Hydrogel-supported poly(L-lactic acid) and polystyrene microsphere-based three-dimensional culture systems for in vitro cell expansion
The in vitro expansion of stem cells is important for their application in different life science fields such as cellular tissue and organ repair. An objective of this paper was to achieve static cell culture in vitro through peptide hydrogel-supported microspheres (MSs). The peptides, with their ge...
Saved in:
Published in | Frontiers of materials science Vol. 18; no. 2 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Higher Education Press
01.06.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2095-025X 2095-0268 |
DOI | 10.1007/s11706-024-0682-z |
Cover
Loading…
Abstract | The
in vitro
expansion of stem cells is important for their application in different life science fields such as cellular tissue and organ repair. An objective of this paper was to achieve static cell culture
in vitro
through peptide hydrogel-supported microspheres (MSs). The peptides, with their gel-forming properties, microstructures, and mechanical strengths characterized, were found to have good support for the MSs and to be injectable. The internal structures of poly(L-lactic acid) microspheres (PLLA-MSs) and polystyrene microspheres (PS-MSs) made in the laboratory were observed and statistically analyzed in terms of particle size and pore size, following which the co-cultured MSs with cells were found to have good cell adhesion. In addition, three-dimensional (3D) culturing of cells was performed on the peptide and microcarrier composite scaffolds to measure cell viability and cell proliferation. The results showed that the peptides could be stimulated by the culture medium to self-assembly form a 3D fiber network structure. Under the peptide-MS composite scaffold-based cell culture system, further enhancement of the cell culture effect was measured. The peptide-MS composite scaffolds have great potential for the application in 3D cell culture and
in vitro
cell expansion. |
---|---|
AbstractList | The
in vitro
expansion of stem cells is important for their application in different life science fields such as cellular tissue and organ repair. An objective of this paper was to achieve static cell culture
in vitro
through peptide hydrogel-supported microspheres (MSs). The peptides, with their gel-forming properties, microstructures, and mechanical strengths characterized, were found to have good support for the MSs and to be injectable. The internal structures of poly(L-lactic acid) microspheres (PLLA-MSs) and polystyrene microspheres (PS-MSs) made in the laboratory were observed and statistically analyzed in terms of particle size and pore size, following which the co-cultured MSs with cells were found to have good cell adhesion. In addition, three-dimensional (3D) culturing of cells was performed on the peptide and microcarrier composite scaffolds to measure cell viability and cell proliferation. The results showed that the peptides could be stimulated by the culture medium to self-assembly form a 3D fiber network structure. Under the peptide-MS composite scaffold-based cell culture system, further enhancement of the cell culture effect was measured. The peptide-MS composite scaffolds have great potential for the application in 3D cell culture and
in vitro
cell expansion. The in vitro expansion of stem cells is important for their application in different life science fields such as cellular tissue and organ repair. An objective of this paper was to achieve static cell culture in vitro through peptide hydrogel-supported microspheres (MSs). The peptides, with their gel-forming properties, microstructures, and mechanical strengths characterized, were found to have good support for the MSs and to be injectable. The internal structures of poly(L-lactic acid) microspheres (PLLA-MSs) and polystyrene microspheres (PS-MSs) made in the laboratory were observed and statistically analyzed in terms of particle size and pore size, following which the co-cultured MSs with cells were found to have good cell adhesion. In addition, three-dimensional (3D) culturing of cells was performed on the peptide and microcarrier composite scaffolds to measure cell viability and cell proliferation. The results showed that the peptides could be stimulated by the culture medium to self-assembly form a 3D fiber network structure. Under the peptide-MS composite scaffold-based cell culture system, further enhancement of the cell culture effect was measured. The peptide-MS composite scaffolds have great potential for the application in 3D cell culture and in vitro cell expansion. |
ArticleNumber | 240682 |
Author | Chen, Jiaxuan Hao, Huaying Sun, Lihong Liang, Jun |
Author_xml | – sequence: 1 givenname: Huaying surname: Hao fullname: Hao, Huaying organization: College of Light Industry Science and Engineering, Tianjin University of Science & Technology – sequence: 2 givenname: Lihong surname: Sun fullname: Sun, Lihong organization: College of Food Science and Engineering, Tianjin University of Science & Technology – sequence: 3 givenname: Jiaxuan surname: Chen fullname: Chen, Jiaxuan organization: College of Light Industry Science and Engineering, Tianjin University of Science & Technology – sequence: 4 givenname: Jun surname: Liang fullname: Liang, Jun email: jliang1118@yeah.net organization: State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, College of Light Industry Science and Engineering, Tianjin University of Science & Technology |
BookMark | eNp1kL9OwzAQhy1UJErpA7BZYoHBYDtx_oyoAopUiQUkNsu1L22qJA52gkgfgOfGJQgmvJx1-n2nu-8UTRrbAELnjF4zStMbz1hKE0J5TGiScbI_QlNOcxE6STb5_YvXEzT3fkfDE0zkMZuiz-VgnN1ARXzfttZ1YHBrq-FyRSqlu1JjpUtzhVUz9n03OGgA16V21rdbcEDWygeq2zoAYsoaGl_aRlVY91XXO8A-UFB7XFiHywa_l52zWENVYfho1Xf6DB0XqvIw_6kz9HJ_97xYktXTw-PidkU0y7OOsMLEXPMo1WmmCoijIhMmpzTOGLDc6EQYLnikaMpMUURxagwTfJ3EjOosSfNohi7Gua2zbz34Tu5s78KyXkY0EVEUrCQhxcbU4UbvoJCtK2vlBsmoPBiXo3EZjMuDcbkPDB8ZH7LNBtzf5P-hLzqxiFI |
Cites_doi | 10.1016/j.bioactmat.2019.01.002 10.1039/C9PY01021A 10.1038/s41598-020-59148-3 10.1016/j.biomaterials.2007.05.030 10.1089/ten.2005.11.1699 10.1007/s11626-997-0008-3 10.1111/j.1600-079X.2012.01016.x 10.1002/mabi.200900224 10.1016/S0142-9612(03)00208-4 10.1016/j.colsurfb.2010.11.016 10.1016/j.biotechadv.2013.03.006 10.1016/j.biomaterials.2011.04.066 10.1126/science.aaf3627 10.1002/jbm.b.34141 10.1002/advs.201903718 10.1002/marc.200900818 10.1016/j.actbio.2012.09.010 10.1016/j.biomaterials.2010.06.001 10.1016/j.jare.2013.07.006 10.1002/term.545 10.1016/j.apmt.2022.101560 10.1002/term.224 10.1016/j.biomaterials.2005.05.081 10.1016/j.polymdegradstab.2019.01.003 10.1038/s41578-023-00535-3 10.1002/adhm.201600938 10.1007/s10439-013-0966-4 10.1002/adhm.202302327 10.1039/D2TB01198K 10.1016/j.biomaterials.2020.120176 10.1002/jbm.a.35638 10.1038/jcbfm.2009.219 10.1016/j.cis.2023.102866 10.1039/D1TB02628C 10.1016/j.biomaterials.2012.02.024 10.1002/jemt.22470 10.1016/j.biotechadv.2019.107459 10.1002/adhm.201900506 10.3389/fchem.2018.00499 10.1016/j.biomaterials.2009.04.029 10.1016/j.biomaterials.2011.09.090 10.1016/j.biomaterials.2008.11.023 10.3724/SP.J.1105.2011.11113 |
ContentType | Journal Article |
Copyright | Higher Education Press 2024 Higher Education Press 2024. |
Copyright_xml | – notice: Higher Education Press 2024 – notice: Higher Education Press 2024. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11706-024-0682-z |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2095-0268 |
ExternalDocumentID | 10_1007_s11706_024_0682_z |
GroupedDBID | -58 -5G -BR -EM -~C .VR 06C 06D 0R~ 0VY 1-T 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 40E 5VS 95- 95. 95~ 96X AAAVM AABHQ AACDK AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ AXYYD B-. BDATZ BGNMA CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HF~ HG6 HMJXF HRMNR HZ~ IJ- IKXTQ IWAJR IXD I~Z J-C JBSCW JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O9J P4S P9N PF0 PT4 QOR R89 R9I ROL RSV S16 S3B SAP SCL SCM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN TSG TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 YLTOR Z7R Z7V Z7X Z85 ZMTXR ~A9 -SB -S~ AAPKM AAXDM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CAJEB CITATION Q-- U1G U5L ABRTQ |
ID | FETCH-LOGICAL-c198t-1fd42c237c78afe43f85d900481e19dc65d2523a071dff347dd152b6410c86793 |
IEDL.DBID | U2A |
ISSN | 2095-025X |
IngestDate | Fri Jul 25 11:07:54 EDT 2025 Tue Jul 01 02:09:54 EDT 2025 Fri Feb 21 02:41:56 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | three-dimensional culture microsphere microcarrier peptide hydrogel cell expansion cell scaffold |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c198t-1fd42c237c78afe43f85d900481e19dc65d2523a071dff347dd152b6410c86793 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3065335946 |
PQPubID | 2044428 |
ParticipantIDs | proquest_journals_3065335946 crossref_primary_10_1007_s11706_024_0682_z springer_journals_10_1007_s11706_024_0682_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing – name: Heidelberg |
PublicationTitle | Frontiers of materials science |
PublicationTitleAbbrev | Front. Mater. Sci |
PublicationYear | 2024 |
Publisher | Higher Education Press Springer Nature B.V |
Publisher_xml | – name: Higher Education Press – name: Springer Nature B.V |
References | Shi, Jiang, Sun (CR33) 2011; 85 Zhang, Khademhosseini (CR1) 2017; 356 Tseng, Young, Wang (CR26) 2012; 33 Sun, Gregory, Zhao (CR3) 2023; 314 Chen, Le, Fernandes-Cunha (CR7) 2020; 255 Motealleh, Kehr (CR16) 2017; 6 Ahmed (CR18) 2015; 6 Rangarajan, Madden, Bursac (CR41) 2014; 42 Jin, Mao, Xie (CR9) 2010; 30 Huang, Wei, Yeh (CR38) 2012; 33 Bueno, Bilgen, Barabino (CR43) 2005; 11 Berenzi, Steimberg, Boniotti (CR42) 2015; 78 Zhang, Zhang, Ling (CR24) 2013; 54 Loesberg, te Riet, van Delft (CR40) 2007; 28 Liu, Tian, Hedrick (CR13) 2010; 31 CR35 Andersson, Bäckhed, von Euler (CR39) 2003; 24 Sart, Errachid, Schneider (CR22) 2013; 7 Qu, Xiao, Tian (CR27) 2019; 107 Shi, Sun, Jiang (CR34) 2009; 9 Curvello, Kast, Ordóñez-Morán (CR4) 2023; 8 Koutsopoulos, Zhang (CR10) 2013; 9 Wang, Ho, Wang (CR25) 2009; 30 Shi, Cui, Sun (CR36) 2019; 161 El-Husseiny, Mady, El-Dakroury (CR5) 2022; 29 Schop, van Dijkhuizen-Radersma, Borgart (CR21) 2010; 4 Zhau, Goodwin, Chang (CR6) 1997; 33 Bai, Han, Han (CR28) 2024; 13 Kim, Yoon, Lee (CR32) 2006; 27 Wang, Chu, Ni (CR8) 2020; 10 He, Zhang, Liao (CR23) 2020; 39 Yang, Xu, Zhao (CR11) 2020; 7 Chen, Zou (CR19) 2019; 4 Maksoud, Velázquez de la Paz, Hann (CR30) 2022; 10 Spicer (CR2) 2020; 11 Chen, Reuveny, Oh (CR31) 2013; 31 Koutsopoulos (CR20) 2016; 104 Elkhoury, Russell, Sanchez-Gonzalez (CR17) 2019; 8 Lin, Liu, Xiao (CR29) 2022; 10 Liu, Ee, Ke (CR15) 2009; 30 Chiu, Cheng, Engel (CR37) 2011; 32 Li, Sun, Li (CR12) 2018; 6 Liu, Tian, Wang (CR14) 2010; 31 K Elkhoury (682_CR17) 2019; 8 C K Wang (682_CR25) 2009; 30 H E Zhau (682_CR6) 1997; 33 A Lin (682_CR29) 2022; 10 X Shi (682_CR34) 2009; 9 A S Andersson (682_CR39) 2003; 24 L Zhang (682_CR24) 2013; 54 W Sun (682_CR3) 2023; 314 M Qu (682_CR27) 2019; 107 682_CR35 K Jin (682_CR9) 2010; 30 X Li (682_CR12) 2018; 6 E M Ahmed (682_CR18) 2015; 6 J Chen (682_CR19) 2019; 4 W A Loesberg (682_CR40) 2007; 28 Z Yang (682_CR11) 2020; 7 Q He (682_CR23) 2020; 39 X Shi (682_CR36) 2019; 161 P C Tseng (682_CR26) 2012; 33 A Motealleh (682_CR16) 2017; 6 S Q Liu (682_CR14) 2010; 31 S Sart (682_CR22) 2013; 7 Y C Chiu (682_CR37) 2011; 32 F Chen (682_CR7) 2020; 255 S Koutsopoulos (682_CR10) 2013; 9 S Rangarajan (682_CR41) 2014; 42 L Bai (682_CR28) 2024; 13 H M El-Husseiny (682_CR5) 2022; 29 S Koutsopoulos (682_CR20) 2016; 104 D Schop (682_CR21) 2010; 4 C C Huang (682_CR38) 2012; 33 A Berenzi (682_CR42) 2015; 78 T K Kim (682_CR32) 2006; 27 E M Bueno (682_CR43) 2005; 11 S Q Liu (682_CR15) 2009; 30 J Wang (682_CR8) 2020; 10 X Shi (682_CR33) 2011; 85 C D Spicer (682_CR2) 2020; 11 Y S Zhang (682_CR1) 2017; 356 R Curvello (682_CR4) 2023; 8 S Q Liu (682_CR13) 2010; 31 F J Maksoud (682_CR30) 2022; 10 A K L Chen (682_CR31) 2013; 31 |
References_xml | – volume: 4 start-page: 120 year: 2019 end-page: 131 ident: CR19 article-title: Self-assemble peptide biomaterials and their biomedical applications publication-title: Bioactive Materials doi: 10.1016/j.bioactmat.2019.01.002 – volume: 11 start-page: 184 issue: 2 year: 2020 end-page: 219 ident: CR2 article-title: Hydrogel scaffolds for tissue engineering: the importance of polymer choice publication-title: Polymer Chemistry doi: 10.1039/C9PY01021A – volume: 10 start-page: 2576 issue: 1 year: 2020 ident: CR8 article-title: The effect of Matrigel as scaffold material for neural stem cell transplantation for treating spinal cord injury publication-title: Scientific Reports doi: 10.1038/s41598-020-59148-3 – volume: 28 start-page: 3944 issue: 27 year: 2007 end-page: 3951 ident: CR40 article-title: The threshold at which substrate nanogroove dimensions may influence fibroblast alignment and adhesion publication-title: Biomaterials doi: 10.1016/j.biomaterials.2007.05.030 – volume: 11 start-page: 1699 issue: 11–12 year: 2005 end-page: 1709 ident: CR43 article-title: Wavy-walled bioreactor supports increased cell proliferation and matrix deposition in engineered cartilage constructs publication-title: Tissue Engineering doi: 10.1089/ten.2005.11.1699 – volume: 33 start-page: 375 issue: 5 year: 1997 end-page: 380 ident: CR6 article-title: Establishment of a three-dimensional human prostate organoid coculture under microgravity-simulated conditions: evaluation of androgen-induced growth and PSA expression publication-title: In Vitro Cellular & Developmental Biology: Animal doi: 10.1007/s11626-997-0008-3 – volume: 54 start-page: 24 issue: 1 year: 2013 end-page: 32 ident: CR24 article-title: Sustained release of melatonin from poly (lactic-co-glycolic acid) (PLGA) microspheres to induce osteogenesis of human mesenchymal stem cells publication-title: Journal of Pineal Research doi: 10.1111/j.1600-079X.2012.01016.x – volume: 9 start-page: 1211 issue: 12 year: 2009 end-page: 1218 ident: CR34 article-title: Biodegradable polymeric microcarriers with controllable porous structure for tissue engineering publication-title: Macromolecular Bioscience doi: 10.1002/mabi.200900224 – volume: 24 start-page: 3427 issue: 20 year: 2003 end-page: 3436 ident: CR39 article-title: Nanoscale features influence epithelial cell morphology and cytokine production publication-title: Biomaterials doi: 10.1016/S0142-9612(03)00208-4 – volume: 85 start-page: 73 issue: 1 year: 2011 end-page: 80 ident: CR33 article-title: Hydrolysis and biomineralization of porous PLA microspheres and their influence on cell growth publication-title: Colloids and Surfaces B: Biointerfaces doi: 10.1016/j.colsurfb.2010.11.016 – volume: 31 start-page: 1032 issue: 7 year: 2013 end-page: 1046 ident: CR31 article-title: Application of human mesenchymal and pluripotent stem cell microcarrier cultures in cellular therapy: achievements and future direction publication-title: Biotechnology Advances doi: 10.1016/j.biotechadv.2013.03.006 – volume: 32 start-page: 6045 issue: 26 year: 2011 end-page: 6051 ident: CR37 article-title: The role of pore size on vascularization and tissue remodeling in PEG hydrogels publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.04.066 – volume: 356 start-page: eaaf3627 issue: 6337 year: 2017 ident: CR1 article-title: Advances in engineering hydrogels publication-title: Science doi: 10.1126/science.aaf3627 – volume: 107 start-page: 511 issue: 3 year: 2019 end-page: 520 ident: CR27 article-title: Fabrication of superparamagnetic nanofibrous poly(l-lactic acid)/γ-Fe O microspheres for cell carriers publication-title: Journal of Biomedical Materials Research Part B: Applied Biomaterials doi: 10.1002/jbm.b.34141 – volume: 7 start-page: 1903718 issue: 9 year: 2020 ident: CR11 article-title: Designer self-assembling peptide hydrogels to engineer 3D cell microenvironments for cell constructs formation and precise oncology remodeling in ovarian cancer publication-title: Advanced Science doi: 10.1002/advs.201903718 – ident: CR35 – volume: 31 start-page: 1148 issue: 13 year: 2010 end-page: 1154 ident: CR14 article-title: Injectable biodegradable poly(ethylene glycol)/RGD peptide hybrid hydrogels for chondrogenesis of human mesenchymal stem cells publication-title: Macromolecular Rapid Communications doi: 10.1002/marc.200900818 – volume: 9 start-page: 5162 issue: 2 year: 2013 end-page: 5169 ident: CR10 article-title: Long-term three-dimensional neural tissue cultures in functionalized self-assembling peptide hydrogels, matrigel and collagen I publication-title: Acta Biomaterialia doi: 10.1016/j.actbio.2012.09.010 – volume: 31 start-page: 7298 issue: 28 year: 2010 end-page: 7307 ident: CR13 article-title: Biomimetic hydrogels for chondrogenic differentiation of human mesenchymal stem cells to neocartilage publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.06.001 – volume: 6 start-page: 105 issue: 2 year: 2015 end-page: 121 ident: CR18 article-title: Hydrogel: preparation, characterization, and applications: a review publication-title: Journal of Advanced Research doi: 10.1016/j.jare.2013.07.006 – volume: 7 start-page: 537 issue: 7 year: 2013 end-page: 551 ident: CR22 article-title: Modulation of mesenchymal stem cell actin organization on conventional microcarriers for proliferation and differentiation in stirred bioreactors publication-title: Journal of Tissue Engineering and Regenerative Medicine doi: 10.1002/term.545 – volume: 29 start-page: 101560 year: 2022 ident: CR5 article-title: Smart/stimuli-responsive hydrogels: state-of-the-art platforms for bone tissue engineering publication-title: Applied Materials Today doi: 10.1016/j.apmt.2022.101560 – volume: 4 start-page: 131 issue: 2 year: 2010 end-page: 140 ident: CR21 article-title: Expansion of human mesenchymal stromal cells on microcarriers: growth and metabolism publication-title: Journal of Tissue Engineering and Regenerative Medicine doi: 10.1002/term.224 – volume: 27 start-page: 152 issue: 2 year: 2006 end-page: 159 ident: CR32 article-title: Gas foamed open porous biodegradable polymeric microspheres publication-title: Biomaterials doi: 10.1016/j.biomaterials.2005.05.081 – volume: 161 start-page: 319 year: 2019 end-page: 325 ident: CR36 article-title: Promoting cell growth on porous PLA microspheres through simple degradation methods publication-title: Polymer Degradation & Stability doi: 10.1016/j.polymdegradstab.2019.01.003 – volume: 8 start-page: 314 issue: 5 year: 2023 end-page: 330 ident: CR4 article-title: Biomaterial-based platforms for tumour tissue engineering publication-title: Nature Reviews Materials doi: 10.1038/s41578-023-00535-3 – volume: 6 start-page: 1600938 issue: 1 year: 2017 ident: CR16 article-title: Nanocomposite hydrogels and their applications in tissue engineering publication-title: Advanced Healthcare Materials doi: 10.1002/adhm.201600938 – volume: 42 start-page: 1391 issue: 7 year: 2014 end-page: 1405 ident: CR41 article-title: Use of flow, electrical, and mechanical stimulation to promote engineering of striated muscles publication-title: Annals of Biomedical Engineering doi: 10.1007/s10439-013-0966-4 – volume: 13 start-page: 2302327 issue: 3 year: 2024 ident: CR28 article-title: Stem cells expansion vector via bioadhesive porous microspheres for accelerating articular cartilage regeneration publication-title: Advanced Healthcare Materials doi: 10.1002/adhm.202302327 – volume: 10 start-page: 6464 issue: 34 year: 2022 end-page: 6471 ident: CR29 article-title: Controllable preparation of bioactive open porous microspheres for tissue engineering publication-title: Journal of Materials Chemistry B: Materials for Biology and Medicine doi: 10.1039/D2TB01198K – volume: 255 start-page: 120176 year: 2020 ident: CR7 article-title: Bio-orthogonally crosslinked hyaluronate-collagen hydrogel for suture-free corneal defect repair publication-title: Biomaterials doi: 10.1016/j.biomaterials.2020.120176 – volume: 104 start-page: 1002 issue: 4 year: 2016 end-page: 1016 ident: CR20 article-title: Self-assembling peptide nanofiber hydrogels in tissue engineering and regenerative medicine: progress, design guidelines, and applications publication-title: Journal of Biomedical Materials Research Part A doi: 10.1002/jbm.a.35638 – volume: 30 start-page: 534 issue: 3 year: 2010 end-page: 544 ident: CR9 article-title: Transplantation of human neural precursor cells in Matrigel scaffolding improves outcome from focal cerebral ischemia after delayed postischemic treatment in rats publication-title: Journal of Cerebral Blood Flow and Metabolism doi: 10.1038/jcbfm.2009.219 – volume: 314 start-page: 102866 year: 2023 ident: CR3 article-title: Designed peptide amphiphiles as scaffolds for tissue engineering publication-title: Advances in Colloid and Interface Science doi: 10.1016/j.cis.2023.102866 – volume: 10 start-page: 8111 issue: 40 year: 2022 end-page: 8165 ident: CR30 article-title: Porous biomaterials for tissue engineering: a review publication-title: Journal of Materials Chemistry B: Materials for Biology and Medicine doi: 10.1039/D1TB02628C – volume: 33 start-page: 4069 issue: 16 year: 2012 end-page: 4077 ident: CR38 article-title: Injectable PLGA porous beads cellularized by hAFSCs for cellular cardiomyoplasty publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.02.024 – volume: 78 start-page: 249 issue: 4 year: 2015 end-page: 254 ident: CR42 article-title: MRT letter: 3D culture of isolated cells: a fast and efficient method for optimizing their histochemical and immunocytochemical analyses publication-title: Microscopy Research and Technique doi: 10.1002/jemt.22470 – volume: 39 start-page: 107459 year: 2020 ident: CR23 article-title: Current advances in microsphere based cell culture and tissue engineering publication-title: Biotechnology Advances doi: 10.1016/j.biotechadv.2019.107459 – volume: 8 start-page: 1900506 issue: 18 year: 2019 ident: CR17 article-title: Soft-nanoparticle functionalization of natural hydrogels for tissue engineering applications publication-title: Advanced Healthcare Materials doi: 10.1002/adhm.201900506 – volume: 6 start-page: 499 year: 2018 ident: CR12 article-title: Functional hydrogels with tunable structures and properties for tissue engineering applications publication-title: Frontiers in Chemistry doi: 10.3389/fchem.2018.00499 – volume: 30 start-page: 4178 issue: 25 year: 2009 end-page: 4186 ident: CR25 article-title: Controlled-release of rhBMP-2 carriers in the regeneration of osteonecrotic bone publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.04.029 – volume: 33 start-page: 556 issue: 2 year: 2012 end-page: 564 ident: CR26 article-title: Spontaneous osteogenesis of MSCs cultured on 3D microcarriers through alteration of cytoskeletal tension publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.09.090 – volume: 30 start-page: 1453 issue: 8 year: 2009 end-page: 1461 ident: CR15 article-title: Biodegradable poly(ethylene glycol)–peptide hydrogels with well-defined structure and properties for cell delivery publication-title: Biomaterials doi: 10.1016/j.biomaterials.2008.11.023 – volume: 356 start-page: eaaf3627 issue: 6337 year: 2017 ident: 682_CR1 publication-title: Science doi: 10.1126/science.aaf3627 – volume: 104 start-page: 1002 issue: 4 year: 2016 ident: 682_CR20 publication-title: Journal of Biomedical Materials Research Part A doi: 10.1002/jbm.a.35638 – volume: 11 start-page: 1699 issue: 11–12 year: 2005 ident: 682_CR43 publication-title: Tissue Engineering doi: 10.1089/ten.2005.11.1699 – volume: 4 start-page: 131 issue: 2 year: 2010 ident: 682_CR21 publication-title: Journal of Tissue Engineering and Regenerative Medicine doi: 10.1002/term.224 – volume: 7 start-page: 1903718 issue: 9 year: 2020 ident: 682_CR11 publication-title: Advanced Science doi: 10.1002/advs.201903718 – ident: 682_CR35 doi: 10.3724/SP.J.1105.2011.11113 – volume: 10 start-page: 2576 issue: 1 year: 2020 ident: 682_CR8 publication-title: Scientific Reports doi: 10.1038/s41598-020-59148-3 – volume: 6 start-page: 1600938 issue: 1 year: 2017 ident: 682_CR16 publication-title: Advanced Healthcare Materials doi: 10.1002/adhm.201600938 – volume: 7 start-page: 537 issue: 7 year: 2013 ident: 682_CR22 publication-title: Journal of Tissue Engineering and Regenerative Medicine doi: 10.1002/term.545 – volume: 29 start-page: 101560 year: 2022 ident: 682_CR5 publication-title: Applied Materials Today doi: 10.1016/j.apmt.2022.101560 – volume: 30 start-page: 534 issue: 3 year: 2010 ident: 682_CR9 publication-title: Journal of Cerebral Blood Flow and Metabolism doi: 10.1038/jcbfm.2009.219 – volume: 13 start-page: 2302327 issue: 3 year: 2024 ident: 682_CR28 publication-title: Advanced Healthcare Materials doi: 10.1002/adhm.202302327 – volume: 6 start-page: 499 year: 2018 ident: 682_CR12 publication-title: Frontiers in Chemistry doi: 10.3389/fchem.2018.00499 – volume: 314 start-page: 102866 year: 2023 ident: 682_CR3 publication-title: Advances in Colloid and Interface Science doi: 10.1016/j.cis.2023.102866 – volume: 39 start-page: 107459 year: 2020 ident: 682_CR23 publication-title: Biotechnology Advances doi: 10.1016/j.biotechadv.2019.107459 – volume: 161 start-page: 319 year: 2019 ident: 682_CR36 publication-title: Polymer Degradation & Stability doi: 10.1016/j.polymdegradstab.2019.01.003 – volume: 30 start-page: 4178 issue: 25 year: 2009 ident: 682_CR25 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.04.029 – volume: 11 start-page: 184 issue: 2 year: 2020 ident: 682_CR2 publication-title: Polymer Chemistry doi: 10.1039/C9PY01021A – volume: 33 start-page: 375 issue: 5 year: 1997 ident: 682_CR6 publication-title: In Vitro Cellular & Developmental Biology: Animal doi: 10.1007/s11626-997-0008-3 – volume: 85 start-page: 73 issue: 1 year: 2011 ident: 682_CR33 publication-title: Colloids and Surfaces B: Biointerfaces doi: 10.1016/j.colsurfb.2010.11.016 – volume: 8 start-page: 1900506 issue: 18 year: 2019 ident: 682_CR17 publication-title: Advanced Healthcare Materials doi: 10.1002/adhm.201900506 – volume: 33 start-page: 556 issue: 2 year: 2012 ident: 682_CR26 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.09.090 – volume: 33 start-page: 4069 issue: 16 year: 2012 ident: 682_CR38 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.02.024 – volume: 31 start-page: 1148 issue: 13 year: 2010 ident: 682_CR14 publication-title: Macromolecular Rapid Communications doi: 10.1002/marc.200900818 – volume: 6 start-page: 105 issue: 2 year: 2015 ident: 682_CR18 publication-title: Journal of Advanced Research doi: 10.1016/j.jare.2013.07.006 – volume: 28 start-page: 3944 issue: 27 year: 2007 ident: 682_CR40 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2007.05.030 – volume: 30 start-page: 1453 issue: 8 year: 2009 ident: 682_CR15 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2008.11.023 – volume: 54 start-page: 24 issue: 1 year: 2013 ident: 682_CR24 publication-title: Journal of Pineal Research doi: 10.1111/j.1600-079X.2012.01016.x – volume: 9 start-page: 1211 issue: 12 year: 2009 ident: 682_CR34 publication-title: Macromolecular Bioscience doi: 10.1002/mabi.200900224 – volume: 78 start-page: 249 issue: 4 year: 2015 ident: 682_CR42 publication-title: Microscopy Research and Technique doi: 10.1002/jemt.22470 – volume: 10 start-page: 8111 issue: 40 year: 2022 ident: 682_CR30 publication-title: Journal of Materials Chemistry B: Materials for Biology and Medicine doi: 10.1039/D1TB02628C – volume: 107 start-page: 511 issue: 3 year: 2019 ident: 682_CR27 publication-title: Journal of Biomedical Materials Research Part B: Applied Biomaterials doi: 10.1002/jbm.b.34141 – volume: 8 start-page: 314 issue: 5 year: 2023 ident: 682_CR4 publication-title: Nature Reviews Materials doi: 10.1038/s41578-023-00535-3 – volume: 31 start-page: 7298 issue: 28 year: 2010 ident: 682_CR13 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.06.001 – volume: 27 start-page: 152 issue: 2 year: 2006 ident: 682_CR32 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2005.05.081 – volume: 10 start-page: 6464 issue: 34 year: 2022 ident: 682_CR29 publication-title: Journal of Materials Chemistry B: Materials for Biology and Medicine doi: 10.1039/D2TB01198K – volume: 42 start-page: 1391 issue: 7 year: 2014 ident: 682_CR41 publication-title: Annals of Biomedical Engineering doi: 10.1007/s10439-013-0966-4 – volume: 9 start-page: 5162 issue: 2 year: 2013 ident: 682_CR10 publication-title: Acta Biomaterialia doi: 10.1016/j.actbio.2012.09.010 – volume: 32 start-page: 6045 issue: 26 year: 2011 ident: 682_CR37 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.04.066 – volume: 24 start-page: 3427 issue: 20 year: 2003 ident: 682_CR39 publication-title: Biomaterials doi: 10.1016/S0142-9612(03)00208-4 – volume: 255 start-page: 120176 year: 2020 ident: 682_CR7 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2020.120176 – volume: 4 start-page: 120 year: 2019 ident: 682_CR19 publication-title: Bioactive Materials doi: 10.1016/j.bioactmat.2019.01.002 – volume: 31 start-page: 1032 issue: 7 year: 2013 ident: 682_CR31 publication-title: Biotechnology Advances doi: 10.1016/j.biotechadv.2013.03.006 |
SSID | ssj0000515941 |
Score | 2.2994277 |
Snippet | The
in vitro
expansion of stem cells is important for their application in different life science fields such as cellular tissue and organ repair. An objective... The in vitro expansion of stem cells is important for their application in different life science fields such as cellular tissue and organ repair. An objective... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Cell adhesion Cell culture Chemistry and Materials Science Hydrogels Materials Science Microspheres Peptides Polylactic acid Polystyrene resins Pore size Research Article Scaffolds Self-assembly Stem cells |
Title | Hydrogel-supported poly(L-lactic acid) and polystyrene microsphere-based three-dimensional culture systems for in vitro cell expansion |
URI | https://link.springer.com/article/10.1007/s11706-024-0682-z https://www.proquest.com/docview/3065335946 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagXWBAPEWhVB4YeMhSY8dpPFaopeI1UalMURLbqFJJqyZFtD-A383ZSQggGFgiJbE8-Dv7Pvt83yF0yriI_JgKmEjwcLXWRIQdRSIquIwYEGiL9P2DNxi6NyM-KvK40_K2exmStCt1lexmlF4I-BRTKIWS1Tqqc7N1ByMe0u7nwYopWiJsxUrattnHfFRGM3_r5bs_qkjmj7iodTf9bbRV8ETczYHdQWsq2UWbX9QD99D7YCnn02c1IeliZvXJJZ5NJ8uzOzKxqU84jMfyHIdJ_j01B86Jwi_mDl5q5ARgsMCJSZwBoIpII_Sfi3TgXJBD4VzoOcVAbfE4wa_jbD7F5rAfqzdYR0zrfTTs9x6vBqQoq0BiR_gZcbR0aUxZJ-74oVYu0z6XwgrHKEfI2OOSwvY0BPIhtWZuR0pw8pHnOu3YyPOxA1RLpok6RFhLYIexYlpzzw0j7lMJ_A7eolD4zA8b6KIc3GCWq2cElU6yQSIAJAKDRLBqoGY5_EExkdLAFLZnYFCu10CXJSTV7z87O_pX62O0QXOTIG2niWrZfKFOgGxkUQvVu9dPt72WNbIPGOXQdQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgDMCA-BSFAh4Y-JClxk7SeKwQVYC2Uyt1i5LYRpVKUjUpov0B_G7OTkMAwcASKbHlwe_se7Hv3iF0yRweeTHlsJDgYSulCA9bkkSUOyJiQKAN0r2-6w_tx5EzWuVxZ2W0e3klaXbqKtlNK70Q8Cm6UAoly3W0AVzA03FcQ9r-PFjRRUu4qVhJmyb72BmVt5m_jfLdH1Uk88e9qHE3nV20s-KJuF0Au4fWZLKPtr-oBx6gd38hZumznJBsPjX65AJP08niqksmJvUJh_FYXOMwKb5n-sA5kfhFx-BlWk4AJgucmMA5ACqJ0EL_hUgHLgQ5JC6EnjMM1BaPE_w6zmcp1of9WL7BPqJ7H6Jh535w55NVWQUSW9zLiaWETWPKWnHLC5W0mfIcwY1wjLS4iF1HUPg9DYF8CKWY3RICnHzk2lYz1vJ87AjVkjSRxwgrAewwlkwpx7XDyPGoAH4Hb1HIPeaFdXRTTm4wLdQzgkonWSMRABKBRiJY1lGjnP5gtZCyQBe2Z2BQtltHtyUkVfOfg538q_cF2vQHvW7Qfeg_naItWpgHaVoNVMtnc3kGxCOPzo2hfQCE19HU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgSAgOiFUUCvjAgUVWGzubjxVQFSgVByr1FiWxjSqVJGpSRPsBfDfjLBQQHLhESmz54Df2vHg8bxA6ZRYP3JByWEjwMJVShPuOJAHllggYEOgc6Ye-3R2Yd0NrWNY5Tavb7lVIsshp0CpNUdZMhGouEt-06gsB_6KLplAyX0YrsBsb2qwHtP15yKILmPC8eiVt5ZnI1rCKbP42ynfftCCcP2KkuevpbKKNkjPidgHyFlqS0TZa_6IkuIPeuzMxiZ_lmKTTJNcqFziJx7OzHhnnaVDYD0fiHPtR8T3Vh8-RxC_6Pl6qpQVg4sChCZwBuJIILfpfCHbgQpxD4kL0OcVAc_Eowq-jbBJjffCP5RvsKbr3Lhp0bp6uuqQssUBCg7sZMZQwaUiZEzqur6TJlGsJnovISIOL0LYEhV9VH4iIUIqZjhDg8APbNFqhlupje6gWxZHcR1gJYIqhZEpZtukHlksFcD14C3zuMtevo4tqcr2kUNLwFprJGgkPkPA0Et68jhrV9Hvloko9XeSegXGZdh1dVpAsmv8c7OBfvU_Q6uN1x-vd9u8P0RotrIO0jAaqZZOpPAIOkgXHuZ19AJnS1hA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrogel-supported+poly%28L-lactic+acid%29+and+polystyrene+microsphere-based+three-dimensional+culture+systems+for+in+vitro+cell+expansion&rft.jtitle=Frontiers+of+materials+science&rft.au=Hao%2C+Huaying&rft.au=Sun%2C+Lihong&rft.au=Chen%2C+Jiaxuan&rft.au=Liang%2C+Jun&rft.date=2024-06-01&rft.pub=Higher+Education+Press&rft.issn=2095-025X&rft.eissn=2095-0268&rft.volume=18&rft.issue=2&rft_id=info:doi/10.1007%2Fs11706-024-0682-z&rft.externalDocID=10_1007_s11706_024_0682_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-025X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-025X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-025X&client=summon |