On One Approach to Solving an Applied Control Problem with State Constraints

A control problem is considered for the translational motion of the center of mass of an object as a material point under the action of a constant modulus reactive force in the gravitational field. The reactive force acts in the direction of one of the axes of a moving coordinate system associated w...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the Steklov Institute of Mathematics Vol. 327; no. Suppl 1; pp. S138 - S154
Main Author Kandoba, I. N.
Format Journal Article Conference Proceeding
LanguageEnglish
Published Moscow Pleiades Publishing 01.12.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A control problem is considered for the translational motion of the center of mass of an object as a material point under the action of a constant modulus reactive force in the gravitational field. The reactive force acts in the direction of one of the axes of a moving coordinate system associated with the object and causes a decrease in the mass of the object according to a known law. It is assumed that the gravitational acceleration generated by the gravitational field is described by the same vector at any point. The system is controlled by changing the spatial orientation of the reactive force vector in some fixed coordinate system. The control problem is to find an open-loop control operating over a certain period of time during which the control satisfies certain constraints and ensures that the center of mass reaches a certain point on a given plane at the terminal time with the fulfillment of certain terminal conditions and a number of requirements for the current state of the nonlinear dynamic system describing the motion. An approach to solving this problem is studied in which an auxiliary control problem is solved using the decomposition of the dynamic system into three simpler systems, each of which describes one of the components of the motion of the center of mass. For two of these systems, special optimal control problems are formulated in which both the functionals to be optimized and the methods for calculating the parameters that determine the solutions to these problems significantly take into account the specifics of the terminal conditions. The required control in the main problem is determined as a result of implementing a procedure that is iterative with respect to the initial time. At each step of this procedure, a solution to the auxiliary problem is constructed without taking into account the state constraints. To control the dynamic system at the current iteration, it is proposed to use a combination of the control constructed when solving an auxiliary problem and the zero control. The results of numerical simulation using model data are presented.
AbstractList A control problem is considered for the translational motion of the center of mass of an object as a material point under the action of a constant modulus reactive force in the gravitational field. The reactive force acts in the direction of one of the axes of a moving coordinate system associated with the object and causes a decrease in the mass of the object according to a known law. It is assumed that the gravitational acceleration generated by the gravitational field is described by the same vector at any point. The system is controlled by changing the spatial orientation of the reactive force vector in some fixed coordinate system. The control problem is to find an open-loop control operating over a certain period of time during which the control satisfies certain constraints and ensures that the center of mass reaches a certain point on a given plane at the terminal time with the fulfillment of certain terminal conditions and a number of requirements for the current state of the nonlinear dynamic system describing the motion. An approach to solving this problem is studied in which an auxiliary control problem is solved using the decomposition of the dynamic system into three simpler systems, each of which describes one of the components of the motion of the center of mass. For two of these systems, special optimal control problems are formulated in which both the functionals to be optimized and the methods for calculating the parameters that determine the solutions to these problems significantly take into account the specifics of the terminal conditions. The required control in the main problem is determined as a result of implementing a procedure that is iterative with respect to the initial time. At each step of this procedure, a solution to the auxiliary problem is constructed without taking into account the state constraints. To control the dynamic system at the current iteration, it is proposed to use a combination of the control constructed when solving an auxiliary problem and the zero control. The results of numerical simulation using model data are presented.
Author Kandoba, I. N.
Author_xml – sequence: 1
  givenname: I. N.
  surname: Kandoba
  fullname: Kandoba, I. N.
  email: kandoba@imm.uran.ru
  organization: Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ural Federal University
BookMark eNp1UMtKAzEUDVLBtvoB7gKuR3PzmmRZii8oVKiuh0yaaadMk5qkin_vDBVciKsL9zzuuWeCRj54h9A1kFsAxu9WhCgQnCnKSUmAwBkag2BQKEnECI0HuBjwCzRJaUcIFyXXY7RYerz0Ds8OhxiM3eIc8Cp0H63fYOOHdde6NZ4Hn2Po8EsMdef2-LPNW7zKJrsBSjma1ud0ic4b0yV39TOn6O3h_nX-VCyWj8_z2aKwoFUujDLaKAqSKC5pLUFp6dastpbKmirV6LLUtlbW0UYxaZghjdVQu5IJK_onpujm5Ntnfj-6lKtdOEbfn6wYlEILLojoWXBi2RhSiq6pDrHdm_hVAamG0qo_pfUaetKknus3Lv46_y_6BjGcbl8
ContentType Journal Article
Conference Proceeding
Copyright Pleiades Publishing, Ltd. 2024
Copyright Springer Nature B.V. 2024
Copyright_xml – notice: Pleiades Publishing, Ltd. 2024
– notice: Copyright Springer Nature B.V. 2024
DBID AAYXX
CITATION
DOI 10.1134/S0081543824070101
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1531-8605
EndPage S154
ExternalDocumentID 10_1134_S0081543824070101
GroupedDBID -Y2
-~X
.VR
06D
0R~
0VY
123
1N0
29P
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
408
40D
40E
5VS
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDBE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFBBN
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
H13
HF~
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
ITM
IWAJR
IXC
I~X
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9R
PF0
PT4
QOS
R89
R9I
RIG
RNS
ROL
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TUC
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
YNT
ZMTXR
~A9
AAYXX
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
ABRTQ
ID FETCH-LOGICAL-c198t-a8a9a821608462b61896ed3bcc26b288f9779cb8ce2f836a3a0fc91be735c5543
IEDL.DBID AGYKE
ISSN 0081-5438
IngestDate Sun Jul 13 04:34:45 EDT 2025
Tue Jul 01 05:26:36 EDT 2025
Tue Mar 11 01:10:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue Suppl 1
Keywords optimal control
admissible control
state constraints
nonlinear dynamic system
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c198t-a8a9a821608462b61896ed3bcc26b288f9779cb8ce2f836a3a0fc91be735c5543
Notes ObjectType-Article-1
ObjectType-Feature-2
SourceType-Conference Papers & Proceedings-1
content type line 22
PQID 3175954505
PQPubID 2044165
ParticipantIDs proquest_journals_3175954505
crossref_primary_10_1134_S0081543824070101
springer_journals_10_1134_S0081543824070101
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: Heidelberg
PublicationTitle Proceedings of the Steklov Institute of Mathematics
PublicationTitleAbbrev Proc. Steklov Inst. Math
PublicationYear 2024
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References AA Lebedev (8489_CR1) 1970
AE Bryson (8489_CR3) 1969
NN Krasovskii (8489_CR8) 1985
VN Afanas’ev (8489_CR5) 2003
DV Mazgalin (8489_CR2) 2010; 3
FP Vasil’ev (8489_CR4) 2011
NN Krasovskii (8489_CR7) 1974
NN Krasovskii (8489_CR6) 1968
References_xml – volume-title: Theory of Motion Control
  year: 1968
  ident: 8489_CR6
– volume-title: Positional Differential Games
  year: 1974
  ident: 8489_CR7
– volume-title: Missile Ballistics
  year: 1970
  ident: 8489_CR1
– volume-title: Control of a Dynamical System: Problem on the Minimum of Guaranteed Result
  year: 1985
  ident: 8489_CR8
– volume-title: Mathematical Theory of Control Systems Design
  year: 2003
  ident: 8489_CR5
– volume: 3
  start-page: 21
  year: 2010
  ident: 8489_CR2
  publication-title: Inform.-Upravl. Sist.
– volume-title: Applied Optimal Control: Optimization, Estimation, and Control
  year: 1969
  ident: 8489_CR3
– volume-title: Optimization Methods
  year: 2011
  ident: 8489_CR4
SSID ssj0045749
Score 2.305407
Snippet A control problem is considered for the translational motion of the center of mass of an object as a material point under the action of a constant modulus...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage S138
SubjectTerms Center of mass
Constraints
Control systems
Coordinates
Dynamical systems
Gravitational fields
Mathematics
Mathematics and Statistics
Nonlinear dynamics
Optimal control
Translational motion
Title On One Approach to Solving an Applied Control Problem with State Constraints
URI https://link.springer.com/article/10.1134/S0081543824070101
https://www.proquest.com/docview/3175954505
Volume 327
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3NT8IwFMBfFC568NuIounBk2ZkbbeuOwIBiQqYCAmelrV0F80wblz86223TiLqgXO3Zntt3_u1fR8A14xpuxEo6uBQchOSIxweSuYojrEiSewnc3MOORyxwdS7n_kzG8edVd7u1ZVkoanLuiNeEdOr7T3lZg9iMqNtQ13jh-vVoN6-e3noVQrY8wNLvRw75gV7mflnJz_N0Yox165FC2vT34dJ9Z2lk8lra5mLlvxcS-G44Y8cwJ6lT9Qup8shbKn0CHaH36lbs2N4HKdonCrUtsnGUb5Az4s3c-6A4hRZakXd0sUdPZUFaZA5z0UFuZqmrKg8kWcnMO33Jt2BY0suOBKHPHdiHocxJ5i5mkuIYJiHTM2pkJIwQThPNC6GUnCpx5FTFtPYTWSIhQqoLzWZ0FOopYtUnQFy5dzwDIsJ0YpCcxgOWKBhkXBJEq05GnBTST56LzNrRMWOhHrRLxE1oFmNTWQXWRYZ9Ak1Abp-A24rUa-a_-3sfKOnL2CHaJApXViaUMs_lupSg0gurvTE63c6oys7Ab8A49LQDQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ07T8MwEIBP0A7AwBtRKOCBCZSqdhLHGauqUOgLiVYqU2S7zgJKEUkXfj124lBRYOjsxEr8uPvufL4DuKZU641AuQ4OJTNXcoTDQkkdxTBWJOZ-PDN-yMGQdife49Sf2nvcaRntXh5J5pK6qDvi5Xd6tb53mbFBTGa0Tah62gTXy7raun_pdUoB7PmBpV6GHfOCPcz8s5Of6mjJmCvHorm2uduDcfmdRZDJa2ORiYb8XEnhuOaP7MOupU_UKpbLAWyo5BB2Bt-pW9Mj6I8SNEoUatlk4yibo-f5m_E7IJ4gS62oXYS4o6eiIA0y_lyUk6tpSvPKE1l6DJO7zrjddWzJBUfikGUOZzzkjGDa1FxCBMUspGrmCikJFYSxWONiKAWTeh6ZS7nLm7EMsVCB60tNJu4JVJJ5ok4BNeXM8AzlhGhBoTkMBzTQsEiYJLGWHDW4KUc-ei8ya0S5ReJ60a8hqkG9nJvIbrI0MugTagJs-jW4LYd62fxvZ2drPX0FW93xoB_1H4a9c9gmGmqKcJY6VLKPhbrQUJKJS7sIvwBGl9GA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PT4MwFMdfdCZGD_42Tqf24EnDpAVKOS5zc7qfiS6ZJ4RSLhq2CLv419tCcXHqwXguNNDX9n3avn4fwAWl0m-4wjKwx5m6khMazOPUEAxjQeLAiSO1D9kf0M7Yvp84E53nNC2j3csjyeJOg1JpSrLrWRTrHCR2fr9X-n6LqfWIUklbhTVbSdtVYK1x-9RtlZOx7biagBk21Av6YPPHSr66pgVvLh2R5p6nvQ3P5TcXAScv9XkW1vn7kpzjP35qB7Y0laJG0Y12YUUke7DZ_5R0TfehN0zQMBGooUXIUTZFD9NXtR-BggRpmkXNIvQdjYpENUjt86KcaFVRmmekyNIDGLdbj82OoVMxGBx7LDMCFngBI5iakldISDHzqIiskHNCQ8JYLDHS4yHj0r7MooEVmDH3cChcy-GSWKxDqCTTRBwBMnmkOIcGhMgJRPIZdqkrIZIwTmI5o1ThsrSCPysUN_x8pWLZ_rcmqkKttJOvB1_qKyTyJBmaThWuymZfFP9a2fGfnj6H9dFN2-_dDbonsEEk6xRRLjWoZG9zcSpZJQvPdH_8AIE32mQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+Steklov+Institute+of+Mathematics&rft.atitle=On+One+Approach+to+Solving+an+Applied+Control+Problem+with+State+Constraints&rft.date=2024-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0081-5438&rft.eissn=1531-8605&rft.volume=327&rft.issue=1&rft.spage=S138&rft.epage=S154&rft_id=info:doi/10.1134%2FS0081543824070101&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0081-5438&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0081-5438&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0081-5438&client=summon