Mathematical Simulation of the Atmospheric Electric Field Disturbance during a Geomagnetic Storm on 17 March 2015
It follows from the observational data that variations of the atmospheric electric field occur during geomagnetic storms. In this paper, we present the simulation results of ionospheric electric fields during the main phase of the geomagnetic storm on March 17, 2015, within the framework of a quasi-...
Saved in:
Published in | Russian journal of physical chemistry. B Vol. 18; no. 3; pp. 844 - 851 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Moscow
Pleiades Publishing
01.06.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | It follows from the observational data that variations of the atmospheric electric field occur during geomagnetic storms. In this paper, we present the simulation results of ionospheric electric fields during the main phase of the geomagnetic storm on March 17, 2015, within the framework of a quasi-stationary model of a conductor consisting of the atmosphere and the ionosphere. For this purpose, the satellite data on the global distribution of currents between the magnetosphere and the ionosphere are used to describe the magnetospheric source of the electric field. A variation of the electric potential in the ionosphere leads to a variation of the electric field in the entire atmosphere, including its surface layer. It is important that during a geomagnetic storm, the observatory in which the atmospheric electric field is measured significantly changes its position relative to the direction of the Sun. This leads to significant changes in the ionospheric conductivity above the observatory, which affects both the ionospheric electric field and the atmospheric part of the global electrical circuit (GEC). Therefore, when assessing the effect of a geomagnetic storm on the atmospheric electric field in a particular observatory, it is necessary to take into account the local time when comparing the measurement data with the geomagnetic activity indices. For the storm on March 17–18, 2015, we found that taking into account the variations of the ionospheric electric field when calculating the atmospheric electric field allowed us to reproduce the disturbances of the fair weather electric field observed at the Borok Geophysical Observatory. Based on the simulation results, it is shown that during extremely strong magnetic storms, additional atmospheric electric field variations in some places on the Earth have the same scale as the fair-weather field itself. |
---|---|
AbstractList | It follows from the observational data that variations of the atmospheric electric field occur during geomagnetic storms. In this paper, we present the simulation results of ionospheric electric fields during the main phase of the geomagnetic storm on March 17, 2015, within the framework of a quasi-stationary model of a conductor consisting of the atmosphere and the ionosphere. For this purpose, the satellite data on the global distribution of currents between the magnetosphere and the ionosphere are used to describe the magnetospheric source of the electric field. A variation of the electric potential in the ionosphere leads to a variation of the electric field in the entire atmosphere, including its surface layer. It is important that during a geomagnetic storm, the observatory in which the atmospheric electric field is measured significantly changes its position relative to the direction of the Sun. This leads to significant changes in the ionospheric conductivity above the observatory, which affects both the ionospheric electric field and the atmospheric part of the global electrical circuit (GEC). Therefore, when assessing the effect of a geomagnetic storm on the atmospheric electric field in a particular observatory, it is necessary to take into account the local time when comparing the measurement data with the geomagnetic activity indices. For the storm on March 17–18, 2015, we found that taking into account the variations of the ionospheric electric field when calculating the atmospheric electric field allowed us to reproduce the disturbances of the fair weather electric field observed at the Borok Geophysical Observatory. Based on the simulation results, it is shown that during extremely strong magnetic storms, additional atmospheric electric field variations in some places on the Earth have the same scale as the fair-weather field itself. |
Author | Klimenko, M. V. Denisenko, V. V. Klimenko, V. V. Anisimov, S. V. Zamay, S. S. |
Author_xml | – sequence: 1 givenname: S. S. surname: Zamay fullname: Zamay, S. S. organization: Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences – sequence: 2 givenname: V. V. surname: Denisenko fullname: Denisenko, V. V. email: denisen@icm.krasn.ru organization: Institute of Computational Modelling, Siberian Branch, Russian Academy of Sciences – sequence: 3 givenname: M. V. surname: Klimenko fullname: Klimenko, M. V. organization: Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, Kaliningrad Branch – sequence: 4 givenname: V. V. surname: Klimenko fullname: Klimenko, V. V. organization: Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, Kaliningrad Branch – sequence: 5 givenname: S. V. surname: Anisimov fullname: Anisimov, S. V. organization: Borok Geophysical Observatory, Schmidt Institute of Physics of the Earth, Russian Academy of Sciences |
BookMark | eNp1kD9PwzAQxS1UJNrCB2CzxFzwnzS2x6q0BakVQ2GOHOfcpkri1HYGvj2JimBATPd0997vdDdBo8Y1gNA9JY-U8uRpT5UiQnHKEkEIk_wKjYfWTCjGRz-a0xs0CeFESMqEImN03ul4hFrH0ugK78u6q3rtGuws7gd4EWsX2iP40uBVBSYOYl1CVeDnMsTO57oxgIvOl80Ba7wBV-tDAz0P76PzNe5ZVOCd9uaIGaHzW3RtdRXg7rtO0cd69b58mW3fNq_LxXZmqJJxZnQCuaZKKyllYQsqkjxlc5YYbrk0ShBIc1soNSeguSFW58C4zQtBScETyafo4cJtvTt3EGJ2cp1v-pUZJ5KnKVVc9C56cRnvQvBgs9aXtfafGSXZ8Nnsz2f7DLtkQjtcDf6X_H_oC5g5fCw |
Cites_doi | 10.1029/RG007i001p00421 10.1007/978-3-642-69813-2 10.1134/S001679322102002X 10.1007/s10712-012-9210-2A 10.1134/S1069351319010087 10.1007/s10712-018-9499-6 10.1007/BF00875461 10.1134/S1990793120050243 10.1134/S0016793213040130 10.1029/2020EA001321 10.1002/2016SW001593 10.1029/1998JA900075 10.5194/angeo-38-481-2020 10.1134/S1990793122030058 10.1134/S0016793208050071 10.3390/atmos13040614 10.1134/S000143382305002X 10.1134/S1990793121050171 10.1134/S1990793120020220 10.1016/0032-0633(92)90134-A 10.3367/UFNe.0180.201005h.0527 10.1023/A:1021169318012 10.1002/2015JA021680 10.1134/S1990793120020268 10.1029/2000JA900058 10.1007/BF00182599 10.1186/s40623-020-01288-x 10.5636/jgg.31.287 10.1029/93JA02867 |
ContentType | Journal Article |
Copyright | Pleiades Publishing, Ltd. 2024. ISSN 1990-7931, Russian Journal of Physical Chemistry B, 2024, Vol. 18, No. 3, pp. 844–851. © Pleiades Publishing, Ltd., 2024. |
Copyright_xml | – notice: Pleiades Publishing, Ltd. 2024. ISSN 1990-7931, Russian Journal of Physical Chemistry B, 2024, Vol. 18, No. 3, pp. 844–851. © Pleiades Publishing, Ltd., 2024. |
DBID | AAYXX CITATION |
DOI | 10.1134/S1990793124700283 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1990-7923 |
EndPage | 851 |
ExternalDocumentID | 10_1134_S1990793124700283 |
GroupedDBID | -58 -5G -BR -EM -Y2 -~C .VR 06C 06D 0R~ 0VY 123 1N0 29P 2J2 2JN 2JY 2KG 2KM 2LR 30V 4.4 408 40D 40E 5VS 6NX 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAYIU AAYQN AAYTO ABAKF ABDZT ABECU ABFGW ABFTV ABHQN ABJNI ABJOX ABKAS ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACSNA ACTTH ACVWB ACWMK ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEFTE AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESTI AETLH AEVLU AEVTX AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIGIU AIIXL AILAN AIMYW AITGF AJBLW AJRNO AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYQR AOCGG ARMRJ AXYYD B-. BA0 BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HF~ HG6 HLICF HMJXF HRMNR HZ~ IKXTQ IWAJR IXD I~X I~Z J-C JBSCW JZLTJ KOV LLZTM M4Y MA- N9A NPVJJ NQJWS NU0 O9- O93 O9J P9N PF0 PT4 QOR QOS R89 R9I RIG RNS ROL RSV S16 S1Z S27 S3B SAP SCM SDH SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SQXTU SRMVM SSLCW STPWE SZN T13 TSG TUC UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 XU3 YLTOR Z7V Z7Y ZMTXR ~A9 AAYXX CITATION H13 SJYHP |
ID | FETCH-LOGICAL-c198t-ca4eba19a9888dfd174b62524c3f38c970e6bfd9950ea3c0fabe23fbd710d3483 |
IEDL.DBID | AGYKE |
ISSN | 1990-7931 |
IngestDate | Thu Oct 10 22:42:16 EDT 2024 Thu Sep 12 20:51:02 EDT 2024 Tue Jul 23 01:20:22 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | atmosphere mathematical modeling electric field conductivity ionosphere magnetic storm |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c198t-ca4eba19a9888dfd174b62524c3f38c970e6bfd9950ea3c0fabe23fbd710d3483 |
PQID | 3083661937 |
PQPubID | 2044175 |
PageCount | 8 |
ParticipantIDs | proquest_journals_3083661937 crossref_primary_10_1134_S1990793124700283 springer_journals_10_1134_S1990793124700283 |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Moscow |
PublicationPlace_xml | – name: Moscow – name: Heidelberg |
PublicationSubtitle | Focus on Physics |
PublicationTitle | Russian journal of physical chemistry. B |
PublicationTitleAbbrev | Russ. J. Phys. Chem. B |
PublicationYear | 2024 |
Publisher | Pleiades Publishing Springer Nature B.V |
Publisher_xml | – name: Pleiades Publishing – name: Springer Nature B.V |
References | KarpovI. V.BorchevkinaO. P.VasilevP. A.Russ. J. Phys. Chem. B2020143621:CAS:528:DC%2BB3cXhtVanur7L10.1134/S1990793120020220 LebleS. B.SmirnovaE. S.Russ. J. Phys. Chem. B2020143671:CAS:528:DC%2BB3cXhtVanur%2FP10.1134/S1990793120020268 GonzalezW. D.JoselynJ. A.KamideY.J. Geophys. Res.199499577110.1029/93JA02867 GolubkovG. V.AdamsonS. O.Russ. J. Phys. Chem. B2022165081:CAS:528:DC%2BB38XitFalurnE10.1134/S1990793122030058 Frank-KamenetskyA. V.TroshichevO. A.BurnsG. B.PapitashviliV. O.J. Geophys. Res.200110617910.1029/2000JA900058 RichmondA. D.GeomagnJ.Geoelectr.19793128710.5636/jgg.31.287 KlimenkoM. V.RatovskyK. G.KlimenkoV. V.Russ. J. Phys. Chem. B20201592810.1134/S1990793121050171 DenisenkoV. V.Energy Methods for Elliptic Equations with Asymmetric Coefficients1995NovosibirskIzd. Sib. Otd. Ross. Akad. Nauk[in Russian] RatovskyK. G.KlimenkoM. V.YasyukevichYu. V.VesninA. M.KlimenkoV. V.Russ. J. Phys. Chem. B2020148621:CAS:528:DC%2BB3cXisVeqs7zO10.1134/S1990793120050243 PustovalovK.NagorskiyP.OgleznevaM.SmirnovS.Atmosphere20221361410.3390/atmos13040614 WeimerD. R.J. Geophys. Res.199910418510.1029/1998JA900075 N. G. Kleimenova, O. V. Kozyreva, S. Michnowski, and M. Kubicki, Geomagn. Aeron. (Engl. Transl.) 48, 622 (2008). https://doi.org/10.1134/S0016793208050071 ApsenA. G.KanonidiH. D.ChernyshevaS. P.ChetaevD. N.SheftelV. M.Magnetospheric Effects in Atmospheric Electricity1988MoscowNauka[in Russian] BilitzaD.AltadillD.TruhlikV.Space Weather20171541810.1002/2016SW001593 AlkenP.ThébaultE.BegganC. D.Earth Planets Space2021734910.1186/s40623-020-01288-x S. V. Anisimov, N. M. Shikhova, and N. G. Kleimenova, Geomagn. Aeron. (Engl. Transl.) 61, 180 (2021). https://doi.org/10.1134/S001679322102002X MareevE. A.Phys. Usp.20105350410.3367/UFNe.0180.201005h.0527 J. T. Emmert, D. P. Drob, J. M. Picone, et al., Earth Space Sci. 8, e2020EA001321 (2021). .https://doi.org/10.1029/2020EA001321 AxfordW. I.Rev. Geophys.1969742110.1029/RG007i001p00421 BurrellA. G.ChishamG.MilanS. E.KilcommonsL.ChenY.-J.ThomasE. G.AndersonB.Ann. Geophys.20203848110.5194/angeo-38-481-2020 VollandH.Atmospheric Electrodynamics1984HeidelbergSpringer10.1007/978-3-642-69813-2 ShalimovS. L.RozhnoiA. A.Solov’evaM. S.Ol’shanskayaE. V.Phys. Solid Earth20195516810.1134/S1069351319010087 OlsonD. E.Pure Appl. Geophys.19718411810.1007/BF00875461 MilanS. E.CarterJ. A.KorthH.J. Geophys. Res. Space Phys.20151204151:CAS:528:DC%2BC28XhsFeqtr3E10.1002/2015JA021680 AnisimovS. V.AphinogenovK. V.GalichenkoS. V.Izv., Atmos. Oceanic Phys.20235952210.1134/S000143382305002X PudovkinM. I.Space Sci. Rev.19741672710.1007/BF00182599 NikiforovaN. N.KleimenovaN. G.KozyrevaO. V.KubitskyM.MikhnovskyS.Geomagn. Aeron.20034232 DenisenkoV. V.Sib. Mat. Zh.200243105510.1023/A:1021169318012 HarrisonR. G.Surv. Geophys.20133420910.1007/s10712-012-9210-2A DenisenkoV. V.ZamayS. S.Planet. Space Sci.19924094110.1016/0032-0633(92)90134-A LunyushkinS. B.Issled. GeomagnAeron. Fiz. Soln.198881181 S. E. Smirnov, G. A. Mikhailova, and O. V. Kapustina, Geomagn. Aeron. (Engl. Transl.) 53, 502 (2013). https://doi.org/10.1134/S0016793213040130 DenisenkoV. V.RycroftM. J.HarrisonR. G.Surv. Geophys.201940110.1007/s10712-018-9499-6 S. V. Anisimov (9000_CR14) 2023; 59 S. E. Milan (9000_CR20) 2015; 120 V. V. Denisenko (9000_CR29) 1995 A. D. Richmond (9000_CR15) 1979; 31 S. B. Leble (9000_CR4) 2020; 14 S. B. Lunyushkin (9000_CR30) 1988; 81 9000_CR11 I. V. Karpov (9000_CR3) 2020; 14 A. G. Apsen (9000_CR8) 1988 9000_CR13 9000_CR12 R. G. Harrison (9000_CR32) 2013; 34 K. Pustovalov (9000_CR31) 2022; 13 W. D. Gonzalez (9000_CR18) 1994; 99 V. V. Denisenko (9000_CR21) 2019; 40 S. L. Shalimov (9000_CR2) 2019; 55 G. V. Golubkov (9000_CR6) 2022; 16 G. V. Golubkov (9000_CR34) 2022; 16 D. E. Olson (9000_CR7) 1971; 84 K. G. Ratovsky (9000_CR19) 2020; 14 P. Alken (9000_CR23) 2021; 73 D. R. Weimer (9000_CR25) 1999; 104 N. N. Nikiforova (9000_CR10) 2003; 42 A. G. Burrell (9000_CR27) 2020; 38 M. I. Pudovkin (9000_CR17) 1974; 16 V. V. Denisenko (9000_CR26) 1992; 40 E. A. Mareev (9000_CR33) 2010; 53 V. V. Denisenko (9000_CR28) 2002; 43 M. V. Klimenko (9000_CR5) 2020; 15 D. Bilitza (9000_CR22) 2017; 15 9000_CR24 W. I. Axford (9000_CR16) 1969; 7 H. Volland (9000_CR1) 1984 A. V. Frank-Kamenetsky (9000_CR9) 2001; 106 |
References_xml | – volume: 7 start-page: 421 year: 1969 ident: 9000_CR16 publication-title: Rev. Geophys. doi: 10.1029/RG007i001p00421 contributor: fullname: W. I. Axford – volume-title: Magnetospheric Effects in Atmospheric Electricity year: 1988 ident: 9000_CR8 contributor: fullname: A. G. Apsen – volume-title: Atmospheric Electrodynamics year: 1984 ident: 9000_CR1 doi: 10.1007/978-3-642-69813-2 contributor: fullname: H. Volland – ident: 9000_CR13 doi: 10.1134/S001679322102002X – volume: 34 start-page: 209 year: 2013 ident: 9000_CR32 publication-title: Surv. Geophys. doi: 10.1007/s10712-012-9210-2A contributor: fullname: R. G. Harrison – volume: 55 start-page: 168 year: 2019 ident: 9000_CR2 publication-title: Phys. Solid Earth doi: 10.1134/S1069351319010087 contributor: fullname: S. L. Shalimov – volume: 40 start-page: 1 year: 2019 ident: 9000_CR21 publication-title: Surv. Geophys. doi: 10.1007/s10712-018-9499-6 contributor: fullname: V. V. Denisenko – volume: 84 start-page: 118 year: 1971 ident: 9000_CR7 publication-title: Pure Appl. Geophys. doi: 10.1007/BF00875461 contributor: fullname: D. E. Olson – volume: 14 start-page: 862 year: 2020 ident: 9000_CR19 publication-title: Russ. J. Phys. Chem. B doi: 10.1134/S1990793120050243 contributor: fullname: K. G. Ratovsky – ident: 9000_CR12 doi: 10.1134/S0016793213040130 – ident: 9000_CR24 doi: 10.1029/2020EA001321 – volume: 15 start-page: 418 year: 2017 ident: 9000_CR22 publication-title: Space Weather doi: 10.1002/2016SW001593 contributor: fullname: D. Bilitza – volume: 104 start-page: 185 year: 1999 ident: 9000_CR25 publication-title: J. Geophys. Res. doi: 10.1029/1998JA900075 contributor: fullname: D. R. Weimer – volume: 38 start-page: 481 year: 2020 ident: 9000_CR27 publication-title: Ann. Geophys. doi: 10.5194/angeo-38-481-2020 contributor: fullname: A. G. Burrell – volume: 16 start-page: 508 year: 2022 ident: 9000_CR34 publication-title: Russ. J. Phys. Chem. B doi: 10.1134/S1990793122030058 contributor: fullname: G. V. Golubkov – ident: 9000_CR11 doi: 10.1134/S0016793208050071 – volume: 13 start-page: 614 year: 2022 ident: 9000_CR31 publication-title: Atmosphere doi: 10.3390/atmos13040614 contributor: fullname: K. Pustovalov – volume: 59 start-page: 522 year: 2023 ident: 9000_CR14 publication-title: Izv., Atmos. Oceanic Phys. doi: 10.1134/S000143382305002X contributor: fullname: S. V. Anisimov – volume: 15 start-page: 928 year: 2020 ident: 9000_CR5 publication-title: Russ. J. Phys. Chem. B doi: 10.1134/S1990793121050171 contributor: fullname: M. V. Klimenko – volume: 14 start-page: 362 year: 2020 ident: 9000_CR3 publication-title: Russ. J. Phys. Chem. B doi: 10.1134/S1990793120020220 contributor: fullname: I. V. Karpov – volume-title: Energy Methods for Elliptic Equations with Asymmetric Coefficients year: 1995 ident: 9000_CR29 contributor: fullname: V. V. Denisenko – volume: 40 start-page: 941 year: 1992 ident: 9000_CR26 publication-title: Planet. Space Sci. doi: 10.1016/0032-0633(92)90134-A contributor: fullname: V. V. Denisenko – volume: 53 start-page: 504 year: 2010 ident: 9000_CR33 publication-title: Phys. Usp. doi: 10.3367/UFNe.0180.201005h.0527 contributor: fullname: E. A. Mareev – volume: 43 start-page: 1055 year: 2002 ident: 9000_CR28 publication-title: Sib. Mat. Zh. doi: 10.1023/A:1021169318012 contributor: fullname: V. V. Denisenko – volume: 120 start-page: 415 year: 2015 ident: 9000_CR20 publication-title: J. Geophys. Res. Space Phys. doi: 10.1002/2015JA021680 contributor: fullname: S. E. Milan – volume: 16 start-page: 508 year: 2022 ident: 9000_CR6 publication-title: Russ. J. Phys. Chem. B doi: 10.1134/S1990793122030058 contributor: fullname: G. V. Golubkov – volume: 14 start-page: 367 year: 2020 ident: 9000_CR4 publication-title: Russ. J. Phys. Chem. B doi: 10.1134/S1990793120020268 contributor: fullname: S. B. Leble – volume: 106 start-page: 179 year: 2001 ident: 9000_CR9 publication-title: J. Geophys. Res. doi: 10.1029/2000JA900058 contributor: fullname: A. V. Frank-Kamenetsky – volume: 16 start-page: 727 year: 1974 ident: 9000_CR17 publication-title: Space Sci. Rev. doi: 10.1007/BF00182599 contributor: fullname: M. I. Pudovkin – volume: 73 start-page: 49 year: 2021 ident: 9000_CR23 publication-title: Earth Planets Space doi: 10.1186/s40623-020-01288-x contributor: fullname: P. Alken – volume: 81 start-page: 181 year: 1988 ident: 9000_CR30 publication-title: Aeron. Fiz. Soln. contributor: fullname: S. B. Lunyushkin – volume: 42 start-page: 32 year: 2003 ident: 9000_CR10 publication-title: Geomagn. Aeron. contributor: fullname: N. N. Nikiforova – volume: 31 start-page: 287 year: 1979 ident: 9000_CR15 publication-title: Geoelectr. doi: 10.5636/jgg.31.287 contributor: fullname: A. D. Richmond – volume: 99 start-page: 5771 year: 1994 ident: 9000_CR18 publication-title: J. Geophys. Res. doi: 10.1029/93JA02867 contributor: fullname: W. D. Gonzalez |
SSID | ssj0062790 |
Score | 2.3339622 |
Snippet | It follows from the observational data that variations of the atmospheric electric field occur during geomagnetic storms. In this paper, we present the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 844 |
SubjectTerms | Chemical Physics of Atmospheric Phenomena Chemistry Chemistry and Materials Science Circuits Electric fields Electrical resistivity Extreme values Fair weather Geomagnetism Geophysical observatories Ionosphere Ionospheric conductivity Magnetic storms Magnetospheres Observatories Physical Chemistry Position measurement Simulation Storms Surface layers |
Title | Mathematical Simulation of the Atmospheric Electric Field Disturbance during a Geomagnetic Storm on 17 March 2015 |
URI | https://link.springer.com/article/10.1134/S1990793124700283 https://www.proquest.com/docview/3083661937 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4QDnrxbUTR9OBJs8i2ZR9HgjyiwQuS4GnT1xpCdldhufjrne4DoujB2yadTtKdaeebdh4I3djKJUxp2wqpxyxGNLUEmDnL9MmB7eQZM2OiLZ6d4YQ9TtvTCiLrq4t43ixfJLODOm87wu7HNpyboExgj9yswc4OqhV5p7XO4PWpV56_DnGzmxVDb5kJxVvmr0y-W6MNxPzxKpoZm_5BngC4zGoUmhiTeXOViqb83K7g-I91HKL9AnviTq4sR6ii42O02y1bvp2gj9G6iCvQjWdR0dsLJyGGAdxJo2Rp6hDMJO5l_XPgo29i4PADsFgthNEhnKc-Yo4HOon4W2zyJPEYnPsIAy_bxSOzuzCAgvYpmvR7L92hVfRksKTte6klOdOC2z73wXVWoQKHRoALRZikIG3puy3tiFD5frulOZWtkAtNaCgUIBlFmUfPUDVOYn2OsCc1-JIeoYDpmOAwRRDHV1oCLRdM1dFtKZvgPS-9EWQuC2XB1l-so0YpvaDYhcuAmtLb4CFSt47uSmlshv9kdvEv6ku0RwDp5PFjDVRNFyt9BUglFdeFan4B0XLcdQ |
link.rule.ids | 315,783,787,27936,27937,41093,42162,52123 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BOcCFHVFWHziBUhrbzXKsoAu05dIiwSnyFlShttCmF76ecRYqtkNvkTIeJZmx5714PANw4Wqfcm1cJ2YBdzg1zJEY5hzbJwenU2DDjM22ePDaj_z-qfaUn-OeFdnuxZZkulJnfUf4dd_FhRO9CQOSn3bYWYU1Tl2PlmCt3nruNIoF2KN--mvFyjt2QL6Z-aeS7-FogTF_bIum0aa5BYPiObMkk9fKPJEV9fGjhOOSL7INmzn6JPXMXXZgxYx3Yf2maPq2B--9rzKuKNcfjvLuXmQSE7xB6sloMrOVCIaKNNIOOnjRtFlw5BZVzKfSehHJDj8SQVpmMhIvY3tSkvSR3o8I6nJ90rPziyAsqO3DY7MxuGk7eVcGR7lhkDhKcCOFG4oQybOONVIaiSSKcsXQ3ir0q8aTsQ7DWtUIpqqxkIayWGrEMprxgB1AaTwZm0MggTLIJgPKENVxKXCIpF6ojUJZIbkuw2VhnOgtK74RpaSF8ejXVyzDSWG-KJ-Hs4jZ4tvIEZlfhqvCGovb_yo7Wkr6HNbbg1436t49dI5hgyLuybLJTqCUTOfmFHFLIs9yP_0E4k7gSQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgSMCFN2IwIAdOoLK1ydb2OO0JYwhpTIJTyatoQuuAdRd-PU4fTLwOiFulOFbbOLGdON8HcGIr12FK21ZIPWYxR1NLoJuzDE8OTifPuBlTbXFd6w7Z5V31LuM5nebV7vmRZHqnwaA0RXH5WYUZBwkrD2xcRNGy0Dm5CdvOIiwxA4xUgKV6577XyhfjmuMm2yxG3jIdsoPNH5V8dk3zePPLEWniedrr8JC_c1pw8nQ-i8W5fPsC5_iPj9qAtSwqJfXUjDZhQUdbsNLIyeC24aX_Ae-KcoPROGP9IpOQYAOpx-PJ1CAUjCRpJcw6-NA21XGkiSpmr8JYF0kvRRJOOnoy5o-RuUFJBpj2jwnqsl3SN_OOYLhQ3YFhu3Xb6FoZW4Mlbd-LLcmZFtz2uY9JtQoVpjoCkyuHSYp2IH23omsiVL5frWhOZSXkQjs0FApjHEWZR3ehEE0ivQfEkxqzTM-hGO0xwbGLcGq-0hJluWCqCKf5QAXPKShHkCQzlAXf_mIRSvlQBtn8nAbUgHJj7kjdIpzlIzNv_lXZ_p-kj2H5ptkOri6uewew6mA4lBaZlaAQv870IYYzsTjKTPYdVp7pLQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mathematical+Simulation+of+the+Atmospheric+Electric+Field+Disturbance+during+a+Geomagnetic+Storm+on+17+March+2015&rft.jtitle=Russian+journal+of+physical+chemistry.+B&rft.au=Zamay%2C+S.+S.&rft.au=Denisenko%2C+V.+V.&rft.au=Klimenko%2C+M.+V.&rft.au=Klimenko%2C+V.+V.&rft.date=2024-06-01&rft.issn=1990-7931&rft.eissn=1990-7923&rft.volume=18&rft.issue=3&rft.spage=844&rft.epage=851&rft_id=info:doi/10.1134%2FS1990793124700283&rft.externalDBID=n%2Fa&rft.externalDocID=10_1134_S1990793124700283 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1990-7931&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1990-7931&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1990-7931&client=summon |