The covariety of perfect numerical semigroups with fixed Frobenius number

Let S be a numerical semigroup. We say that h ∈ ℕ S is an isolated gap of S if { h − 1, h + 1} ⊆ S . A numerical semigroup without isolated gaps is called a perfect numerical semigroup. Denote by m( S ) the multiplicity of a numerical semigroup S . A covariety is a nonempty family C of numerical sem...

Full description

Saved in:
Bibliographic Details
Published inCzechoslovak mathematical journal Vol. 74; no. 3; pp. 697 - 714
Main Authors Moreno-Frías, María Ángeles, Rosales, José Carlos
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Let S be a numerical semigroup. We say that h ∈ ℕ S is an isolated gap of S if { h − 1, h + 1} ⊆ S . A numerical semigroup without isolated gaps is called a perfect numerical semigroup. Denote by m( S ) the multiplicity of a numerical semigroup S . A covariety is a nonempty family C of numerical semigroups that fulfills the following conditions: there exists the minimum of C , the intersection of two elements of C is again an element of C , and S ∖ { m ( S ) } ∈ C for all S ∈ C such that S ≠ min ( C ) . We prove that the set P ( F ) = { S : S is a perfect numerical semigroup with Frobenius number F } is a covariety. Also, we describe three algorithms which compute: the set P ( F ) , the maximal elements of P ( F ) , and the elements of P ( F ) with a given genus. A Parf-semigroup (or Psat-semigroup) is a perfect numerical semigroup that in addition is an Arf numerical semigroup (or saturated numerical semigroup), respectively. We prove that the sets Parf( F ) = { S : S is a Parf-numerical semigroup with Frobenius number F } and Psat( F ) = { S : S is a Psat-numerical semigroup with Frobenius number F } are covarieties. As a consequence we present some algorithms to compute Parf( F ) and Psat( F ).
AbstractList Let S be a numerical semigroup. We say that h ∈ ℕ S is an isolated gap of S if {h − 1, h + 1} ⊆ S. A numerical semigroup without isolated gaps is called a perfect numerical semigroup. Denote by m(S) the multiplicity of a numerical semigroup S. A covariety is a nonempty family C of numerical semigroups that fulfills the following conditions: there exists the minimum of C, the intersection of two elements of C is again an element of C, and S∖{m(S)}∈C for all S∈C such that S≠min(C). We prove that the set P(F)={S:Sis a perfect numerical semigroup with Frobenius numberF} is a covariety. Also, we describe three algorithms which compute: the set P(F), the maximal elements of P(F), and the elements of P(F) with a given genus. A Parf-semigroup (or Psat-semigroup) is a perfect numerical semigroup that in addition is an Arf numerical semigroup (or saturated numerical semigroup), respectively. We prove that the sets Parf(F) = {S: S is a Parf-numerical semigroup with Frobenius number F} and Psat(F) = {S: S is a Psat-numerical semigroup with Frobenius number F} are covarieties. As a consequence we present some algorithms to compute Parf(F) and Psat(F).
Let S be a numerical semigroup. We say that h ∈ ℕ S is an isolated gap of S if { h − 1, h + 1} ⊆ S . A numerical semigroup without isolated gaps is called a perfect numerical semigroup. Denote by m( S ) the multiplicity of a numerical semigroup S . A covariety is a nonempty family C of numerical semigroups that fulfills the following conditions: there exists the minimum of C , the intersection of two elements of C is again an element of C , and S ∖ { m ( S ) } ∈ C for all S ∈ C such that S ≠ min ( C ) . We prove that the set P ( F ) = { S : S is a perfect numerical semigroup with Frobenius number F } is a covariety. Also, we describe three algorithms which compute: the set P ( F ) , the maximal elements of P ( F ) , and the elements of P ( F ) with a given genus. A Parf-semigroup (or Psat-semigroup) is a perfect numerical semigroup that in addition is an Arf numerical semigroup (or saturated numerical semigroup), respectively. We prove that the sets Parf( F ) = { S : S is a Parf-numerical semigroup with Frobenius number F } and Psat( F ) = { S : S is a Psat-numerical semigroup with Frobenius number F } are covarieties. As a consequence we present some algorithms to compute Parf( F ) and Psat( F ).
Author Moreno-Frías, María Ángeles
Rosales, José Carlos
Author_xml – sequence: 1
  givenname: María Ángeles
  surname: Moreno-Frías
  fullname: Moreno-Frías, María Ángeles
  email: mariangeles.moreno@uca.es
  organization: Department of Math, Faculty of Sciences, Cádiz University
– sequence: 2
  givenname: José Carlos
  surname: Rosales
  fullname: Rosales, José Carlos
  organization: Department of Algebra, Faculty of Sciences, University of Granada
BookMark eNpFkM1KAzEYRYNUsK0-gLuA66n5kkzSLKVYrShu6nqYny9tSjsZkxl_3t7UCq4uXA73wpmQUetbJOQa2IwDCHW7eHmaccbljAltMi7OyBhyzTMDEkZkzBhAJpXkF2QS444xJkDOx2S13iKt_UcZHPbf1FvaYbBY97QdDhhcXe5pxIPbBD90kX66fkut-8KGLoOvsHVDPJIVhktybst9xKu_nJK35f168Zg9vz6sFnfPWQ1m3mdY1brRVoLmpa5Vybg2uU3tvIIGG8W0FoIhCkClctCiUbwyTKbIjeVCTMnNabcL_n3A2Bc7P4Q2XRYimQBgRueJ4icqdsG1Gwz_FLDiV1mRlBVHZcVRWZGmfwAeWWBy
Cites_doi 10.3390/foundations4020016
10.2307/2373463
10.1112/plms/s2-50.4.256
10.1007/BF01300131
10.1093/acprof:oso/9780198568209.001.0001
10.3906/mat-1901-111
10.55730/1300-0098.3436
10.1017/prm.2018.65
10.1016/0022-4049(89)90135-7
10.1016/S0022-4049(01)00128-1
10.1007/BF02573091
ContentType Journal Article
Copyright Institute of Mathematics, Czech Academy of Sciences 2024
Institute of Mathematics, Czech Academy of Sciences 2024.
Copyright_xml – notice: Institute of Mathematics, Czech Academy of Sciences 2024
– notice: Institute of Mathematics, Czech Academy of Sciences 2024.
DOI 10.21136/CMJ.2024.0379-23
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1572-9141
EndPage 714
ExternalDocumentID 10_21136_CMJ_2024_0379_23
GroupedDBID --Z
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
203
29F
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
692
6HX
6NX
78A
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIPQ
ACIPV
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
LO0
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OK1
OVD
P2P
P9R
PF0
PT4
QOS
R89
R9I
RNI
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TR2
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UPT
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
ZY4
~A9
ID FETCH-LOGICAL-c198t-ebc7d7f4172a7c6a02795febc8b1ded6077330ee31e665173d62b904d6259f233
IEDL.DBID AGYKE
ISSN 0011-4642
IngestDate Thu Oct 10 20:58:50 EDT 2024
Sat Oct 05 01:35:09 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords perfect numerical semigroup
Arf numerical semigroup
11D07
genus
20M14
Frobenius number
covariety
saturated numerical semigroup
algorithm
13H10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c198t-ebc7d7f4172a7c6a02795febc8b1ded6077330ee31e665173d62b904d6259f233
PQID 3113110975
PQPubID 2043779
PageCount 18
ParticipantIDs proquest_journals_3113110975
springer_journals_10_21136_CMJ_2024_0379_23
PublicationCentury 2000
PublicationDate 9-2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 9-2024
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Czechoslovak mathematical journal
PublicationTitleAbbrev Czech Math J
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Sylvester (CR22) 1884; 41
CR18
Zariski (CR24) 1971; 93
Pham (CR15) 1971
Ramírez Alfonsín (CR16) 1996; 16
CR13
Rosales, García-Sánchez (CR21) 2009
Moreno-Frías, Rosales (CR10) 2019; 43
Apéry (CR1) 1946; 222
Moreno-Frías, Rosales (CR12) 2024; 4
CR3
Ramírez Alfonsín (CR17) 2005
Zariski (CR25) 1975; 97
CR5
CR8
Zariski (CR23) 1971; 93
Rosales, Branco (CR19) 2002; 171
Arf (CR2) 1948; 50
Fröberg, Gottlieb, Häggkvist (CR7) 1987; 35
Delgado de la Mata, Núñez Jiménez (CR6) 1987
Lipman (CR9) 1971; 93
Rosales, Branco (CR20) 2019; 149
Núñez (CR14) 1989; 59
Moreno-Frías, Rosales (CR11) 2023; 47
Campillo (CR4) 1983
References_xml – volume: 4
  start-page: 249
  year: 2024
  end-page: 262
  ident: CR12
  article-title: The covariety of saturated numerical semigroup with fixed Frobenius number
  publication-title: Foundations
  doi: 10.3390/foundations4020016
  contributor:
    fullname: Rosales
– ident: CR18
– volume: 41
  start-page: 21
  year: 1884
  ident: CR22
  article-title: Problem 7382
  publication-title: Mathematical questions, with their solutions, from the Educational Times
  contributor:
    fullname: Sylvester
– volume: 93
  start-page: 649
  year: 1971
  end-page: 685
  ident: CR9
  article-title: Stable ideals and Arf rings
  publication-title: Am. J. Math.
  doi: 10.2307/2373463
  contributor:
    fullname: Lipman
– volume: 50
  start-page: 256
  year: 1948
  end-page: 287
  ident: CR2
  article-title: Une interprétation algébraique de la suite des ordres de multiplicité d’une branche algébrique
  publication-title: Proc. Lond. Math. Soc., II. Ser
  doi: 10.1112/plms/s2-50.4.256
  contributor:
    fullname: Arf
– volume: 16
  start-page: 143
  year: 1996
  end-page: 147
  ident: CR16
  article-title: Complexity of the Frobenius problem
  publication-title: Combinatorica
  doi: 10.1007/BF01300131
  contributor:
    fullname: Ramírez Alfonsín
– start-page: 649
  year: 1971
  end-page: 654
  ident: CR15
  article-title: Fractions lipschitziennes et saturation de Zariski des algèbres analytiques complexes
  publication-title: Actes du Congrès International des Mathématiciens. Tome 2
  contributor:
    fullname: Pham
– year: 2005
  ident: CR17
  publication-title: The Diophantine Frobenius Problem
  doi: 10.1093/acprof:oso/9780198568209.001.0001
  contributor:
    fullname: Ramírez Alfonsín
– volume: 43
  start-page: 1742
  year: 2019
  end-page: 1754
  ident: CR10
  article-title: Perfect numerical semigroups
  publication-title: Turk. J. Math.
  doi: 10.3906/mat-1901-111
  contributor:
    fullname: Rosales
– volume: 47
  start-page: 1392
  year: 2023
  end-page: 1405
  ident: CR11
  article-title: The set of Arf numerical semigroup with given Frobenius number
  publication-title: Turk. J. Math.
  doi: 10.55730/1300-0098.3436
  contributor:
    fullname: Rosales
– start-page: 23
  year: 1987
  end-page: 34
  ident: CR6
  article-title: Monomial rings and saturated rings. Géométrie algébrique et applications. I
  publication-title: Travaux en Cours 22
  contributor:
    fullname: Núñez Jiménez
– volume: 97
  start-page: 415
  year: 1975
  end-page: 502
  ident: CR25
  article-title: General theory of saturation and of saturated local rings
  publication-title: III. Saturation in arbitrary dimension and, in particular, saturation of algebroid hypersurfaces. Am. J. Math.
  contributor:
    fullname: Zariski
– ident: CR8
– volume: 149
  start-page: 969
  year: 2019
  end-page: 978
  ident: CR20
  article-title: A problem of integer partitions and numerical semigroups
  publication-title: Proc. R. Soc. Edinb., Sect. A, Math.
  doi: 10.1017/prm.2018.65
  contributor:
    fullname: Branco
– volume: 59
  start-page: 201
  year: 1989
  end-page: 214
  ident: CR14
  article-title: Algebro-geometric properties of saturated rings
  publication-title: J. Pure Appl. Algebra
  doi: 10.1016/0022-4049(89)90135-7
  contributor:
    fullname: Núñez
– volume: 93
  start-page: 573
  year: 1971
  end-page: 684
  ident: CR23
  article-title: General theory of saturation and of saturated local rings
  publication-title: I. Saturation of complete local domains of dimension one having arbitrary coefficient fields (of characteristic zero). Am. J. Math.
  contributor:
    fullname: Zariski
– volume: 222
  start-page: 1198
  year: 1946
  end-page: 1200
  ident: CR1
  article-title: Sur les branches superlinéaires des courbes algébriques
  publication-title: C.R. Acad. Sci., Paris
  contributor:
    fullname: Apéry
– ident: CR3
– start-page: 211
  year: 1983
  end-page: 220
  ident: CR4
  article-title: On saturations of curve singularities (any characteristic). Singularities, Part 1
  publication-title: Proceedings of Symposia in Pure Mathematics 40
  contributor:
    fullname: Campillo
– volume: 171
  start-page: 303
  year: 2002
  end-page: 314
  ident: CR19
  article-title: Numerical semigroups that can be expressed as an intersection of symmetric numerical semigroups
  publication-title: J. Pure Appl. Algebra
  doi: 10.1016/S0022-4049(01)00128-1
  contributor:
    fullname: Branco
– ident: CR13
– volume: 93
  start-page: 872
  year: 1971
  end-page: 964
  ident: CR24
  article-title: General theory of saturation and of saturated local rings
  publication-title: II. Saturated local rings of dimension 1. Am. J. Math.
  contributor:
    fullname: Zariski
– volume: 35
  start-page: 63
  year: 1987
  end-page: 83
  ident: CR7
  article-title: On numerical semigroups
  publication-title: Semigroup Forum
  doi: 10.1007/BF02573091
  contributor:
    fullname: Häggkvist
– year: 2009
  ident: CR21
  article-title: Numerical Semigroups
  publication-title: Developments in Mathematics 20
  contributor:
    fullname: García-Sánchez
– ident: CR5
SSID ssj0003148
Score 2.3417096
Snippet Let S be a numerical semigroup. We say that h ∈ ℕ S is an isolated gap of S if { h − 1, h + 1} ⊆ S . A numerical semigroup without isolated gaps is called a...
Let S be a numerical semigroup. We say that h ∈ ℕ S is an isolated gap of S if {h − 1, h + 1} ⊆ S. A numerical semigroup without isolated gaps is called a...
SourceID proquest
springer
SourceType Aggregation Database
Publisher
StartPage 697
SubjectTerms Algorithms
Analysis
Convex and Discrete Geometry
Group theory
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Ordinary Differential Equations
Semigroups
Title The covariety of perfect numerical semigroups with fixed Frobenius number
URI https://link.springer.com/article/10.21136/CMJ.2024.0379-23
https://www.proquest.com/docview/3113110975
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT8JAGJ2wXPTgbkSRzMGbKXaWztAjISBi8CQJnhpmSwhaDG2N-uudaQvG5cKxS5rmzdev7823AXBljUAyI5XXCVXgUY1Db4Yp9yQRlOpZQJhw9c7jBzac0NE0mFYA3mxdxIv2OiKZO2qXq-zmjtz0xiMr5zBt-4SHHiZVUC_rTuvd26f7_sb_EkRL_2vVkaXXRSzz_4f84JW_QqH5H2awX1T9JXljQpdYsmhnqWjLz79tG7d4-QOwVxJO2C0s5BBUdHwEdsebbq3JMbiztgLl8s3J5vQDLg181SuX5gHjrAjoPMNEv8zzCpAEuq1baObvWsGBKyaK51kCi8kiJ2Ay6D_2hl45YsGTKOyknhaSK26opTEzLtnMitQwMPZsRyClFfM5J8TXmiDNWIA4UQyL0KfKySaDCTkFtXgZ6zMAZccIJIUlYMxQgewaW-qofEUNkpQJ3ADNNdRR-Z0kEUGu3Y8f8qABrtfQfV-2CiXHL7L4RQ6_yOEXYXK-1d0XYMcdFjsnTVBLV5m-tFwiFa3SeFqgOsHdL6bgwf0
link.rule.ids 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFH6CMgADN6JQwAMbSomP2M1YVZRylKlIZYrqS6qAFDUpAn49dpMUgVhY4yiyvry8fJ_fBXDmjEBxq3TQinUUMEPiYESYCBSVjJlRRLn09c79e957YDfDaFjWcWdVtnsVkpx7ap-s7AePXHT6N07PEdYMqYgDQpdhhRHMSQ1W2lePt5cLB0wxKx2wk0eOXxfBzL8f8oNY_oqFzn8x3U0YVJsrMkuemrNcNtXnr76N_9z9FmyUlBO1CxvZhiWT7sB6f9GvNduFa2ctSE3evHDOP9DEolcz9YkeKJ0VIZ1nlJmX8bwGJEP-8BbZ8bvRqOvLidLxLEPFbJE9eOheDjq9oByyECgct_LASCW0sMwRmZFQfORkahxZd7UlsTaah0JQGhpDseE8woJqTmQcMu2FkyWU7kMtnaTmAJBqWYmVdBSMWyaxe8uOPOpQM4sV45LUoVFhnZRfSpZQ7Bv-hLGI6nBeQfe97DTKHL_E4Zd4_BKPX0Lo4b_uPoXV3qB_l9xd398ewZpfKs5RGlDLpzNz7JhFLk9KS_oCkpfE6A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8MwGH7RCaIHv8Xp1By8SWfTpMl6HHPTTSceFPRUly8YajfWTtRfb7K2iuJFvDalpE_fpM-T9wvgyBqBZEYqrxGp0KM6iLxBQLkniaBUD0LChMt37l-x81vauwvvij6naRntXrok85wGV6UpyU7GyswCl10TkpNWv2e1XUDrPuGRF5B5WKCuMFIFFppn9xftz82YYFpsxlYqWa6dOzZ_f8g3kvnDLzr73XRW4aGcaB5l8lifZqIu33_UcPzHm6zBSkFFUTO3nXWY08kGLPc_67imm9C1VoTk6MUJ6uwNjQwa64kLAEHJNHf1PKFUPw9nuSEpcoe6yAxftUIdl2aUDKcpynuObMFtp33TOveK5guexFEj87SQXHFDLcEZcMkGVr5GobFXGwIrrZjPOSG-1gRrxkLMiWKBiHyqnKAyASHbUElGid4BJBtGYCksNWOGCmy_viWVylfUYEmZCKpQK3GPixWUxgS7QkB-xMMqHJcwfg1b7TLDL7b4xQ6_2OEXB2T3T3cfwuL1aSe-7F5d7MGSG8mPV2pQySZTvW8JRyYOCqP6AM8ozcw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+covariety+of+perfect+numerical+semigroups+with+fixed+Frobenius+number&rft.jtitle=Czechoslovak+mathematical+journal&rft.au=Moreno-Fr%C3%ADas%2C+Mar%C3%ADa+%C3%81ngeles&rft.au=Rosales%2C+Jos%C3%A9+Carlos&rft.date=2024-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0011-4642&rft.eissn=1572-9141&rft.volume=74&rft.issue=3&rft.spage=697&rft.epage=714&rft_id=info:doi/10.21136%2FCMJ.2024.0379-23&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0011-4642&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0011-4642&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0011-4642&client=summon