Zinc Phthalocyanine Tetrasulfonate-Loaded Ag@mSiO2 Nanoparticles for Active Targeted Photodynamic Therapy of Colorectal Cancer
Colorectal cancer has high morbidity and mortality rate, with a high level of metastasis and recurrence due to the poor therapeutic effects. Photodynamic therapy (PDT) as an emerging clinical modality for cancer treatment provides remarkable advantages over existing treatments by generating reactive...
Saved in:
Published in | Frontiers in nanotechnology Vol. 4 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
12.07.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2673-3013 2673-3013 |
DOI | 10.3389/fnano.2022.928010 |
Cover
Abstract | Colorectal cancer has high morbidity and mortality rate, with a high level of metastasis and recurrence due to the poor therapeutic effects. Photodynamic therapy (PDT) as an emerging clinical modality for cancer treatment provides remarkable advantages over existing treatments by generating reactive oxygen species (ROS) through light irradiating photosensitizers (PSs) in the presence of oxygen. PDT can induce immunity against recurrence and destruction of metastases. The application of nanoparticles (NPs) in targeted cancer therapy is coming to light to circumvent the limitations associated with low physiological solubility and lack of selectivity of the PS towards tumor sites. In this
in vitro
study, we proved the added value of NP systems on PS efficacy and a tumor-targeting ligand. Using core/shell Ag@mSiO
2
NPs loaded with ZnPcS
4
PS and folic acid (FA), stronger cellular localization in the human colorectal cancer cell line (Caco-2) was observed compared to the passive NC and free PS. Additionally, light-induced photodynamic activation of the ZnPcS
4
/Ag@mSiO
2
-FA nanoconjugate (NC) elicited a strong cytotoxicity effect mediated by post-PDT. The results also revealed that the active NC was able to decrease the cell viability remarkably to 38.0% ± 4.2 *** compared to the passive NC (67.0% ± 7.4*) under 0.125 µM ZnPcS
4
(IC
50
). More importantly, the actively targeted NC-induced apoptosis where cell cycle analysis elaborated on cell death through the G0 phase, indicating the final NC’s efficacy 20 hr post-PDT treatment. |
---|---|
AbstractList | Colorectal cancer has high morbidity and mortality rate, with a high level of metastasis and recurrence due to the poor therapeutic effects. Photodynamic therapy (PDT) as an emerging clinical modality for cancer treatment provides remarkable advantages over existing treatments by generating reactive oxygen species (ROS) through light irradiating photosensitizers (PSs) in the presence of oxygen. PDT can induce immunity against recurrence and destruction of metastases. The application of nanoparticles (NPs) in targeted cancer therapy is coming to light to circumvent the limitations associated with low physiological solubility and lack of selectivity of the PS towards tumor sites. In this in vitro study, we proved the added value of NP systems on PS efficacy and a tumor-targeting ligand. Using core/shell Ag@mSiO2 NPs loaded with ZnPcS4 PS and folic acid (FA), stronger cellular localization in the human colorectal cancer cell line (Caco-2) was observed compared to the passive NC and free PS. Additionally, light-induced photodynamic activation of the ZnPcS4/Ag@mSiO2-FA nanoconjugate (NC) elicited a strong cytotoxicity effect mediated by post-PDT. The results also revealed that the active NC was able to decrease the cell viability remarkably to 38.0% ± 4.2 *** compared to the passive NC (67.0% ± 7.4*) under 0.125 µM ZnPcS4 (IC50). More importantly, the actively targeted NC-induced apoptosis where cell cycle analysis elaborated on cell death through the G0 phase, indicating the final NC’s efficacy 20 hr post-PDT treatment. Colorectal cancer has high morbidity and mortality rate, with a high level of metastasis and recurrence due to the poor therapeutic effects. Photodynamic therapy (PDT) as an emerging clinical modality for cancer treatment provides remarkable advantages over existing treatments by generating reactive oxygen species (ROS) through light irradiating photosensitizers (PSs) in the presence of oxygen. PDT can induce immunity against recurrence and destruction of metastases. The application of nanoparticles (NPs) in targeted cancer therapy is coming to light to circumvent the limitations associated with low physiological solubility and lack of selectivity of the PS towards tumor sites. In this in vitro study, we proved the added value of NP systems on PS efficacy and a tumor-targeting ligand. Using core/shell Ag@mSiO 2 NPs loaded with ZnPcS 4 PS and folic acid (FA), stronger cellular localization in the human colorectal cancer cell line (Caco-2) was observed compared to the passive NC and free PS. Additionally, light-induced photodynamic activation of the ZnPcS 4 /Ag@mSiO 2 -FA nanoconjugate (NC) elicited a strong cytotoxicity effect mediated by post-PDT. The results also revealed that the active NC was able to decrease the cell viability remarkably to 38.0% ± 4.2 *** compared to the passive NC (67.0% ± 7.4*) under 0.125 µM ZnPcS 4 (IC 50 ). More importantly, the actively targeted NC-induced apoptosis where cell cycle analysis elaborated on cell death through the G0 phase, indicating the final NC’s efficacy 20 hr post-PDT treatment. |
Author | Simelane, Nokuphila Winifred Nompumelelo Abrahamse, Heidi Montaseri, Hanieh |
Author_xml | – sequence: 1 givenname: Hanieh surname: Montaseri fullname: Montaseri, Hanieh – sequence: 2 givenname: Nokuphila Winifred Nompumelelo surname: Simelane fullname: Simelane, Nokuphila Winifred Nompumelelo – sequence: 3 givenname: Heidi surname: Abrahamse fullname: Abrahamse, Heidi |
BookMark | eNp9kcFqGzEQhkVJoGmSB-hNL7DuSPKuVrca0zYB0wTiXnoRY2lkK6wlo1ULvvTZu4lDKD3kMjMM838z0v-BnaWciLGPAmZK9eZTSJjyTIKUMyN7EPCOXchOq0aBUGf_1O_Z9Tg-AoDU_VxAe8H-_IzJ8ftd3eGQ3RFTTMTXVAuOv4aQE1ZqVhk9eb7Yft4_xDvJv0_bDlhqdAONPOTCF67G35MOy5bqNHq_yzX7Y8J9dHy9o4KHI8-BL_OQC7mKA19iclSu2HnAYaTrl3zJfnz9sl7eNKu7b7fLxapxwhhoDFLwHfoQpkMIZJAeYN51HlH21DqFQYGkTgftnGwF6hbcxkzRa0QkdcluT1yf8dEeStxjOdqM0T43ctnalwfZDfRGtFpRUGbeSbXpKJBGHUwwYu67iSVOLFfyOBYKrzwB9skP--yHffLDnvyYNPo_jYsVa8xp-uk4vKH8C-Y8ljE |
CitedBy_id | crossref_primary_10_1080_21691401_2024_2357693 crossref_primary_10_1021_acsabm_4c00498 crossref_primary_10_3389_fonc_2024_1338802 crossref_primary_10_1002_cbdv_202402782 crossref_primary_10_3390_ijms24076151 crossref_primary_10_3389_fmolb_2023_1340212 crossref_primary_10_3390_ijms241512204 crossref_primary_10_3390_ijms24031902 |
Cites_doi | 10.1016/j.pdpdt.2019.03.016 10.1021/acs.jmedchem.9b01318 10.1021/acs.jpclett.7b00945 10.1016/j.taap.2009.08.010 10.3390/pharmaceutics13091375 10.1166/jnn.2006.511 10.1002/adma.201102313 10.1021/acsnano.5b00021 10.3390/pharmaceutics10020057 10.1016/s0169-409x(99)00062-9 10.1016/j.cbpa.2009.03.022 10.1002/smll.200800777 10.1016/j.radphyschem.2004.06.012 10.1021/cr5004198 10.3390/ijms22189779 10.1111/j.1463-1318.2009.02089.x 10.1021/la950968m 10.1007/s10103-007-0470-x 10.1016/j.carbpol.2018.09.035 10.1016/j.bbcan.2004.05.003 10.1590/s0100-879x2000000800002 10.1016/j.jorganchem.2006.11.028 10.3390/cancers11101474 10.3322/caac.20114 10.1016/j.jddst.2021.102532 10.1038/nnano.2010.58 10.1039/c1cc12718g 10.2147/ijn.s353349 10.1016/j.pdpdt.2018.06.019 10.1002/adhm.201801002 10.1016/j.ijpharm.2016.11.012 10.1186/1477-3155-11-41 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3389/fnano.2022.928010 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2673-3013 |
ExternalDocumentID | oai_doaj_org_article_b0891573ef394623b6efe7a7f9f914d6 10_3389_fnano_2022_928010 |
GroupedDBID | 9T4 AAFWJ AAYXX ACXDI AFPKN ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E OK1 |
ID | FETCH-LOGICAL-c1990-9aefd6adffdede02f2d00466daa28e5c3af302e67f7cc251a750cb9750d7aaae3 |
IEDL.DBID | DOA |
ISSN | 2673-3013 |
IngestDate | Wed Aug 27 00:52:31 EDT 2025 Tue Jul 01 02:14:29 EDT 2025 Thu Apr 24 23:03:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1990-9aefd6adffdede02f2d00466daa28e5c3af302e67f7cc251a750cb9750d7aaae3 |
OpenAccessLink | https://doaj.org/article/b0891573ef394623b6efe7a7f9f914d6 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b0891573ef394623b6efe7a7f9f914d6 crossref_primary_10_3389_fnano_2022_928010 crossref_citationtrail_10_3389_fnano_2022_928010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-7-12 |
PublicationDateYYYYMMDD | 2022-07-12 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-7-12 day: 12 |
PublicationDecade | 2020 |
PublicationTitle | Frontiers in nanotechnology |
PublicationYear | 2022 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Huang (B13) 2008; 23 Wang (B29) 2019; 203 Zhao (B32) 2009; 241 Simelane (B25) 2021; 22 Kim (B16) 2010; 5 Melamed (B20) 2015; 9 Sibata (B24) 2000; 33 Danaei (B5) 2018; 10 El-Hammadi (B7) 2017; 516 Portilho (B23) 2013; 11 Huryn (B14) 2019; 63 Yang (B31) 2009; 5 Fife (B8) 2011; 13 Montaseri (B21) 2021; 13 Almeida (B2) 2004; 1704 Porrang (B22) 2022; 17 Bretin (B4) 2019; 11 Hani (B11) 2021; 63 Dhami (B6) 1996; 12 Krajczewski (B17) 2019; 26 Lucky (B19) 2015; 115 Sudimack (B27) 2000; 41 Hoener (B12) 2017; 8 Banfi (B3) 2007; 692 Wang (B28) 2019; 8 Han (B10) 2011; 47 Low (B18) 2009; 13 Gantchev (B9) 2005; 72 Agostinis (B1) 2011; 61 Kievit (B15) 2011; 23 Wijesiri (B30) 2018; 23 Simioni (B26) 2006; 6 |
References_xml | – volume: 26 start-page: 162 year: 2019 ident: B17 article-title: Role of Various Nanoparticles in Photodynamic Therapy and Detection Methods of Singlet Oxygen publication-title: Photodiagn. Photodyn. Ther. doi: 10.1016/j.pdpdt.2019.03.016 – volume: 63 start-page: 1892 year: 2019 ident: B14 article-title: p97: an Emerging Target for Cancer, Neurodegenerative Diseases, and Viral Infections publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.9b01318 – volume: 8 start-page: 2681 year: 2017 ident: B12 article-title: Spectral Response of Plasmonic Gold Nanoparticles to Capacitive Charging: Morphology Effects publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.7b00945 – volume: 241 start-page: 163 year: 2009 ident: B32 article-title: Enhanced Photodynamic Efficacy towards Melanoma Cells by Encapsulation of Pc4 in Silica Nanoparticles publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2009.08.010 – volume: 13 start-page: 1375 year: 2021 ident: B21 article-title: Targeted Photodynamic Therapy Using Alloyed Nanoparticle-Conjugated 5-Aminolevulinic Acid for Breast Cancer publication-title: Pharmaceutics doi: 10.3390/pharmaceutics13091375 – volume: 6 start-page: 2413 year: 2006 ident: B26 article-title: Cell Toxicity Studies of Albumin-Based Nanosized Magnetic Beads publication-title: J. Nanosci. Nanotech. doi: 10.1166/jnn.2006.511 – volume: 23 start-page: H217 year: 2011 ident: B15 article-title: Cancer Nanotheranostics: Improving Imaging and Therapy by Targeted Delivery across Biological Barriers publication-title: Adv. Mat. doi: 10.1002/adma.201102313 – volume: 9 start-page: 6 year: 2015 ident: B20 article-title: Elucidating the Fundamental Mechanisms of Cell Death Triggered by Photothermal Therapy publication-title: ACS Nano doi: 10.1021/acsnano.5b00021 – volume: 10 start-page: 57 year: 2018 ident: B5 article-title: Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems publication-title: Pharmaceutics doi: 10.3390/pharmaceutics10020057 – volume: 41 start-page: 147 year: 2000 ident: B27 article-title: Targeted Drug Delivery via the Folate Receptor publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/s0169-409x(99)00062-9 – volume: 13 start-page: 256 year: 2009 ident: B18 article-title: Folate-Targeted Therapeutic and Imaging Agents for Cancer publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2009.03.022 – volume: 5 start-page: 198 year: 2009 ident: B31 article-title: Development of Polymer‐encapsulated Metal Nanoparticles as Surface‐enhanced Raman Scattering Probes publication-title: Small doi: 10.1002/smll.200800777 – volume: 72 start-page: 367 year: 2005 ident: B9 article-title: Molecular Models of Zinc Phthalocyanines: Semi-empirical Molecular Orbital Computations and Physicochemical Properties Studied by Molecular Mechanics Simulations publication-title: Radiat. Phys. Chem. doi: 10.1016/j.radphyschem.2004.06.012 – volume: 115 start-page: 1990 year: 2015 ident: B19 article-title: Nanoparticles in Photodynamic Therapy publication-title: Chem. Rev. doi: 10.1021/cr5004198 – volume: 22 start-page: 9779 year: 2021 ident: B25 article-title: Targeted Nanoparticle Photodynamic Diagnosis and Therapy of Colorectal Cancer publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms22189779 – volume: 13 start-page: 132 year: 2011 ident: B8 article-title: Folic Acid Supplementation and Colorectal Cancer Risk: a Meta‐analysis publication-title: Colorectal Dis. doi: 10.1111/j.1463-1318.2009.02089.x – volume: 12 start-page: 293 year: 1996 ident: B6 article-title: Photophysical Characterization of Sulfonated Aluminum Phthalocyanines in a Cationic Reversed Micellar System publication-title: Langmuir doi: 10.1021/la950968m – volume: 23 start-page: 217 year: 2008 ident: B13 article-title: Plasmonic Photothermal Therapy (PPTT) Using Gold Nanoparticles publication-title: Lasers Med. Sci. doi: 10.1007/s10103-007-0470-x – volume: 203 start-page: 203 year: 2019 ident: B29 article-title: Sequentially Self-Assembled Polysaccharide-Based Nanocomplexes for Combined Chemotherapy and Photodynamic Therapy of Breast Cancer publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2018.09.035 – volume: 1704 start-page: 59 year: 2004 ident: B2 article-title: Intracellular Signaling Mechanisms in Photodynamic Therapy publication-title: Biochim, Biophys. Acta (BBA) - Rev. Cancer doi: 10.1016/j.bbcan.2004.05.003 – volume: 33 start-page: 869 year: 2000 ident: B24 article-title: Photodynamic Therapy: a New Concept in Medical Treatment publication-title: Braz J. Med. Biol. Res. doi: 10.1590/s0100-879x2000000800002 – volume: 692 start-page: 1269 year: 2007 ident: B3 article-title: Zinc Phthalocyanines-Mediated Photodynamic Therapy Induces Cell Death in Adenocarcinoma Cells publication-title: J. Organomet. Chem. doi: 10.1016/j.jorganchem.2006.11.028 – volume: 11 start-page: 1474 year: 2019 ident: B4 article-title: Photodynamic Therapy Activity of New Porphyrin-Xylan-Coated Silica Nanoparticles in Human Colorectal Cancer publication-title: Cancers (Basel) doi: 10.3390/cancers11101474 – volume: 61 start-page: 250 year: 2011 ident: B1 article-title: Photodynamic Therapy of Cancer: an Update publication-title: CA A Cancer J. Clin. doi: 10.3322/caac.20114 – volume: 63 start-page: 102532 year: 2021 ident: B11 article-title: Colorectal Cancer: A Comprehensive Review Based on the Novel Drug Delivery Systems Approach and its Management publication-title: J. Drug Deliv. Sci. Technol. doi: 10.1016/j.jddst.2021.102532 – volume: 5 start-page: 465 year: 2010 ident: B16 article-title: Tuning Payload Delivery in Tumour Cylindroids Using Gold Nanoparticles publication-title: Nat. Nanotech. doi: 10.1038/nnano.2010.58 – volume: 47 start-page: 8536 year: 2011 ident: B10 article-title: A Facile One-Pot Synthesis of Uniform Core-Shell Silver Nanoparticle@mesoporous Silica Nanospheres publication-title: Chem. Commun. doi: 10.1039/c1cc12718g – volume: 17 start-page: 1803 year: 2022 ident: B22 article-title: How Advancing Are Mesoporous Silica Nanoparticles? A Comprehensive Review of the Literature publication-title: Int. J. Nanomed. doi: 10.2147/ijn.s353349 – volume: 23 start-page: 202 year: 2018 ident: B30 article-title: Antifungal Photodynamic Inactivation against Dermatophyte Trichophyton Rubrum Using Nanoparticle-Based Hybrid Photosensitizers publication-title: Photodiagn. Photodyn. Ther. doi: 10.1016/j.pdpdt.2018.06.019 – volume: 8 start-page: 1801002 year: 2019 ident: B28 article-title: Nanocarriers and Their Loading Strategies publication-title: Adv. Healthc. Mat. doi: 10.1002/adhm.201801002 – volume: 516 start-page: 61 year: 2017 ident: B7 article-title: Folic Acid-Decorated and PEGylated PLGA Nanoparticles for Improving the Antitumour Activity of 5-fluorouracil publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2016.11.012 – volume: 11 start-page: 41 year: 2013 ident: B23 article-title: Antitumor Activity of Photodynamic Therapy Performed with Nanospheres Containing Zinc-Phthalocyanine publication-title: J. Nanobiotechnol. doi: 10.1186/1477-3155-11-41 |
SSID | ssj0002784105 |
Score | 2.1887822 |
Snippet | Colorectal cancer has high morbidity and mortality rate, with a high level of metastasis and recurrence due to the poor therapeutic effects. Photodynamic... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
SubjectTerms | Ag@mSiO2 nanoparticles colorectal cancer photodynamic therapy targeted therapy ZnPcS4 photosensitizer |
Title | Zinc Phthalocyanine Tetrasulfonate-Loaded Ag@mSiO2 Nanoparticles for Active Targeted Photodynamic Therapy of Colorectal Cancer |
URI | https://doaj.org/article/b0891573ef394623b6efe7a7f9f914d6 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA-ykxdRVJxf5OBJqMvSNlluzrExxOnADYaX8tokbjJbmd3By_52X9puzItevAQa0jT8-vLe7-XjPUKuXN4TpLGxJyQXXiAZTimAwAtE4jZtJD649Y7Bo-iPg_tJONlK9eXOhJXhgUvgGjFrqWYofWN9FaCtjoWxRoK0yqpmoItg20yxLWfqbb2dxsJyGxO9MNWwKaTush_nN4qjWmY_DNFWvP7CsPT2yV7FCGm7HMkB2THpIVm9zNKEDqf5FNDafEGKZJCOTL6Az-XcuhVv4z1koI2m7dfb9-fZE6eoKNEDrg66USSjtF0oMzoqTntj0-E0yzNd5qCnozKeAM0s7aAGdJoPh9FxUrA4IuNed9Tpe1WqBA8hVQzxNVYL0Nbihw3jlmvn-QoNwFsmTHywPuNGSCuTBCkNIFFIYoWllgBg_GNSS7PUnBAaG5zSTbRhIVIl7EUZ1sIqbZXmIFpJnbA1blFSxRF36SzmEfoTDuqogDpyUEcl1HVyvXnlowyi8VvjO_czNg1d_OuiAqUiqkCM_pKK0__o5IzsunG5ldwmPye1fLE0F0hB8viykDYsB6vuN1-73CU |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zinc+Phthalocyanine+Tetrasulfonate-Loaded+Ag%40mSiO2+Nanoparticles+for+Active+Targeted+Photodynamic+Therapy+of+Colorectal+Cancer&rft.jtitle=Frontiers+in+nanotechnology&rft.au=Montaseri%2C+Hanieh&rft.au=Simelane%2C+Nokuphila+Winifred+Nompumelelo&rft.au=Abrahamse%2C+Heidi&rft.date=2022-07-12&rft.issn=2673-3013&rft.eissn=2673-3013&rft.volume=4&rft_id=info:doi/10.3389%2Ffnano.2022.928010&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fnano_2022_928010 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2673-3013&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2673-3013&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2673-3013&client=summon |