The covariety of perfect numerical semigroups with fixed Frobenius number
Let S be a numerical semigroup. We say that h ∈ ℕ S is an isolated gap of S if { h − 1, h + 1} ⊆ S . A numerical semigroup without isolated gaps is called a perfect numerical semigroup. Denote by m( S ) the multiplicity of a numerical semigroup S . A covariety is a nonempty family C of numerical sem...
Saved in:
Published in | Czechoslovak mathematical journal Vol. 74; no. 3; pp. 697 - 714 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Let
S
be a numerical semigroup. We say that
h
∈ ℕ
S
is an isolated gap of
S
if {
h
− 1,
h
+ 1} ⊆
S
. A numerical semigroup without isolated gaps is called a perfect numerical semigroup. Denote by m(
S
) the multiplicity of a numerical semigroup
S
. A covariety is a nonempty family
C
of numerical semigroups that fulfills the following conditions: there exists the minimum of
C
, the intersection of two elements of
C
is again an element of
C
, and
S
∖
{
m
(
S
)
}
∈
C
for all
S
∈
C
such that
S
≠
min
(
C
)
. We prove that the set
P
(
F
)
=
{
S
:
S
is a perfect numerical semigroup with Frobenius number
F
}
is a covariety. Also, we describe three algorithms which compute: the set
P
(
F
)
, the maximal elements of
P
(
F
)
, and the elements of
P
(
F
)
with a given genus. A Parf-semigroup (or Psat-semigroup) is a perfect numerical semigroup that in addition is an Arf numerical semigroup (or saturated numerical semigroup), respectively. We prove that the sets Parf(
F
) = {
S
:
S
is a Parf-numerical semigroup with Frobenius number
F
} and Psat(
F
) = {
S
:
S
is a Psat-numerical semigroup with Frobenius number
F
} are covarieties. As a consequence we present some algorithms to compute Parf(
F
) and Psat(
F
). |
---|---|
AbstractList | Let S be a numerical semigroup. We say that h ∈ ℕ S is an isolated gap of S if {h − 1, h + 1} ⊆ S. A numerical semigroup without isolated gaps is called a perfect numerical semigroup. Denote by m(S) the multiplicity of a numerical semigroup S. A covariety is a nonempty family C of numerical semigroups that fulfills the following conditions: there exists the minimum of C, the intersection of two elements of C is again an element of C, and S∖{m(S)}∈C for all S∈C such that S≠min(C). We prove that the set P(F)={S:Sis a perfect numerical semigroup with Frobenius numberF} is a covariety. Also, we describe three algorithms which compute: the set P(F), the maximal elements of P(F), and the elements of P(F) with a given genus. A Parf-semigroup (or Psat-semigroup) is a perfect numerical semigroup that in addition is an Arf numerical semigroup (or saturated numerical semigroup), respectively. We prove that the sets Parf(F) = {S: S is a Parf-numerical semigroup with Frobenius number F} and Psat(F) = {S: S is a Psat-numerical semigroup with Frobenius number F} are covarieties. As a consequence we present some algorithms to compute Parf(F) and Psat(F). Let S be a numerical semigroup. We say that h ∈ ℕ S is an isolated gap of S if { h − 1, h + 1} ⊆ S . A numerical semigroup without isolated gaps is called a perfect numerical semigroup. Denote by m( S ) the multiplicity of a numerical semigroup S . A covariety is a nonempty family C of numerical semigroups that fulfills the following conditions: there exists the minimum of C , the intersection of two elements of C is again an element of C , and S ∖ { m ( S ) } ∈ C for all S ∈ C such that S ≠ min ( C ) . We prove that the set P ( F ) = { S : S is a perfect numerical semigroup with Frobenius number F } is a covariety. Also, we describe three algorithms which compute: the set P ( F ) , the maximal elements of P ( F ) , and the elements of P ( F ) with a given genus. A Parf-semigroup (or Psat-semigroup) is a perfect numerical semigroup that in addition is an Arf numerical semigroup (or saturated numerical semigroup), respectively. We prove that the sets Parf( F ) = { S : S is a Parf-numerical semigroup with Frobenius number F } and Psat( F ) = { S : S is a Psat-numerical semigroup with Frobenius number F } are covarieties. As a consequence we present some algorithms to compute Parf( F ) and Psat( F ). |
Author | Moreno-Frías, María Ángeles Rosales, José Carlos |
Author_xml | – sequence: 1 givenname: María Ángeles surname: Moreno-Frías fullname: Moreno-Frías, María Ángeles email: mariangeles.moreno@uca.es organization: Department of Math, Faculty of Sciences, Cádiz University – sequence: 2 givenname: José Carlos surname: Rosales fullname: Rosales, José Carlos organization: Department of Algebra, Faculty of Sciences, University of Granada |
BookMark | eNpFkM1KAzEYRYNUsK0-gLuA66n5kkzSLKVYrShu6nqYny9tSjsZkxl_3t7UCq4uXA73wpmQUetbJOQa2IwDCHW7eHmaccbljAltMi7OyBhyzTMDEkZkzBhAJpXkF2QS444xJkDOx2S13iKt_UcZHPbf1FvaYbBY97QdDhhcXe5pxIPbBD90kX66fkut-8KGLoOvsHVDPJIVhktybst9xKu_nJK35f168Zg9vz6sFnfPWQ1m3mdY1brRVoLmpa5Vybg2uU3tvIIGG8W0FoIhCkClctCiUbwyTKbIjeVCTMnNabcL_n3A2Bc7P4Q2XRYimQBgRueJ4icqdsG1Gwz_FLDiV1mRlBVHZcVRWZGmfwAeWWBy |
Cites_doi | 10.3390/foundations4020016 10.2307/2373463 10.1112/plms/s2-50.4.256 10.1007/BF01300131 10.1093/acprof:oso/9780198568209.001.0001 10.3906/mat-1901-111 10.55730/1300-0098.3436 10.1017/prm.2018.65 10.1016/0022-4049(89)90135-7 10.1016/S0022-4049(01)00128-1 10.1007/BF02573091 |
ContentType | Journal Article |
Copyright | Institute of Mathematics, Czech Academy of Sciences 2024 Institute of Mathematics, Czech Academy of Sciences 2024. |
Copyright_xml | – notice: Institute of Mathematics, Czech Academy of Sciences 2024 – notice: Institute of Mathematics, Czech Academy of Sciences 2024. |
DOI | 10.21136/CMJ.2024.0379-23 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1572-9141 |
EndPage | 714 |
ExternalDocumentID | 10_21136_CMJ_2024_0379_23 |
GroupedDBID | --Z -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 203 29F 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 692 6HX 6NX 78A 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIPQ ACIPV ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM LO0 M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OK1 OVD P2P P9R PF0 PT4 QOS R89 R9I RNI ROL RPX RSV RZC RZE S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TR2 TSG TSK TSV TUC U2A UG4 UOJIU UPT UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 ZY4 ~A9 |
ID | FETCH-LOGICAL-c198t-ebc7d7f4172a7c6a02795febc8b1ded6077330ee31e665173d62b904d6259f233 |
IEDL.DBID | AGYKE |
ISSN | 0011-4642 |
IngestDate | Thu Oct 10 20:58:50 EDT 2024 Sat Oct 05 01:35:09 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | perfect numerical semigroup Arf numerical semigroup 11D07 genus 20M14 Frobenius number covariety saturated numerical semigroup algorithm 13H10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c198t-ebc7d7f4172a7c6a02795febc8b1ded6077330ee31e665173d62b904d6259f233 |
PQID | 3113110975 |
PQPubID | 2043779 |
PageCount | 18 |
ParticipantIDs | proquest_journals_3113110975 springer_journals_10_21136_CMJ_2024_0379_23 |
PublicationCentury | 2000 |
PublicationDate | 9-2024 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 9-2024 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Czechoslovak mathematical journal |
PublicationTitleAbbrev | Czech Math J |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Sylvester (CR22) 1884; 41 CR18 Zariski (CR24) 1971; 93 Pham (CR15) 1971 Ramírez Alfonsín (CR16) 1996; 16 CR13 Rosales, García-Sánchez (CR21) 2009 Moreno-Frías, Rosales (CR10) 2019; 43 Apéry (CR1) 1946; 222 Moreno-Frías, Rosales (CR12) 2024; 4 CR3 Ramírez Alfonsín (CR17) 2005 Zariski (CR25) 1975; 97 CR5 CR8 Zariski (CR23) 1971; 93 Rosales, Branco (CR19) 2002; 171 Arf (CR2) 1948; 50 Fröberg, Gottlieb, Häggkvist (CR7) 1987; 35 Delgado de la Mata, Núñez Jiménez (CR6) 1987 Lipman (CR9) 1971; 93 Rosales, Branco (CR20) 2019; 149 Núñez (CR14) 1989; 59 Moreno-Frías, Rosales (CR11) 2023; 47 Campillo (CR4) 1983 |
References_xml | – volume: 4 start-page: 249 year: 2024 end-page: 262 ident: CR12 article-title: The covariety of saturated numerical semigroup with fixed Frobenius number publication-title: Foundations doi: 10.3390/foundations4020016 contributor: fullname: Rosales – ident: CR18 – volume: 41 start-page: 21 year: 1884 ident: CR22 article-title: Problem 7382 publication-title: Mathematical questions, with their solutions, from the Educational Times contributor: fullname: Sylvester – volume: 93 start-page: 649 year: 1971 end-page: 685 ident: CR9 article-title: Stable ideals and Arf rings publication-title: Am. J. Math. doi: 10.2307/2373463 contributor: fullname: Lipman – volume: 50 start-page: 256 year: 1948 end-page: 287 ident: CR2 article-title: Une interprétation algébraique de la suite des ordres de multiplicité d’une branche algébrique publication-title: Proc. Lond. Math. Soc., II. Ser doi: 10.1112/plms/s2-50.4.256 contributor: fullname: Arf – volume: 16 start-page: 143 year: 1996 end-page: 147 ident: CR16 article-title: Complexity of the Frobenius problem publication-title: Combinatorica doi: 10.1007/BF01300131 contributor: fullname: Ramírez Alfonsín – start-page: 649 year: 1971 end-page: 654 ident: CR15 article-title: Fractions lipschitziennes et saturation de Zariski des algèbres analytiques complexes publication-title: Actes du Congrès International des Mathématiciens. Tome 2 contributor: fullname: Pham – year: 2005 ident: CR17 publication-title: The Diophantine Frobenius Problem doi: 10.1093/acprof:oso/9780198568209.001.0001 contributor: fullname: Ramírez Alfonsín – volume: 43 start-page: 1742 year: 2019 end-page: 1754 ident: CR10 article-title: Perfect numerical semigroups publication-title: Turk. J. Math. doi: 10.3906/mat-1901-111 contributor: fullname: Rosales – volume: 47 start-page: 1392 year: 2023 end-page: 1405 ident: CR11 article-title: The set of Arf numerical semigroup with given Frobenius number publication-title: Turk. J. Math. doi: 10.55730/1300-0098.3436 contributor: fullname: Rosales – start-page: 23 year: 1987 end-page: 34 ident: CR6 article-title: Monomial rings and saturated rings. Géométrie algébrique et applications. I publication-title: Travaux en Cours 22 contributor: fullname: Núñez Jiménez – volume: 97 start-page: 415 year: 1975 end-page: 502 ident: CR25 article-title: General theory of saturation and of saturated local rings publication-title: III. Saturation in arbitrary dimension and, in particular, saturation of algebroid hypersurfaces. Am. J. Math. contributor: fullname: Zariski – ident: CR8 – volume: 149 start-page: 969 year: 2019 end-page: 978 ident: CR20 article-title: A problem of integer partitions and numerical semigroups publication-title: Proc. R. Soc. Edinb., Sect. A, Math. doi: 10.1017/prm.2018.65 contributor: fullname: Branco – volume: 59 start-page: 201 year: 1989 end-page: 214 ident: CR14 article-title: Algebro-geometric properties of saturated rings publication-title: J. Pure Appl. Algebra doi: 10.1016/0022-4049(89)90135-7 contributor: fullname: Núñez – volume: 93 start-page: 573 year: 1971 end-page: 684 ident: CR23 article-title: General theory of saturation and of saturated local rings publication-title: I. Saturation of complete local domains of dimension one having arbitrary coefficient fields (of characteristic zero). Am. J. Math. contributor: fullname: Zariski – volume: 222 start-page: 1198 year: 1946 end-page: 1200 ident: CR1 article-title: Sur les branches superlinéaires des courbes algébriques publication-title: C.R. Acad. Sci., Paris contributor: fullname: Apéry – ident: CR3 – start-page: 211 year: 1983 end-page: 220 ident: CR4 article-title: On saturations of curve singularities (any characteristic). Singularities, Part 1 publication-title: Proceedings of Symposia in Pure Mathematics 40 contributor: fullname: Campillo – volume: 171 start-page: 303 year: 2002 end-page: 314 ident: CR19 article-title: Numerical semigroups that can be expressed as an intersection of symmetric numerical semigroups publication-title: J. Pure Appl. Algebra doi: 10.1016/S0022-4049(01)00128-1 contributor: fullname: Branco – ident: CR13 – volume: 93 start-page: 872 year: 1971 end-page: 964 ident: CR24 article-title: General theory of saturation and of saturated local rings publication-title: II. Saturated local rings of dimension 1. Am. J. Math. contributor: fullname: Zariski – volume: 35 start-page: 63 year: 1987 end-page: 83 ident: CR7 article-title: On numerical semigroups publication-title: Semigroup Forum doi: 10.1007/BF02573091 contributor: fullname: Häggkvist – year: 2009 ident: CR21 article-title: Numerical Semigroups publication-title: Developments in Mathematics 20 contributor: fullname: García-Sánchez – ident: CR5 |
SSID | ssj0003148 |
Score | 2.3417096 |
Snippet | Let
S
be a numerical semigroup. We say that
h
∈ ℕ
S
is an isolated gap of
S
if {
h
− 1,
h
+ 1} ⊆
S
. A numerical semigroup without isolated gaps is called a... Let S be a numerical semigroup. We say that h ∈ ℕ S is an isolated gap of S if {h − 1, h + 1} ⊆ S. A numerical semigroup without isolated gaps is called a... |
SourceID | proquest springer |
SourceType | Aggregation Database Publisher |
StartPage | 697 |
SubjectTerms | Algorithms Analysis Convex and Discrete Geometry Group theory Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Ordinary Differential Equations Semigroups |
Title | The covariety of perfect numerical semigroups with fixed Frobenius number |
URI | https://link.springer.com/article/10.21136/CMJ.2024.0379-23 https://www.proquest.com/docview/3113110975 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT8JAGJ2wXPTgbkSRzMGbKXaWztAjISBi8CQJnhpmSwhaDG2N-uudaQvG5cKxS5rmzdev7823AXBljUAyI5XXCVXgUY1Db4Yp9yQRlOpZQJhw9c7jBzac0NE0mFYA3mxdxIv2OiKZO2qXq-zmjtz0xiMr5zBt-4SHHiZVUC_rTuvd26f7_sb_EkRL_2vVkaXXRSzz_4f84JW_QqH5H2awX1T9JXljQpdYsmhnqWjLz79tG7d4-QOwVxJO2C0s5BBUdHwEdsebbq3JMbiztgLl8s3J5vQDLg181SuX5gHjrAjoPMNEv8zzCpAEuq1baObvWsGBKyaK51kCi8kiJ2Ay6D_2hl45YsGTKOyknhaSK26opTEzLtnMitQwMPZsRyClFfM5J8TXmiDNWIA4UQyL0KfKySaDCTkFtXgZ6zMAZccIJIUlYMxQgewaW-qofEUNkpQJ3ADNNdRR-Z0kEUGu3Y8f8qABrtfQfV-2CiXHL7L4RQ6_yOEXYXK-1d0XYMcdFjsnTVBLV5m-tFwiFa3SeFqgOsHdL6bgwf0 |
link.rule.ids | 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFH6CMgADN6JQwAMbSomP2M1YVZRylKlIZYrqS6qAFDUpAn49dpMUgVhY4yiyvry8fJ_fBXDmjEBxq3TQinUUMEPiYESYCBSVjJlRRLn09c79e957YDfDaFjWcWdVtnsVkpx7ap-s7AePXHT6N07PEdYMqYgDQpdhhRHMSQ1W2lePt5cLB0wxKx2wk0eOXxfBzL8f8oNY_oqFzn8x3U0YVJsrMkuemrNcNtXnr76N_9z9FmyUlBO1CxvZhiWT7sB6f9GvNduFa2ctSE3evHDOP9DEolcz9YkeKJ0VIZ1nlJmX8bwGJEP-8BbZ8bvRqOvLidLxLEPFbJE9eOheDjq9oByyECgct_LASCW0sMwRmZFQfORkahxZd7UlsTaah0JQGhpDseE8woJqTmQcMu2FkyWU7kMtnaTmAJBqWYmVdBSMWyaxe8uOPOpQM4sV45LUoVFhnZRfSpZQ7Bv-hLGI6nBeQfe97DTKHL_E4Zd4_BKPX0Lo4b_uPoXV3qB_l9xd398ewZpfKs5RGlDLpzNz7JhFLk9KS_oCkpfE6A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8MwGH7RCaIHv8Xp1By8SWfTpMl6HHPTTSceFPRUly8YajfWTtRfb7K2iuJFvDalpE_fpM-T9wvgyBqBZEYqrxGp0KM6iLxBQLkniaBUD0LChMt37l-x81vauwvvij6naRntXrok85wGV6UpyU7GyswCl10TkpNWv2e1XUDrPuGRF5B5WKCuMFIFFppn9xftz82YYFpsxlYqWa6dOzZ_f8g3kvnDLzr73XRW4aGcaB5l8lifZqIu33_UcPzHm6zBSkFFUTO3nXWY08kGLPc_67imm9C1VoTk6MUJ6uwNjQwa64kLAEHJNHf1PKFUPw9nuSEpcoe6yAxftUIdl2aUDKcpynuObMFtp33TOveK5guexFEj87SQXHFDLcEZcMkGVr5GobFXGwIrrZjPOSG-1gRrxkLMiWKBiHyqnKAyASHbUElGid4BJBtGYCksNWOGCmy_viWVylfUYEmZCKpQK3GPixWUxgS7QkB-xMMqHJcwfg1b7TLDL7b4xQ6_2OEXB2T3T3cfwuL1aSe-7F5d7MGSG8mPV2pQySZTvW8JRyYOCqP6AM8ozcw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+covariety+of+perfect+numerical+semigroups+with+fixed+Frobenius+number&rft.jtitle=Czechoslovak+mathematical+journal&rft.au=Moreno-Fr%C3%ADas%2C+Mar%C3%ADa+%C3%81ngeles&rft.au=Rosales%2C+Jos%C3%A9+Carlos&rft.date=2024-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0011-4642&rft.eissn=1572-9141&rft.volume=74&rft.issue=3&rft.spage=697&rft.epage=714&rft_id=info:doi/10.21136%2FCMJ.2024.0379-23&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0011-4642&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0011-4642&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0011-4642&client=summon |