Aa3gny0M8hOX05VUfGYckDY_zBfcO2bvdrQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facet+synergy+dominant+Z-scheme+transition+in+BiOCl+with+enhanced+1O2+generation&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Guan%2C+Chongshang&rft.au=Hou%2C+Tian&rft.au=Nie%2C+Wuyang&rft.au=Zhang%2C+Qian&rft.date=2022-11-01&rft.eissn=1879-1298&rft.volume=307&rft.spage=135663&rft.epage=135663&rft_id=info:doi/10.1016%2Fj.chemosphere.2022.135663&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon |