Mathematical Simulation of the Atmospheric Electric Field Disturbance during a Geomagnetic Storm on 17 March 2015

It follows from the observational data that variations of the atmospheric electric field occur during geomagnetic storms. In this paper, we present the simulation results of ionospheric electric fields during the main phase of the geomagnetic storm on March 17, 2015, within the framework of a quasi-...

Full description

Saved in:
Bibliographic Details
Published inRussian journal of physical chemistry. B Vol. 18; no. 3; pp. 844 - 851
Main Authors Zamay, S. S., Denisenko, V. V., Klimenko, M. V., Klimenko, V. V., Anisimov, S. V.
Format Journal Article
LanguageEnglish
Published Moscow Pleiades Publishing 01.06.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract It follows from the observational data that variations of the atmospheric electric field occur during geomagnetic storms. In this paper, we present the simulation results of ionospheric electric fields during the main phase of the geomagnetic storm on March 17, 2015, within the framework of a quasi-stationary model of a conductor consisting of the atmosphere and the ionosphere. For this purpose, the satellite data on the global distribution of currents between the magnetosphere and the ionosphere are used to describe the magnetospheric source of the electric field. A variation of the electric potential in the ionosphere leads to a variation of the electric field in the entire atmosphere, including its surface layer. It is important that during a geomagnetic storm, the observatory in which the atmospheric electric field is measured significantly changes its position relative to the direction of the Sun. This leads to significant changes in the ionospheric conductivity above the observatory, which affects both the ionospheric electric field and the atmospheric part of the global electrical circuit (GEC). Therefore, when assessing the effect of a geomagnetic storm on the atmospheric electric field in a particular observatory, it is necessary to take into account the local time when comparing the measurement data with the geomagnetic activity indices. For the storm on March 17–18, 2015, we found that taking into account the variations of the ionospheric electric field when calculating the atmospheric electric field allowed us to reproduce the disturbances of the fair weather electric field observed at the Borok Geophysical Observatory. Based on the simulation results, it is shown that during extremely strong magnetic storms, additional atmospheric electric field variations in some places on the Earth have the same scale as the fair-weather field itself.
AbstractList It follows from the observational data that variations of the atmospheric electric field occur during geomagnetic storms. In this paper, we present the simulation results of ionospheric electric fields during the main phase of the geomagnetic storm on March 17, 2015, within the framework of a quasi-stationary model of a conductor consisting of the atmosphere and the ionosphere. For this purpose, the satellite data on the global distribution of currents between the magnetosphere and the ionosphere are used to describe the magnetospheric source of the electric field. A variation of the electric potential in the ionosphere leads to a variation of the electric field in the entire atmosphere, including its surface layer. It is important that during a geomagnetic storm, the observatory in which the atmospheric electric field is measured significantly changes its position relative to the direction of the Sun. This leads to significant changes in the ionospheric conductivity above the observatory, which affects both the ionospheric electric field and the atmospheric part of the global electrical circuit (GEC). Therefore, when assessing the effect of a geomagnetic storm on the atmospheric electric field in a particular observatory, it is necessary to take into account the local time when comparing the measurement data with the geomagnetic activity indices. For the storm on March 17–18, 2015, we found that taking into account the variations of the ionospheric electric field when calculating the atmospheric electric field allowed us to reproduce the disturbances of the fair weather electric field observed at the Borok Geophysical Observatory. Based on the simulation results, it is shown that during extremely strong magnetic storms, additional atmospheric electric field variations in some places on the Earth have the same scale as the fair-weather field itself.
Author Klimenko, M. V.
Denisenko, V. V.
Klimenko, V. V.
Anisimov, S. V.
Zamay, S. S.
Author_xml – sequence: 1
  givenname: S. S.
  surname: Zamay
  fullname: Zamay, S. S.
  organization: Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences
– sequence: 2
  givenname: V. V.
  surname: Denisenko
  fullname: Denisenko, V. V.
  email: denisen@icm.krasn.ru
  organization: Institute of Computational Modelling, Siberian Branch, Russian Academy of Sciences
– sequence: 3
  givenname: M. V.
  surname: Klimenko
  fullname: Klimenko, M. V.
  organization: Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, Kaliningrad Branch
– sequence: 4
  givenname: V. V.
  surname: Klimenko
  fullname: Klimenko, V. V.
  organization: Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, Kaliningrad Branch
– sequence: 5
  givenname: S. V.
  surname: Anisimov
  fullname: Anisimov, S. V.
  organization: Borok Geophysical Observatory, Schmidt Institute of Physics of the Earth, Russian Academy of Sciences
BookMark eNp1kD9PwzAQxS1UJNrCB2CzxFzwnzS2x6q0BakVQ2GOHOfcpkri1HYGvj2JimBATPd0997vdDdBo8Y1gNA9JY-U8uRpT5UiQnHKEkEIk_wKjYfWTCjGRz-a0xs0CeFESMqEImN03ul4hFrH0ugK78u6q3rtGuws7gd4EWsX2iP40uBVBSYOYl1CVeDnMsTO57oxgIvOl80Ba7wBV-tDAz0P76PzNe5ZVOCd9uaIGaHzW3RtdRXg7rtO0cd69b58mW3fNq_LxXZmqJJxZnQCuaZKKyllYQsqkjxlc5YYbrk0ShBIc1soNSeguSFW58C4zQtBScETyafo4cJtvTt3EGJ2cp1v-pUZJ5KnKVVc9C56cRnvQvBgs9aXtfafGSXZ8Nnsz2f7DLtkQjtcDf6X_H_oC5g5fCw
Cites_doi 10.1029/RG007i001p00421
10.1007/978-3-642-69813-2
10.1134/S001679322102002X
10.1007/s10712-012-9210-2A
10.1134/S1069351319010087
10.1007/s10712-018-9499-6
10.1007/BF00875461
10.1134/S1990793120050243
10.1134/S0016793213040130
10.1029/2020EA001321
10.1002/2016SW001593
10.1029/1998JA900075
10.5194/angeo-38-481-2020
10.1134/S1990793122030058
10.1134/S0016793208050071
10.3390/atmos13040614
10.1134/S000143382305002X
10.1134/S1990793121050171
10.1134/S1990793120020220
10.1016/0032-0633(92)90134-A
10.3367/UFNe.0180.201005h.0527
10.1023/A:1021169318012
10.1002/2015JA021680
10.1134/S1990793120020268
10.1029/2000JA900058
10.1007/BF00182599
10.1186/s40623-020-01288-x
10.5636/jgg.31.287
10.1029/93JA02867
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2024. ISSN 1990-7931, Russian Journal of Physical Chemistry B, 2024, Vol. 18, No. 3, pp. 844–851. © Pleiades Publishing, Ltd., 2024.
Copyright_xml – notice: Pleiades Publishing, Ltd. 2024. ISSN 1990-7931, Russian Journal of Physical Chemistry B, 2024, Vol. 18, No. 3, pp. 844–851. © Pleiades Publishing, Ltd., 2024.
DBID AAYXX
CITATION
DOI 10.1134/S1990793124700283
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1990-7923
EndPage 851
ExternalDocumentID 10_1134_S1990793124700283
GroupedDBID -58
-5G
-BR
-EM
-Y2
-~C
.VR
06C
06D
0R~
0VY
123
1N0
29P
2J2
2JN
2JY
2KG
2KM
2LR
30V
4.4
408
40D
40E
5VS
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAYIU
AAYQN
AAYTO
ABAKF
ABDZT
ABECU
ABFGW
ABFTV
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACSNA
ACTTH
ACVWB
ACWMK
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEFTE
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIGIU
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJRNO
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYQR
AOCGG
ARMRJ
AXYYD
B-.
BA0
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P9N
PF0
PT4
QOR
QOS
R89
R9I
RIG
RNS
ROL
RSV
S16
S1Z
S27
S3B
SAP
SCM
SDH
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SQXTU
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TUC
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
XU3
YLTOR
Z7V
Z7Y
ZMTXR
~A9
AAYXX
CITATION
H13
SJYHP
ID FETCH-LOGICAL-c198t-ca4eba19a9888dfd174b62524c3f38c970e6bfd9950ea3c0fabe23fbd710d3483
IEDL.DBID AGYKE
ISSN 1990-7931
IngestDate Thu Oct 10 22:42:16 EDT 2024
Thu Sep 12 20:51:02 EDT 2024
Tue Jul 23 01:20:22 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords atmosphere
mathematical modeling
electric field
conductivity
ionosphere
magnetic storm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c198t-ca4eba19a9888dfd174b62524c3f38c970e6bfd9950ea3c0fabe23fbd710d3483
PQID 3083661937
PQPubID 2044175
PageCount 8
ParticipantIDs proquest_journals_3083661937
crossref_primary_10_1134_S1990793124700283
springer_journals_10_1134_S1990793124700283
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: Heidelberg
PublicationSubtitle Focus on Physics
PublicationTitle Russian journal of physical chemistry. B
PublicationTitleAbbrev Russ. J. Phys. Chem. B
PublicationYear 2024
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References KarpovI. V.BorchevkinaO. P.VasilevP. A.Russ. J. Phys. Chem. B2020143621:CAS:528:DC%2BB3cXhtVanur7L10.1134/S1990793120020220
LebleS. B.SmirnovaE. S.Russ. J. Phys. Chem. B2020143671:CAS:528:DC%2BB3cXhtVanur%2FP10.1134/S1990793120020268
GonzalezW. D.JoselynJ. A.KamideY.J. Geophys. Res.199499577110.1029/93JA02867
GolubkovG. V.AdamsonS. O.Russ. J. Phys. Chem. B2022165081:CAS:528:DC%2BB38XitFalurnE10.1134/S1990793122030058
Frank-KamenetskyA. V.TroshichevO. A.BurnsG. B.PapitashviliV. O.J. Geophys. Res.200110617910.1029/2000JA900058
RichmondA. D.GeomagnJ.Geoelectr.19793128710.5636/jgg.31.287
KlimenkoM. V.RatovskyK. G.KlimenkoV. V.Russ. J. Phys. Chem. B20201592810.1134/S1990793121050171
DenisenkoV. V.Energy Methods for Elliptic Equations with Asymmetric Coefficients1995NovosibirskIzd. Sib. Otd. Ross. Akad. Nauk[in Russian]
RatovskyK. G.KlimenkoM. V.YasyukevichYu. V.VesninA. M.KlimenkoV. V.Russ. J. Phys. Chem. B2020148621:CAS:528:DC%2BB3cXisVeqs7zO10.1134/S1990793120050243
PustovalovK.NagorskiyP.OgleznevaM.SmirnovS.Atmosphere20221361410.3390/atmos13040614
WeimerD. R.J. Geophys. Res.199910418510.1029/1998JA900075
N. G. Kleimenova, O. V. Kozyreva, S. Michnowski, and M. Kubicki, Geomagn. Aeron. (Engl. Transl.) 48, 622 (2008). https://doi.org/10.1134/S0016793208050071
ApsenA. G.KanonidiH. D.ChernyshevaS. P.ChetaevD. N.SheftelV. M.Magnetospheric Effects in Atmospheric Electricity1988MoscowNauka[in Russian]
BilitzaD.AltadillD.TruhlikV.Space Weather20171541810.1002/2016SW001593
AlkenP.ThébaultE.BegganC. D.Earth Planets Space2021734910.1186/s40623-020-01288-x
S. V. Anisimov, N. M. Shikhova, and N. G. Kleimenova, Geomagn. Aeron. (Engl. Transl.) 61, 180 (2021). https://doi.org/10.1134/S001679322102002X
MareevE. A.Phys. Usp.20105350410.3367/UFNe.0180.201005h.0527
J. T. Emmert, D. P. Drob, J. M. Picone, et al., Earth Space Sci. 8, e2020EA001321 (2021). .https://doi.org/10.1029/2020EA001321
AxfordW. I.Rev. Geophys.1969742110.1029/RG007i001p00421
BurrellA. G.ChishamG.MilanS. E.KilcommonsL.ChenY.-J.ThomasE. G.AndersonB.Ann. Geophys.20203848110.5194/angeo-38-481-2020
VollandH.Atmospheric Electrodynamics1984HeidelbergSpringer10.1007/978-3-642-69813-2
ShalimovS. L.RozhnoiA. A.Solov’evaM. S.Ol’shanskayaE. V.Phys. Solid Earth20195516810.1134/S1069351319010087
OlsonD. E.Pure Appl. Geophys.19718411810.1007/BF00875461
MilanS. E.CarterJ. A.KorthH.J. Geophys. Res. Space Phys.20151204151:CAS:528:DC%2BC28XhsFeqtr3E10.1002/2015JA021680
AnisimovS. V.AphinogenovK. V.GalichenkoS. V.Izv., Atmos. Oceanic Phys.20235952210.1134/S000143382305002X
PudovkinM. I.Space Sci. Rev.19741672710.1007/BF00182599
NikiforovaN. N.KleimenovaN. G.KozyrevaO. V.KubitskyM.MikhnovskyS.Geomagn. Aeron.20034232
DenisenkoV. V.Sib. Mat. Zh.200243105510.1023/A:1021169318012
HarrisonR. G.Surv. Geophys.20133420910.1007/s10712-012-9210-2A
DenisenkoV. V.ZamayS. S.Planet. Space Sci.19924094110.1016/0032-0633(92)90134-A
LunyushkinS. B.Issled. GeomagnAeron. Fiz. Soln.198881181
S. E. Smirnov, G. A. Mikhailova, and O. V. Kapustina, Geomagn. Aeron. (Engl. Transl.) 53, 502 (2013). https://doi.org/10.1134/S0016793213040130
DenisenkoV. V.RycroftM. J.HarrisonR. G.Surv. Geophys.201940110.1007/s10712-018-9499-6
S. V. Anisimov (9000_CR14) 2023; 59
S. E. Milan (9000_CR20) 2015; 120
V. V. Denisenko (9000_CR29) 1995
A. D. Richmond (9000_CR15) 1979; 31
S. B. Leble (9000_CR4) 2020; 14
S. B. Lunyushkin (9000_CR30) 1988; 81
9000_CR11
I. V. Karpov (9000_CR3) 2020; 14
A. G. Apsen (9000_CR8) 1988
9000_CR13
9000_CR12
R. G. Harrison (9000_CR32) 2013; 34
K. Pustovalov (9000_CR31) 2022; 13
W. D. Gonzalez (9000_CR18) 1994; 99
V. V. Denisenko (9000_CR21) 2019; 40
S. L. Shalimov (9000_CR2) 2019; 55
G. V. Golubkov (9000_CR6) 2022; 16
G. V. Golubkov (9000_CR34) 2022; 16
D. E. Olson (9000_CR7) 1971; 84
K. G. Ratovsky (9000_CR19) 2020; 14
P. Alken (9000_CR23) 2021; 73
D. R. Weimer (9000_CR25) 1999; 104
N. N. Nikiforova (9000_CR10) 2003; 42
A. G. Burrell (9000_CR27) 2020; 38
M. I. Pudovkin (9000_CR17) 1974; 16
V. V. Denisenko (9000_CR26) 1992; 40
E. A. Mareev (9000_CR33) 2010; 53
V. V. Denisenko (9000_CR28) 2002; 43
M. V. Klimenko (9000_CR5) 2020; 15
D. Bilitza (9000_CR22) 2017; 15
9000_CR24
W. I. Axford (9000_CR16) 1969; 7
H. Volland (9000_CR1) 1984
A. V. Frank-Kamenetsky (9000_CR9) 2001; 106
References_xml – volume: 7
  start-page: 421
  year: 1969
  ident: 9000_CR16
  publication-title: Rev. Geophys.
  doi: 10.1029/RG007i001p00421
  contributor:
    fullname: W. I. Axford
– volume-title: Magnetospheric Effects in Atmospheric Electricity
  year: 1988
  ident: 9000_CR8
  contributor:
    fullname: A. G. Apsen
– volume-title: Atmospheric Electrodynamics
  year: 1984
  ident: 9000_CR1
  doi: 10.1007/978-3-642-69813-2
  contributor:
    fullname: H. Volland
– ident: 9000_CR13
  doi: 10.1134/S001679322102002X
– volume: 34
  start-page: 209
  year: 2013
  ident: 9000_CR32
  publication-title: Surv. Geophys.
  doi: 10.1007/s10712-012-9210-2A
  contributor:
    fullname: R. G. Harrison
– volume: 55
  start-page: 168
  year: 2019
  ident: 9000_CR2
  publication-title: Phys. Solid Earth
  doi: 10.1134/S1069351319010087
  contributor:
    fullname: S. L. Shalimov
– volume: 40
  start-page: 1
  year: 2019
  ident: 9000_CR21
  publication-title: Surv. Geophys.
  doi: 10.1007/s10712-018-9499-6
  contributor:
    fullname: V. V. Denisenko
– volume: 84
  start-page: 118
  year: 1971
  ident: 9000_CR7
  publication-title: Pure Appl. Geophys.
  doi: 10.1007/BF00875461
  contributor:
    fullname: D. E. Olson
– volume: 14
  start-page: 862
  year: 2020
  ident: 9000_CR19
  publication-title: Russ. J. Phys. Chem. B
  doi: 10.1134/S1990793120050243
  contributor:
    fullname: K. G. Ratovsky
– ident: 9000_CR12
  doi: 10.1134/S0016793213040130
– ident: 9000_CR24
  doi: 10.1029/2020EA001321
– volume: 15
  start-page: 418
  year: 2017
  ident: 9000_CR22
  publication-title: Space Weather
  doi: 10.1002/2016SW001593
  contributor:
    fullname: D. Bilitza
– volume: 104
  start-page: 185
  year: 1999
  ident: 9000_CR25
  publication-title: J. Geophys. Res.
  doi: 10.1029/1998JA900075
  contributor:
    fullname: D. R. Weimer
– volume: 38
  start-page: 481
  year: 2020
  ident: 9000_CR27
  publication-title: Ann. Geophys.
  doi: 10.5194/angeo-38-481-2020
  contributor:
    fullname: A. G. Burrell
– volume: 16
  start-page: 508
  year: 2022
  ident: 9000_CR34
  publication-title: Russ. J. Phys. Chem. B
  doi: 10.1134/S1990793122030058
  contributor:
    fullname: G. V. Golubkov
– ident: 9000_CR11
  doi: 10.1134/S0016793208050071
– volume: 13
  start-page: 614
  year: 2022
  ident: 9000_CR31
  publication-title: Atmosphere
  doi: 10.3390/atmos13040614
  contributor:
    fullname: K. Pustovalov
– volume: 59
  start-page: 522
  year: 2023
  ident: 9000_CR14
  publication-title: Izv., Atmos. Oceanic Phys.
  doi: 10.1134/S000143382305002X
  contributor:
    fullname: S. V. Anisimov
– volume: 15
  start-page: 928
  year: 2020
  ident: 9000_CR5
  publication-title: Russ. J. Phys. Chem. B
  doi: 10.1134/S1990793121050171
  contributor:
    fullname: M. V. Klimenko
– volume: 14
  start-page: 362
  year: 2020
  ident: 9000_CR3
  publication-title: Russ. J. Phys. Chem. B
  doi: 10.1134/S1990793120020220
  contributor:
    fullname: I. V. Karpov
– volume-title: Energy Methods for Elliptic Equations with Asymmetric Coefficients
  year: 1995
  ident: 9000_CR29
  contributor:
    fullname: V. V. Denisenko
– volume: 40
  start-page: 941
  year: 1992
  ident: 9000_CR26
  publication-title: Planet. Space Sci.
  doi: 10.1016/0032-0633(92)90134-A
  contributor:
    fullname: V. V. Denisenko
– volume: 53
  start-page: 504
  year: 2010
  ident: 9000_CR33
  publication-title: Phys. Usp.
  doi: 10.3367/UFNe.0180.201005h.0527
  contributor:
    fullname: E. A. Mareev
– volume: 43
  start-page: 1055
  year: 2002
  ident: 9000_CR28
  publication-title: Sib. Mat. Zh.
  doi: 10.1023/A:1021169318012
  contributor:
    fullname: V. V. Denisenko
– volume: 120
  start-page: 415
  year: 2015
  ident: 9000_CR20
  publication-title: J. Geophys. Res. Space Phys.
  doi: 10.1002/2015JA021680
  contributor:
    fullname: S. E. Milan
– volume: 16
  start-page: 508
  year: 2022
  ident: 9000_CR6
  publication-title: Russ. J. Phys. Chem. B
  doi: 10.1134/S1990793122030058
  contributor:
    fullname: G. V. Golubkov
– volume: 14
  start-page: 367
  year: 2020
  ident: 9000_CR4
  publication-title: Russ. J. Phys. Chem. B
  doi: 10.1134/S1990793120020268
  contributor:
    fullname: S. B. Leble
– volume: 106
  start-page: 179
  year: 2001
  ident: 9000_CR9
  publication-title: J. Geophys. Res.
  doi: 10.1029/2000JA900058
  contributor:
    fullname: A. V. Frank-Kamenetsky
– volume: 16
  start-page: 727
  year: 1974
  ident: 9000_CR17
  publication-title: Space Sci. Rev.
  doi: 10.1007/BF00182599
  contributor:
    fullname: M. I. Pudovkin
– volume: 73
  start-page: 49
  year: 2021
  ident: 9000_CR23
  publication-title: Earth Planets Space
  doi: 10.1186/s40623-020-01288-x
  contributor:
    fullname: P. Alken
– volume: 81
  start-page: 181
  year: 1988
  ident: 9000_CR30
  publication-title: Aeron. Fiz. Soln.
  contributor:
    fullname: S. B. Lunyushkin
– volume: 42
  start-page: 32
  year: 2003
  ident: 9000_CR10
  publication-title: Geomagn. Aeron.
  contributor:
    fullname: N. N. Nikiforova
– volume: 31
  start-page: 287
  year: 1979
  ident: 9000_CR15
  publication-title: Geoelectr.
  doi: 10.5636/jgg.31.287
  contributor:
    fullname: A. D. Richmond
– volume: 99
  start-page: 5771
  year: 1994
  ident: 9000_CR18
  publication-title: J. Geophys. Res.
  doi: 10.1029/93JA02867
  contributor:
    fullname: W. D. Gonzalez
SSID ssj0062790
Score 2.3339622
Snippet It follows from the observational data that variations of the atmospheric electric field occur during geomagnetic storms. In this paper, we present the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 844
SubjectTerms Chemical Physics of Atmospheric Phenomena
Chemistry
Chemistry and Materials Science
Circuits
Electric fields
Electrical resistivity
Extreme values
Fair weather
Geomagnetism
Geophysical observatories
Ionosphere
Ionospheric conductivity
Magnetic storms
Magnetospheres
Observatories
Physical Chemistry
Position measurement
Simulation
Storms
Surface layers
Title Mathematical Simulation of the Atmospheric Electric Field Disturbance during a Geomagnetic Storm on 17 March 2015
URI https://link.springer.com/article/10.1134/S1990793124700283
https://www.proquest.com/docview/3083661937
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4QDnrxbUTR9OBJs8i2ZR9HgjyiwQuS4GnT1xpCdldhufjrne4DoujB2yadTtKdaeebdh4I3djKJUxp2wqpxyxGNLUEmDnL9MmB7eQZM2OiLZ6d4YQ9TtvTCiLrq4t43ixfJLODOm87wu7HNpyboExgj9yswc4OqhV5p7XO4PWpV56_DnGzmxVDb5kJxVvmr0y-W6MNxPzxKpoZm_5BngC4zGoUmhiTeXOViqb83K7g-I91HKL9AnviTq4sR6ii42O02y1bvp2gj9G6iCvQjWdR0dsLJyGGAdxJo2Rp6hDMJO5l_XPgo29i4PADsFgthNEhnKc-Yo4HOon4W2zyJPEYnPsIAy_bxSOzuzCAgvYpmvR7L92hVfRksKTte6klOdOC2z73wXVWoQKHRoALRZikIG3puy3tiFD5frulOZWtkAtNaCgUIBlFmUfPUDVOYn2OsCc1-JIeoYDpmOAwRRDHV1oCLRdM1dFtKZvgPS-9EWQuC2XB1l-so0YpvaDYhcuAmtLb4CFSt47uSmlshv9kdvEv6ku0RwDp5PFjDVRNFyt9BUglFdeFan4B0XLcdQ
link.rule.ids 315,783,787,27936,27937,41093,42162,52123
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BOcCFHVFWHziBUhrbzXKsoAu05dIiwSnyFlShttCmF76ecRYqtkNvkTIeJZmx5714PANw4Wqfcm1cJ2YBdzg1zJEY5hzbJwenU2DDjM22ePDaj_z-qfaUn-OeFdnuxZZkulJnfUf4dd_FhRO9CQOSn3bYWYU1Tl2PlmCt3nruNIoF2KN--mvFyjt2QL6Z-aeS7-FogTF_bIum0aa5BYPiObMkk9fKPJEV9fGjhOOSL7INmzn6JPXMXXZgxYx3Yf2maPq2B--9rzKuKNcfjvLuXmQSE7xB6sloMrOVCIaKNNIOOnjRtFlw5BZVzKfSehHJDj8SQVpmMhIvY3tSkvSR3o8I6nJ90rPziyAsqO3DY7MxuGk7eVcGR7lhkDhKcCOFG4oQybOONVIaiSSKcsXQ3ir0q8aTsQ7DWtUIpqqxkIayWGrEMprxgB1AaTwZm0MggTLIJgPKENVxKXCIpF6ojUJZIbkuw2VhnOgtK74RpaSF8ejXVyzDSWG-KJ-Hs4jZ4tvIEZlfhqvCGovb_yo7Wkr6HNbbg1436t49dI5hgyLuybLJTqCUTOfmFHFLIs9yP_0E4k7gSQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgSMCFN2IwIAdOoLK1ydb2OO0JYwhpTIJTyatoQuuAdRd-PU4fTLwOiFulOFbbOLGdON8HcGIr12FK21ZIPWYxR1NLoJuzDE8OTifPuBlTbXFd6w7Z5V31LuM5nebV7vmRZHqnwaA0RXH5WYUZBwkrD2xcRNGy0Dm5CdvOIiwxA4xUgKV6577XyhfjmuMm2yxG3jIdsoPNH5V8dk3zePPLEWniedrr8JC_c1pw8nQ-i8W5fPsC5_iPj9qAtSwqJfXUjDZhQUdbsNLIyeC24aX_Ae-KcoPROGP9IpOQYAOpx-PJ1CAUjCRpJcw6-NA21XGkiSpmr8JYF0kvRRJOOnoy5o-RuUFJBpj2jwnqsl3SN_OOYLhQ3YFhu3Xb6FoZW4Mlbd-LLcmZFtz2uY9JtQoVpjoCkyuHSYp2IH23omsiVL5frWhOZSXkQjs0FApjHEWZR3ehEE0ivQfEkxqzTM-hGO0xwbGLcGq-0hJluWCqCKf5QAXPKShHkCQzlAXf_mIRSvlQBtn8nAbUgHJj7kjdIpzlIzNv_lXZ_p-kj2H5ptkOri6uewew6mA4lBaZlaAQv870IYYzsTjKTPYdVp7pLQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mathematical+Simulation+of+the+Atmospheric+Electric+Field+Disturbance+during+a+Geomagnetic+Storm+on+17+March+2015&rft.jtitle=Russian+journal+of+physical+chemistry.+B&rft.au=Zamay%2C+S.+S.&rft.au=Denisenko%2C+V.+V.&rft.au=Klimenko%2C+M.+V.&rft.au=Klimenko%2C+V.+V.&rft.date=2024-06-01&rft.issn=1990-7931&rft.eissn=1990-7923&rft.volume=18&rft.issue=3&rft.spage=844&rft.epage=851&rft_id=info:doi/10.1134%2FS1990793124700283&rft.externalDBID=n%2Fa&rft.externalDocID=10_1134_S1990793124700283
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1990-7931&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1990-7931&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1990-7931&client=summon