On One Approach to Solving an Applied Control Problem with State Constraints
A control problem is considered for the translational motion of the center of mass of an object as a material point under the action of a constant modulus reactive force in the gravitational field. The reactive force acts in the direction of one of the axes of a moving coordinate system associated w...
Saved in:
Published in | Proceedings of the Steklov Institute of Mathematics Vol. 327; no. Suppl 1; pp. S138 - S154 |
---|---|
Main Author | |
Format | Journal Article Conference Proceeding |
Language | English |
Published |
Moscow
Pleiades Publishing
01.12.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A control problem is considered for the translational motion of the center of mass of an object as a material point under the action of a constant modulus reactive force in the gravitational field. The reactive force acts in the direction of one of the axes of a moving coordinate system associated with the object and causes a decrease in the mass of the object according to a known law. It is assumed that the gravitational acceleration generated by the gravitational field is described by the same vector at any point. The system is controlled by changing the spatial orientation of the reactive force vector in some fixed coordinate system. The control problem is to find an open-loop control operating over a certain period of time during which the control satisfies certain constraints and ensures that the center of mass reaches a certain point on a given plane at the terminal time with the fulfillment of certain terminal conditions and a number of requirements for the current state of the nonlinear dynamic system describing the motion. An approach to solving this problem is studied in which an auxiliary control problem is solved using the decomposition of the dynamic system into three simpler systems, each of which describes one of the components of the motion of the center of mass. For two of these systems, special optimal control problems are formulated in which both the functionals to be optimized and the methods for calculating the parameters that determine the solutions to these problems significantly take into account the specifics of the terminal conditions. The required control in the main problem is determined as a result of implementing a procedure that is iterative with respect to the initial time. At each step of this procedure, a solution to the auxiliary problem is constructed without taking into account the state constraints. To control the dynamic system at the current iteration, it is proposed to use a combination of the control constructed when solving an auxiliary problem and the zero control. The results of numerical simulation using model data are presented. |
---|---|
AbstractList | A control problem is considered for the translational motion of the center of mass of an object as a material point under the action of a constant modulus reactive force in the gravitational field. The reactive force acts in the direction of one of the axes of a moving coordinate system associated with the object and causes a decrease in the mass of the object according to a known law. It is assumed that the gravitational acceleration generated by the gravitational field is described by the same vector at any point. The system is controlled by changing the spatial orientation of the reactive force vector in some fixed coordinate system. The control problem is to find an open-loop control operating over a certain period of time during which the control satisfies certain constraints and ensures that the center of mass reaches a certain point on a given plane at the terminal time with the fulfillment of certain terminal conditions and a number of requirements for the current state of the nonlinear dynamic system describing the motion. An approach to solving this problem is studied in which an auxiliary control problem is solved using the decomposition of the dynamic system into three simpler systems, each of which describes one of the components of the motion of the center of mass. For two of these systems, special optimal control problems are formulated in which both the functionals to be optimized and the methods for calculating the parameters that determine the solutions to these problems significantly take into account the specifics of the terminal conditions. The required control in the main problem is determined as a result of implementing a procedure that is iterative with respect to the initial time. At each step of this procedure, a solution to the auxiliary problem is constructed without taking into account the state constraints. To control the dynamic system at the current iteration, it is proposed to use a combination of the control constructed when solving an auxiliary problem and the zero control. The results of numerical simulation using model data are presented. |
Author | Kandoba, I. N. |
Author_xml | – sequence: 1 givenname: I. N. surname: Kandoba fullname: Kandoba, I. N. email: kandoba@imm.uran.ru organization: Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ural Federal University |
BookMark | eNp1UMtKAzEUDVLBtvoB7gKuR3PzmmRZii8oVKiuh0yaaadMk5qkin_vDBVciKsL9zzuuWeCRj54h9A1kFsAxu9WhCgQnCnKSUmAwBkag2BQKEnECI0HuBjwCzRJaUcIFyXXY7RYerz0Ds8OhxiM3eIc8Cp0H63fYOOHdde6NZ4Hn2Po8EsMdef2-LPNW7zKJrsBSjma1ud0ic4b0yV39TOn6O3h_nX-VCyWj8_z2aKwoFUujDLaKAqSKC5pLUFp6dastpbKmirV6LLUtlbW0UYxaZghjdVQu5IJK_onpujm5Ntnfj-6lKtdOEbfn6wYlEILLojoWXBi2RhSiq6pDrHdm_hVAamG0qo_pfUaetKknus3Lv46_y_6BjGcbl8 |
ContentType | Journal Article Conference Proceeding |
Copyright | Pleiades Publishing, Ltd. 2024 Copyright Springer Nature B.V. 2024 |
Copyright_xml | – notice: Pleiades Publishing, Ltd. 2024 – notice: Copyright Springer Nature B.V. 2024 |
DBID | AAYXX CITATION |
DOI | 10.1134/S0081543824070101 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1531-8605 |
EndPage | S154 |
ExternalDocumentID | 10_1134_S0081543824070101 |
GroupedDBID | -Y2 -~X .VR 06D 0R~ 0VY 123 1N0 29P 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 408 40D 40E 5VS 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDBE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACZOJ ADHHG ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AETLH AEVLU AEXYK AFBBN AFFNX AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BAPOH BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 H13 HF~ HG6 HLICF HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ ITM IWAJR IXC I~X I~Z J-C JBSCW JZLTJ KOV LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J P2P P9R PF0 PT4 QOS R89 R9I RIG RNS ROL RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TUC UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR YNT ZMTXR ~A9 AAYXX ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR CITATION ABRTQ |
ID | FETCH-LOGICAL-c198t-a8a9a821608462b61896ed3bcc26b288f9779cb8ce2f836a3a0fc91be735c5543 |
IEDL.DBID | AGYKE |
ISSN | 0081-5438 |
IngestDate | Sun Jul 13 04:34:45 EDT 2025 Tue Jul 01 05:26:36 EDT 2025 Tue Mar 11 01:10:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Suppl 1 |
Keywords | optimal control admissible control state constraints nonlinear dynamic system |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c198t-a8a9a821608462b61896ed3bcc26b288f9779cb8ce2f836a3a0fc91be735c5543 |
Notes | ObjectType-Article-1 ObjectType-Feature-2 SourceType-Conference Papers & Proceedings-1 content type line 22 |
PQID | 3175954505 |
PQPubID | 2044165 |
ParticipantIDs | proquest_journals_3175954505 crossref_primary_10_1134_S0081543824070101 springer_journals_10_1134_S0081543824070101 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Moscow |
PublicationPlace_xml | – name: Moscow – name: Heidelberg |
PublicationTitle | Proceedings of the Steklov Institute of Mathematics |
PublicationTitleAbbrev | Proc. Steklov Inst. Math |
PublicationYear | 2024 |
Publisher | Pleiades Publishing Springer Nature B.V |
Publisher_xml | – name: Pleiades Publishing – name: Springer Nature B.V |
References | AA Lebedev (8489_CR1) 1970 AE Bryson (8489_CR3) 1969 NN Krasovskii (8489_CR8) 1985 VN Afanas’ev (8489_CR5) 2003 DV Mazgalin (8489_CR2) 2010; 3 FP Vasil’ev (8489_CR4) 2011 NN Krasovskii (8489_CR7) 1974 NN Krasovskii (8489_CR6) 1968 |
References_xml | – volume-title: Theory of Motion Control year: 1968 ident: 8489_CR6 – volume-title: Positional Differential Games year: 1974 ident: 8489_CR7 – volume-title: Missile Ballistics year: 1970 ident: 8489_CR1 – volume-title: Control of a Dynamical System: Problem on the Minimum of Guaranteed Result year: 1985 ident: 8489_CR8 – volume-title: Mathematical Theory of Control Systems Design year: 2003 ident: 8489_CR5 – volume: 3 start-page: 21 year: 2010 ident: 8489_CR2 publication-title: Inform.-Upravl. Sist. – volume-title: Applied Optimal Control: Optimization, Estimation, and Control year: 1969 ident: 8489_CR3 – volume-title: Optimization Methods year: 2011 ident: 8489_CR4 |
SSID | ssj0045749 |
Score | 2.305407 |
Snippet | A control problem is considered for the translational motion of the center of mass of an object as a material point under the action of a constant modulus... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | S138 |
SubjectTerms | Center of mass Constraints Control systems Coordinates Dynamical systems Gravitational fields Mathematics Mathematics and Statistics Nonlinear dynamics Optimal control Translational motion |
Title | On One Approach to Solving an Applied Control Problem with State Constraints |
URI | https://link.springer.com/article/10.1134/S0081543824070101 https://www.proquest.com/docview/3175954505 |
Volume | 327 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3NT8IwFMBfFC568NuIounBk2ZkbbeuOwIBiQqYCAmelrV0F80wblz86223TiLqgXO3Zntt3_u1fR8A14xpuxEo6uBQchOSIxweSuYojrEiSewnc3MOORyxwdS7n_kzG8edVd7u1ZVkoanLuiNeEdOr7T3lZg9iMqNtQ13jh-vVoN6-e3noVQrY8wNLvRw75gV7mflnJz_N0Yox165FC2vT34dJ9Z2lk8lra5mLlvxcS-G44Y8cwJ6lT9Qup8shbKn0CHaH36lbs2N4HKdonCrUtsnGUb5Az4s3c-6A4hRZakXd0sUdPZUFaZA5z0UFuZqmrKg8kWcnMO33Jt2BY0suOBKHPHdiHocxJ5i5mkuIYJiHTM2pkJIwQThPNC6GUnCpx5FTFtPYTWSIhQqoLzWZ0FOopYtUnQFy5dzwDIsJ0YpCcxgOWKBhkXBJEq05GnBTST56LzNrRMWOhHrRLxE1oFmNTWQXWRYZ9Ak1Abp-A24rUa-a_-3sfKOnL2CHaJApXViaUMs_lupSg0gurvTE63c6oys7Ab8A49LQDQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ07T8MwEIBP0A7AwBtRKOCBCZSqdhLHGauqUOgLiVYqU2S7zgJKEUkXfj124lBRYOjsxEr8uPvufL4DuKZU641AuQ4OJTNXcoTDQkkdxTBWJOZ-PDN-yMGQdife49Sf2nvcaRntXh5J5pK6qDvi5Xd6tb53mbFBTGa0Tah62gTXy7raun_pdUoB7PmBpV6GHfOCPcz8s5Of6mjJmCvHorm2uduDcfmdRZDJa2ORiYb8XEnhuOaP7MOupU_UKpbLAWyo5BB2Bt-pW9Mj6I8SNEoUatlk4yibo-f5m_E7IJ4gS62oXYS4o6eiIA0y_lyUk6tpSvPKE1l6DJO7zrjddWzJBUfikGUOZzzkjGDa1FxCBMUspGrmCikJFYSxWONiKAWTeh6ZS7nLm7EMsVCB60tNJu4JVJJ5ok4BNeXM8AzlhGhBoTkMBzTQsEiYJLGWHDW4KUc-ei8ya0S5ReJ60a8hqkG9nJvIbrI0MugTagJs-jW4LYd62fxvZ2drPX0FW93xoB_1H4a9c9gmGmqKcJY6VLKPhbrQUJKJS7sIvwBGl9GA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PT4MwFMdfdCZGD_42Tqf24EnDpAVKOS5zc7qfiS6ZJ4RSLhq2CLv419tCcXHqwXguNNDX9n3avn4fwAWl0m-4wjKwx5m6khMazOPUEAxjQeLAiSO1D9kf0M7Yvp84E53nNC2j3csjyeJOg1JpSrLrWRTrHCR2fr9X-n6LqfWIUklbhTVbSdtVYK1x-9RtlZOx7biagBk21Av6YPPHSr66pgVvLh2R5p6nvQ3P5TcXAScv9XkW1vn7kpzjP35qB7Y0laJG0Y12YUUke7DZ_5R0TfehN0zQMBGooUXIUTZFD9NXtR-BggRpmkXNIvQdjYpENUjt86KcaFVRmmekyNIDGLdbj82OoVMxGBx7LDMCFngBI5iakldISDHzqIiskHNCQ8JYLDHS4yHj0r7MooEVmDH3cChcy-GSWKxDqCTTRBwBMnmkOIcGhMgJRPIZdqkrIZIwTmI5o1ThsrSCPysUN_x8pWLZ_rcmqkKttJOvB1_qKyTyJBmaThWuymZfFP9a2fGfnj6H9dFN2-_dDbonsEEk6xRRLjWoZG9zcSpZJQvPdH_8AIE32mQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+Steklov+Institute+of+Mathematics&rft.atitle=On+One+Approach+to+Solving+an+Applied+Control+Problem+with+State+Constraints&rft.date=2024-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0081-5438&rft.eissn=1531-8605&rft.volume=327&rft.issue=1&rft.spage=S138&rft.epage=S154&rft_id=info:doi/10.1134%2FS0081543824070101&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0081-5438&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0081-5438&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0081-5438&client=summon |