Artificial Intelligence and Machine Learning in Fraud Detection: A Comprehensive Bibliometric Mapping of Research Trends and Directions

This study presents a bibliographic analysis of emerging trends in applying artificial intelligence (AI) and machine learning (ML) to the detection and prevention of financial fraud and provides insights for future research. Bibliographic analysis on fraud data analysis helps researchers gain insigh...

Full description

Saved in:
Bibliographic Details
Published inAnnals of library and information studies Vol. 72; no. 2; p. 138
Main Authors Thakkar, Himanshu, Datta, Saptarshi, Bhadra, Priyam, Barot, Haresh, Jadav, Jayendrasinh
Format Journal Article
LanguageEnglish
Published New Delhi National Institute of Science Communication & Information Resources 01.06.2025
Subjects
Online AccessGet full text
ISSN0972-5423
DOI10.56042/alis.v72i2.14752

Cover

Abstract This study presents a bibliographic analysis of emerging trends in applying artificial intelligence (AI) and machine learning (ML) to the detection and prevention of financial fraud and provides insights for future research. Bibliographic analysis on fraud data analysis helps researchers gain insight on research trends, research impact, and classification. Bibliometric analysis on fraud data analytics is helpful to researchers in getting insights on research trends, research impact and classification. However, research on fraud data analytics using machine learning is limited. The main objective of this quantitative analysis is to explore emerging trends in fraud data analytics and machine learning (ML) for financial crime detection and prevention. Bibliometric data has been collected from the Scopus database. One thousand four hundred eighty-three documents from the SCOPUS database have been analysed using VOSviewer. The data analysis divulges a growing interest in leveraging these technologies to strengthen financial crime detection. Fraud data analytics, Artificial Intelligence and Machine Learning are vital in identifying complex criminal patterns, strengthening companies in preventive vigilance, and ensuring fraud elimination. The study portrays the need for vigorous frameworks for the legislature, real-time analytics systems and more powerful tools and calls for integrating governments, financial institutions, and technology providers to strengthen prevention strategies and tackle financial crimes more effectively.
AbstractList This study presents a bibliographic analysis of emerging trends in applying artificial intelligence (AI) and machine learning (ML) to the detection and prevention of financial fraud and provides insights for future research. Bibliographic analysis on fraud data analysis helps researchers gain insight on research trends, research impact, and classification. Bibliometric analysis on fraud data analytics is helpful to researchers in getting insights on research trends, research impact and classification. However, research on fraud data analytics using machine learning is limited. The main objective of this quantitative analysis is to explore emerging trends in fraud data analytics and machine learning (ML) for financial crime detection and prevention. Bibliometric data has been collected from the Scopus database. One thousand four hundred eighty-three documents from the SCOPUS database have been analysed using VOSviewer. The data analysis divulges a growing interest in leveraging these technologies to strengthen financial crime detection. Fraud data analytics, Artificial Intelligence and Machine Learning are vital in identifying complex criminal patterns, strengthening companies in preventive vigilance, and ensuring fraud elimination. The study portrays the need for vigorous frameworks for the legislature, real-time analytics systems and more powerful tools and calls for integrating governments, financial institutions, and technology providers to strengthen prevention strategies and tackle financial crimes more effectively.
Author Barot, Haresh
Jadav, Jayendrasinh
Thakkar, Himanshu
Bhadra, Priyam
Datta, Saptarshi
Author_xml – sequence: 1
  givenname: Himanshu
  surname: Thakkar
  fullname: Thakkar, Himanshu
– sequence: 2
  givenname: Saptarshi
  surname: Datta
  fullname: Datta, Saptarshi
– sequence: 3
  givenname: Priyam
  surname: Bhadra
  fullname: Bhadra, Priyam
– sequence: 4
  givenname: Haresh
  surname: Barot
  fullname: Barot, Haresh
– sequence: 5
  givenname: Jayendrasinh
  surname: Jadav
  fullname: Jadav, Jayendrasinh
BookMark eNotzc1OAjEYheEuMBHQC3DXxPVgp78z7hBESTAmBtek0_kKHxk6YztwC962KK7O6jzviAxCG4CQu5xNlGaSP9gG0-RkOPJJLo3iAzJkpeGZklxck1FKe8a0MqUcku9p7NGjQ9vQZeihaXALwQG1oaZv1u0wAF2BjQHDlmKgi2iPNZ1DD67HNjzSKZ21hy7CDkLCE9AnrBpsD9BHdGeh636PracfkM6M29F1hFCnv8Ac44VJN-TK2ybB7f-OyefieT17zVbvL8vZdJW5vCz6rK4ZFIXQXMi6MkpaXyrhmfCls6C1yX1lQFXMGp-DKq2UAN4arRkvrDZWjMn9xe1i-3WE1G_27TGGc3IjOJdaSs25-AFc0Wac
ContentType Journal Article
Copyright Copyright National Institute of Science Communication & Information Resources 2025
Copyright_xml – notice: Copyright National Institute of Science Communication & Information Resources 2025
DBID E3H
F2A
DOI 10.56042/alis.v72i2.14752
DatabaseName Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
DatabaseTitle Library and Information Science Abstracts (LISA)
DatabaseTitleList Library and Information Science Abstracts (LISA)
DeliveryMethod fulltext_linktorsrc
Discipline Library & Information Science
GroupedDBID .4I
77K
8WC
ABDBF
ADBBV
AIDUJ
ALMA_UNASSIGNED_HOLDINGS
BCNDV
E3H
E3Z
EBS
EJD
F2A
FRA
FRJ
GROUPED_DOAJ
OK1
RNS
SC5
TR2
ID FETCH-LOGICAL-c198t-dd0e8836234db754af953f03f9cae6671fb7e5b0a7f1e59a44eefa766028a67a3
ISSN 0972-5423
IngestDate Thu Jul 10 07:07:23 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c198t-dd0e8836234db754af953f03f9cae6671fb7e5b0a7f1e59a44eefa766028a67a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://or.niscpr.res.in/index.php/ALIS/article/download/14752/4380
PQID 3224644622
PQPubID 2035554
ParticipantIDs proquest_journals_3224644622
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New Delhi
PublicationPlace_xml – name: New Delhi
PublicationTitle Annals of library and information studies
PublicationYear 2025
Publisher National Institute of Science Communication & Information Resources
Publisher_xml – name: National Institute of Science Communication & Information Resources
SSID ssj0065794
Score 2.306746
Snippet This study presents a bibliographic analysis of emerging trends in applying artificial intelligence (AI) and machine learning (ML) to the detection and...
SourceID proquest
SourceType Aggregation Database
StartPage 138
SubjectTerms Artificial intelligence
Bibliometrics
Data analysis
Fraud
Library and information science
Machine learning
Trends
Title Artificial Intelligence and Machine Learning in Fraud Detection: A Comprehensive Bibliometric Mapping of Research Trends and Directions
URI https://www.proquest.com/docview/3224644622
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LjtMwFLXKsGGDeIrHDPICsRkFkjiOE3YFzaigYUAilbqrbMdRopmmVUiR4Af4RT4HPxNnBiFgE1WpFLe-J9c3N-ccA_BcrYEZpmHA8gQFiRAiYBFHQRiyqCwzzHOm-h0fztPFMnm_wqvZ7KfHWtr37CX__ltdyf9EVZ6TcVUq2X-I7HBReUJ-lvGVRxlhefyrGM87zfQxfhmetaYhTyiWpHAGqlq4IqvUvSIe95p_1TpV-mbXidoS2d807FIp8pVxv7zGbmdZ0Y6hd2xJtJrBbNKla_hds2S2HSJr8DTIJLWlrcddLGp6cWF43otmI5fOej_2z3tT3X6mu54qxvXQPqhpqbdIOv7UNd_oZuzIdlu9riyUsKr2mxoxHslXvif45ZQx4bLdRDqj75B33n9wrz0mvU6iNnwwwmaX9knswTv2cnhk7Gauri2yNEyUWa32pfxK4iaWqwwx9rtTH-_zj-vT5dnZujhZFTfAzZgQQyBQD_umRkgx0Vt0Dj_MvG_XQ7y6OsC1KkGXPsUdcNs-s8C5AeBdMBPtPXBkFS_wBfTmBdrZuw9-jOCEPjihRAO04IQOnLBpoQYnHMD5Gs7hBJrQhya00ITbCjpoQgNNPcAIzQdgeXpSvF0EdtePgEd51gdlGYosk3UVSkpGcEKrHKMqRFXOqUhTElWMCMxCSqpI4JwmMsFUlKSprJRpSih6CA7abSseAUiyvGSIJ1zZ1oU0ZymnCGUxx7zKQ8weg0M3s2t7W39ZI2WxmCRpHD_589dPwa0RuofgoO_24khWqD17poP9C9zNnYs
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence+and+Machine+Learning+in+Fraud+Detection%3A+A+Comprehensive+Bibliometric+Mapping+of+Research+Trends+and+Directions&rft.jtitle=Annals+of+library+and+information+studies&rft.au=Thakkar%2C+Himanshu&rft.au=Datta%2C+Saptarshi&rft.au=Bhadra%2C+Priyam&rft.au=Barot%2C+Haresh&rft.date=2025-06-01&rft.pub=National+Institute+of+Science+Communication+%26+Information+Resources&rft.issn=0972-5423&rft.volume=72&rft.issue=2&rft.spage=138&rft_id=info:doi/10.56042%2Falis.v72i2.14752&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0972-5423&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0972-5423&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0972-5423&client=summon