Hydrogel-supported poly(L-lactic acid) and polystyrene microsphere-based three-dimensional culture systems for in vitro cell expansion

The in vitro expansion of stem cells is important for their application in different life science fields such as cellular tissue and organ repair. An objective of this paper was to achieve static cell culture in vitro through peptide hydrogel-supported microspheres (MSs). The peptides, with their ge...

Full description

Saved in:
Bibliographic Details
Published inFrontiers of materials science Vol. 18; no. 2
Main Authors Hao, Huaying, Sun, Lihong, Chen, Jiaxuan, Liang, Jun
Format Journal Article
LanguageEnglish
Published Beijing Higher Education Press 01.06.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2095-025X
2095-0268
DOI10.1007/s11706-024-0682-z

Cover

Loading…
Abstract The in vitro expansion of stem cells is important for their application in different life science fields such as cellular tissue and organ repair. An objective of this paper was to achieve static cell culture in vitro through peptide hydrogel-supported microspheres (MSs). The peptides, with their gel-forming properties, microstructures, and mechanical strengths characterized, were found to have good support for the MSs and to be injectable. The internal structures of poly(L-lactic acid) microspheres (PLLA-MSs) and polystyrene microspheres (PS-MSs) made in the laboratory were observed and statistically analyzed in terms of particle size and pore size, following which the co-cultured MSs with cells were found to have good cell adhesion. In addition, three-dimensional (3D) culturing of cells was performed on the peptide and microcarrier composite scaffolds to measure cell viability and cell proliferation. The results showed that the peptides could be stimulated by the culture medium to self-assembly form a 3D fiber network structure. Under the peptide-MS composite scaffold-based cell culture system, further enhancement of the cell culture effect was measured. The peptide-MS composite scaffolds have great potential for the application in 3D cell culture and in vitro cell expansion.
AbstractList The in vitro expansion of stem cells is important for their application in different life science fields such as cellular tissue and organ repair. An objective of this paper was to achieve static cell culture in vitro through peptide hydrogel-supported microspheres (MSs). The peptides, with their gel-forming properties, microstructures, and mechanical strengths characterized, were found to have good support for the MSs and to be injectable. The internal structures of poly(L-lactic acid) microspheres (PLLA-MSs) and polystyrene microspheres (PS-MSs) made in the laboratory were observed and statistically analyzed in terms of particle size and pore size, following which the co-cultured MSs with cells were found to have good cell adhesion. In addition, three-dimensional (3D) culturing of cells was performed on the peptide and microcarrier composite scaffolds to measure cell viability and cell proliferation. The results showed that the peptides could be stimulated by the culture medium to self-assembly form a 3D fiber network structure. Under the peptide-MS composite scaffold-based cell culture system, further enhancement of the cell culture effect was measured. The peptide-MS composite scaffolds have great potential for the application in 3D cell culture and in vitro cell expansion.
The in vitro expansion of stem cells is important for their application in different life science fields such as cellular tissue and organ repair. An objective of this paper was to achieve static cell culture in vitro through peptide hydrogel-supported microspheres (MSs). The peptides, with their gel-forming properties, microstructures, and mechanical strengths characterized, were found to have good support for the MSs and to be injectable. The internal structures of poly(L-lactic acid) microspheres (PLLA-MSs) and polystyrene microspheres (PS-MSs) made in the laboratory were observed and statistically analyzed in terms of particle size and pore size, following which the co-cultured MSs with cells were found to have good cell adhesion. In addition, three-dimensional (3D) culturing of cells was performed on the peptide and microcarrier composite scaffolds to measure cell viability and cell proliferation. The results showed that the peptides could be stimulated by the culture medium to self-assembly form a 3D fiber network structure. Under the peptide-MS composite scaffold-based cell culture system, further enhancement of the cell culture effect was measured. The peptide-MS composite scaffolds have great potential for the application in 3D cell culture and in vitro cell expansion.
ArticleNumber 240682
Author Chen, Jiaxuan
Hao, Huaying
Sun, Lihong
Liang, Jun
Author_xml – sequence: 1
  givenname: Huaying
  surname: Hao
  fullname: Hao, Huaying
  organization: College of Light Industry Science and Engineering, Tianjin University of Science & Technology
– sequence: 2
  givenname: Lihong
  surname: Sun
  fullname: Sun, Lihong
  organization: College of Food Science and Engineering, Tianjin University of Science & Technology
– sequence: 3
  givenname: Jiaxuan
  surname: Chen
  fullname: Chen, Jiaxuan
  organization: College of Light Industry Science and Engineering, Tianjin University of Science & Technology
– sequence: 4
  givenname: Jun
  surname: Liang
  fullname: Liang, Jun
  email: jliang1118@yeah.net
  organization: State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, College of Light Industry Science and Engineering, Tianjin University of Science & Technology
BookMark eNp1kL9OwzAQhy1UJErpA7BZYoHBYDtx_oyoAopUiQUkNsu1L22qJA52gkgfgOfGJQgmvJx1-n2nu-8UTRrbAELnjF4zStMbz1hKE0J5TGiScbI_QlNOcxE6STb5_YvXEzT3fkfDE0zkMZuiz-VgnN1ARXzfttZ1YHBrq-FyRSqlu1JjpUtzhVUz9n03OGgA16V21rdbcEDWygeq2zoAYsoaGl_aRlVY91XXO8A-UFB7XFiHywa_l52zWENVYfho1Xf6DB0XqvIw_6kz9HJ_97xYktXTw-PidkU0y7OOsMLEXPMo1WmmCoijIhMmpzTOGLDc6EQYLnikaMpMUURxagwTfJ3EjOosSfNohi7Gua2zbz34Tu5s78KyXkY0EVEUrCQhxcbU4UbvoJCtK2vlBsmoPBiXo3EZjMuDcbkPDB8ZH7LNBtzf5P-hLzqxiFI
Cites_doi 10.1016/j.bioactmat.2019.01.002
10.1039/C9PY01021A
10.1038/s41598-020-59148-3
10.1016/j.biomaterials.2007.05.030
10.1089/ten.2005.11.1699
10.1007/s11626-997-0008-3
10.1111/j.1600-079X.2012.01016.x
10.1002/mabi.200900224
10.1016/S0142-9612(03)00208-4
10.1016/j.colsurfb.2010.11.016
10.1016/j.biotechadv.2013.03.006
10.1016/j.biomaterials.2011.04.066
10.1126/science.aaf3627
10.1002/jbm.b.34141
10.1002/advs.201903718
10.1002/marc.200900818
10.1016/j.actbio.2012.09.010
10.1016/j.biomaterials.2010.06.001
10.1016/j.jare.2013.07.006
10.1002/term.545
10.1016/j.apmt.2022.101560
10.1002/term.224
10.1016/j.biomaterials.2005.05.081
10.1016/j.polymdegradstab.2019.01.003
10.1038/s41578-023-00535-3
10.1002/adhm.201600938
10.1007/s10439-013-0966-4
10.1002/adhm.202302327
10.1039/D2TB01198K
10.1016/j.biomaterials.2020.120176
10.1002/jbm.a.35638
10.1038/jcbfm.2009.219
10.1016/j.cis.2023.102866
10.1039/D1TB02628C
10.1016/j.biomaterials.2012.02.024
10.1002/jemt.22470
10.1016/j.biotechadv.2019.107459
10.1002/adhm.201900506
10.3389/fchem.2018.00499
10.1016/j.biomaterials.2009.04.029
10.1016/j.biomaterials.2011.09.090
10.1016/j.biomaterials.2008.11.023
10.3724/SP.J.1105.2011.11113
ContentType Journal Article
Copyright Higher Education Press 2024
Higher Education Press 2024.
Copyright_xml – notice: Higher Education Press 2024
– notice: Higher Education Press 2024.
DBID AAYXX
CITATION
DOI 10.1007/s11706-024-0682-z
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2095-0268
ExternalDocumentID 10_1007_s11706_024_0682_z
GroupedDBID -58
-5G
-BR
-EM
-~C
.VR
06C
06D
0R~
0VY
1-T
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
40E
5VS
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
AXYYD
B-.
BDATZ
BGNMA
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HF~
HG6
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXD
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
P4S
P9N
PF0
PT4
QOR
R89
R9I
ROL
RSV
S16
S3B
SAP
SCL
SCM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
TSG
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
YLTOR
Z7R
Z7V
Z7X
Z85
ZMTXR
~A9
-SB
-S~
AAPKM
AAXDM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CAJEB
CITATION
Q--
U1G
U5L
ABRTQ
ID FETCH-LOGICAL-c198t-1fd42c237c78afe43f85d900481e19dc65d2523a071dff347dd152b6410c86793
IEDL.DBID U2A
ISSN 2095-025X
IngestDate Fri Jul 25 11:07:54 EDT 2025
Tue Jul 01 02:09:54 EDT 2025
Fri Feb 21 02:41:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords three-dimensional culture
microsphere
microcarrier
peptide hydrogel
cell expansion
cell scaffold
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c198t-1fd42c237c78afe43f85d900481e19dc65d2523a071dff347dd152b6410c86793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3065335946
PQPubID 2044428
ParticipantIDs proquest_journals_3065335946
crossref_primary_10_1007_s11706_024_0682_z
springer_journals_10_1007_s11706_024_0682_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
– name: Heidelberg
PublicationTitle Frontiers of materials science
PublicationTitleAbbrev Front. Mater. Sci
PublicationYear 2024
Publisher Higher Education Press
Springer Nature B.V
Publisher_xml – name: Higher Education Press
– name: Springer Nature B.V
References Shi, Jiang, Sun (CR33) 2011; 85
Zhang, Khademhosseini (CR1) 2017; 356
Tseng, Young, Wang (CR26) 2012; 33
Sun, Gregory, Zhao (CR3) 2023; 314
Chen, Le, Fernandes-Cunha (CR7) 2020; 255
Motealleh, Kehr (CR16) 2017; 6
Ahmed (CR18) 2015; 6
Rangarajan, Madden, Bursac (CR41) 2014; 42
Jin, Mao, Xie (CR9) 2010; 30
Huang, Wei, Yeh (CR38) 2012; 33
Bueno, Bilgen, Barabino (CR43) 2005; 11
Berenzi, Steimberg, Boniotti (CR42) 2015; 78
Zhang, Zhang, Ling (CR24) 2013; 54
Loesberg, te Riet, van Delft (CR40) 2007; 28
Liu, Tian, Hedrick (CR13) 2010; 31
CR35
Andersson, Bäckhed, von Euler (CR39) 2003; 24
Sart, Errachid, Schneider (CR22) 2013; 7
Qu, Xiao, Tian (CR27) 2019; 107
Shi, Sun, Jiang (CR34) 2009; 9
Curvello, Kast, Ordóñez-Morán (CR4) 2023; 8
Koutsopoulos, Zhang (CR10) 2013; 9
Wang, Ho, Wang (CR25) 2009; 30
Shi, Cui, Sun (CR36) 2019; 161
El-Husseiny, Mady, El-Dakroury (CR5) 2022; 29
Schop, van Dijkhuizen-Radersma, Borgart (CR21) 2010; 4
Zhau, Goodwin, Chang (CR6) 1997; 33
Bai, Han, Han (CR28) 2024; 13
Kim, Yoon, Lee (CR32) 2006; 27
Wang, Chu, Ni (CR8) 2020; 10
He, Zhang, Liao (CR23) 2020; 39
Yang, Xu, Zhao (CR11) 2020; 7
Chen, Zou (CR19) 2019; 4
Maksoud, Velázquez de la Paz, Hann (CR30) 2022; 10
Spicer (CR2) 2020; 11
Chen, Reuveny, Oh (CR31) 2013; 31
Koutsopoulos (CR20) 2016; 104
Elkhoury, Russell, Sanchez-Gonzalez (CR17) 2019; 8
Lin, Liu, Xiao (CR29) 2022; 10
Liu, Ee, Ke (CR15) 2009; 30
Chiu, Cheng, Engel (CR37) 2011; 32
Li, Sun, Li (CR12) 2018; 6
Liu, Tian, Wang (CR14) 2010; 31
K Elkhoury (682_CR17) 2019; 8
C K Wang (682_CR25) 2009; 30
H E Zhau (682_CR6) 1997; 33
A Lin (682_CR29) 2022; 10
X Shi (682_CR34) 2009; 9
A S Andersson (682_CR39) 2003; 24
L Zhang (682_CR24) 2013; 54
W Sun (682_CR3) 2023; 314
M Qu (682_CR27) 2019; 107
682_CR35
K Jin (682_CR9) 2010; 30
X Li (682_CR12) 2018; 6
E M Ahmed (682_CR18) 2015; 6
J Chen (682_CR19) 2019; 4
W A Loesberg (682_CR40) 2007; 28
Z Yang (682_CR11) 2020; 7
Q He (682_CR23) 2020; 39
X Shi (682_CR36) 2019; 161
P C Tseng (682_CR26) 2012; 33
A Motealleh (682_CR16) 2017; 6
S Q Liu (682_CR14) 2010; 31
S Sart (682_CR22) 2013; 7
Y C Chiu (682_CR37) 2011; 32
F Chen (682_CR7) 2020; 255
S Koutsopoulos (682_CR10) 2013; 9
S Rangarajan (682_CR41) 2014; 42
L Bai (682_CR28) 2024; 13
H M El-Husseiny (682_CR5) 2022; 29
S Koutsopoulos (682_CR20) 2016; 104
D Schop (682_CR21) 2010; 4
C C Huang (682_CR38) 2012; 33
A Berenzi (682_CR42) 2015; 78
T K Kim (682_CR32) 2006; 27
E M Bueno (682_CR43) 2005; 11
S Q Liu (682_CR15) 2009; 30
J Wang (682_CR8) 2020; 10
X Shi (682_CR33) 2011; 85
C D Spicer (682_CR2) 2020; 11
Y S Zhang (682_CR1) 2017; 356
R Curvello (682_CR4) 2023; 8
S Q Liu (682_CR13) 2010; 31
F J Maksoud (682_CR30) 2022; 10
A K L Chen (682_CR31) 2013; 31
References_xml – volume: 4
  start-page: 120
  year: 2019
  end-page: 131
  ident: CR19
  article-title: Self-assemble peptide biomaterials and their biomedical applications
  publication-title: Bioactive Materials
  doi: 10.1016/j.bioactmat.2019.01.002
– volume: 11
  start-page: 184
  issue: 2
  year: 2020
  end-page: 219
  ident: CR2
  article-title: Hydrogel scaffolds for tissue engineering: the importance of polymer choice
  publication-title: Polymer Chemistry
  doi: 10.1039/C9PY01021A
– volume: 10
  start-page: 2576
  issue: 1
  year: 2020
  ident: CR8
  article-title: The effect of Matrigel as scaffold material for neural stem cell transplantation for treating spinal cord injury
  publication-title: Scientific Reports
  doi: 10.1038/s41598-020-59148-3
– volume: 28
  start-page: 3944
  issue: 27
  year: 2007
  end-page: 3951
  ident: CR40
  article-title: The threshold at which substrate nanogroove dimensions may influence fibroblast alignment and adhesion
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2007.05.030
– volume: 11
  start-page: 1699
  issue: 11–12
  year: 2005
  end-page: 1709
  ident: CR43
  article-title: Wavy-walled bioreactor supports increased cell proliferation and matrix deposition in engineered cartilage constructs
  publication-title: Tissue Engineering
  doi: 10.1089/ten.2005.11.1699
– volume: 33
  start-page: 375
  issue: 5
  year: 1997
  end-page: 380
  ident: CR6
  article-title: Establishment of a three-dimensional human prostate organoid coculture under microgravity-simulated conditions: evaluation of androgen-induced growth and PSA expression
  publication-title: In Vitro Cellular & Developmental Biology: Animal
  doi: 10.1007/s11626-997-0008-3
– volume: 54
  start-page: 24
  issue: 1
  year: 2013
  end-page: 32
  ident: CR24
  article-title: Sustained release of melatonin from poly (lactic-co-glycolic acid) (PLGA) microspheres to induce osteogenesis of human mesenchymal stem cells
  publication-title: Journal of Pineal Research
  doi: 10.1111/j.1600-079X.2012.01016.x
– volume: 9
  start-page: 1211
  issue: 12
  year: 2009
  end-page: 1218
  ident: CR34
  article-title: Biodegradable polymeric microcarriers with controllable porous structure for tissue engineering
  publication-title: Macromolecular Bioscience
  doi: 10.1002/mabi.200900224
– volume: 24
  start-page: 3427
  issue: 20
  year: 2003
  end-page: 3436
  ident: CR39
  article-title: Nanoscale features influence epithelial cell morphology and cytokine production
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(03)00208-4
– volume: 85
  start-page: 73
  issue: 1
  year: 2011
  end-page: 80
  ident: CR33
  article-title: Hydrolysis and biomineralization of porous PLA microspheres and their influence on cell growth
  publication-title: Colloids and Surfaces B: Biointerfaces
  doi: 10.1016/j.colsurfb.2010.11.016
– volume: 31
  start-page: 1032
  issue: 7
  year: 2013
  end-page: 1046
  ident: CR31
  article-title: Application of human mesenchymal and pluripotent stem cell microcarrier cultures in cellular therapy: achievements and future direction
  publication-title: Biotechnology Advances
  doi: 10.1016/j.biotechadv.2013.03.006
– volume: 32
  start-page: 6045
  issue: 26
  year: 2011
  end-page: 6051
  ident: CR37
  article-title: The role of pore size on vascularization and tissue remodeling in PEG hydrogels
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.04.066
– volume: 356
  start-page: eaaf3627
  issue: 6337
  year: 2017
  ident: CR1
  article-title: Advances in engineering hydrogels
  publication-title: Science
  doi: 10.1126/science.aaf3627
– volume: 107
  start-page: 511
  issue: 3
  year: 2019
  end-page: 520
  ident: CR27
  article-title: Fabrication of superparamagnetic nanofibrous poly(l-lactic acid)/γ-Fe O microspheres for cell carriers
  publication-title: Journal of Biomedical Materials Research Part B: Applied Biomaterials
  doi: 10.1002/jbm.b.34141
– volume: 7
  start-page: 1903718
  issue: 9
  year: 2020
  ident: CR11
  article-title: Designer self-assembling peptide hydrogels to engineer 3D cell microenvironments for cell constructs formation and precise oncology remodeling in ovarian cancer
  publication-title: Advanced Science
  doi: 10.1002/advs.201903718
– ident: CR35
– volume: 31
  start-page: 1148
  issue: 13
  year: 2010
  end-page: 1154
  ident: CR14
  article-title: Injectable biodegradable poly(ethylene glycol)/RGD peptide hybrid hydrogels for chondrogenesis of human mesenchymal stem cells
  publication-title: Macromolecular Rapid Communications
  doi: 10.1002/marc.200900818
– volume: 9
  start-page: 5162
  issue: 2
  year: 2013
  end-page: 5169
  ident: CR10
  article-title: Long-term three-dimensional neural tissue cultures in functionalized self-assembling peptide hydrogels, matrigel and collagen I
  publication-title: Acta Biomaterialia
  doi: 10.1016/j.actbio.2012.09.010
– volume: 31
  start-page: 7298
  issue: 28
  year: 2010
  end-page: 7307
  ident: CR13
  article-title: Biomimetic hydrogels for chondrogenic differentiation of human mesenchymal stem cells to neocartilage
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.06.001
– volume: 6
  start-page: 105
  issue: 2
  year: 2015
  end-page: 121
  ident: CR18
  article-title: Hydrogel: preparation, characterization, and applications: a review
  publication-title: Journal of Advanced Research
  doi: 10.1016/j.jare.2013.07.006
– volume: 7
  start-page: 537
  issue: 7
  year: 2013
  end-page: 551
  ident: CR22
  article-title: Modulation of mesenchymal stem cell actin organization on conventional microcarriers for proliferation and differentiation in stirred bioreactors
  publication-title: Journal of Tissue Engineering and Regenerative Medicine
  doi: 10.1002/term.545
– volume: 29
  start-page: 101560
  year: 2022
  ident: CR5
  article-title: Smart/stimuli-responsive hydrogels: state-of-the-art platforms for bone tissue engineering
  publication-title: Applied Materials Today
  doi: 10.1016/j.apmt.2022.101560
– volume: 4
  start-page: 131
  issue: 2
  year: 2010
  end-page: 140
  ident: CR21
  article-title: Expansion of human mesenchymal stromal cells on microcarriers: growth and metabolism
  publication-title: Journal of Tissue Engineering and Regenerative Medicine
  doi: 10.1002/term.224
– volume: 27
  start-page: 152
  issue: 2
  year: 2006
  end-page: 159
  ident: CR32
  article-title: Gas foamed open porous biodegradable polymeric microspheres
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.05.081
– volume: 161
  start-page: 319
  year: 2019
  end-page: 325
  ident: CR36
  article-title: Promoting cell growth on porous PLA microspheres through simple degradation methods
  publication-title: Polymer Degradation & Stability
  doi: 10.1016/j.polymdegradstab.2019.01.003
– volume: 8
  start-page: 314
  issue: 5
  year: 2023
  end-page: 330
  ident: CR4
  article-title: Biomaterial-based platforms for tumour tissue engineering
  publication-title: Nature Reviews Materials
  doi: 10.1038/s41578-023-00535-3
– volume: 6
  start-page: 1600938
  issue: 1
  year: 2017
  ident: CR16
  article-title: Nanocomposite hydrogels and their applications in tissue engineering
  publication-title: Advanced Healthcare Materials
  doi: 10.1002/adhm.201600938
– volume: 42
  start-page: 1391
  issue: 7
  year: 2014
  end-page: 1405
  ident: CR41
  article-title: Use of flow, electrical, and mechanical stimulation to promote engineering of striated muscles
  publication-title: Annals of Biomedical Engineering
  doi: 10.1007/s10439-013-0966-4
– volume: 13
  start-page: 2302327
  issue: 3
  year: 2024
  ident: CR28
  article-title: Stem cells expansion vector via bioadhesive porous microspheres for accelerating articular cartilage regeneration
  publication-title: Advanced Healthcare Materials
  doi: 10.1002/adhm.202302327
– volume: 10
  start-page: 6464
  issue: 34
  year: 2022
  end-page: 6471
  ident: CR29
  article-title: Controllable preparation of bioactive open porous microspheres for tissue engineering
  publication-title: Journal of Materials Chemistry B: Materials for Biology and Medicine
  doi: 10.1039/D2TB01198K
– volume: 255
  start-page: 120176
  year: 2020
  ident: CR7
  article-title: Bio-orthogonally crosslinked hyaluronate-collagen hydrogel for suture-free corneal defect repair
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2020.120176
– volume: 104
  start-page: 1002
  issue: 4
  year: 2016
  end-page: 1016
  ident: CR20
  article-title: Self-assembling peptide nanofiber hydrogels in tissue engineering and regenerative medicine: progress, design guidelines, and applications
  publication-title: Journal of Biomedical Materials Research Part A
  doi: 10.1002/jbm.a.35638
– volume: 30
  start-page: 534
  issue: 3
  year: 2010
  end-page: 544
  ident: CR9
  article-title: Transplantation of human neural precursor cells in Matrigel scaffolding improves outcome from focal cerebral ischemia after delayed postischemic treatment in rats
  publication-title: Journal of Cerebral Blood Flow and Metabolism
  doi: 10.1038/jcbfm.2009.219
– volume: 314
  start-page: 102866
  year: 2023
  ident: CR3
  article-title: Designed peptide amphiphiles as scaffolds for tissue engineering
  publication-title: Advances in Colloid and Interface Science
  doi: 10.1016/j.cis.2023.102866
– volume: 10
  start-page: 8111
  issue: 40
  year: 2022
  end-page: 8165
  ident: CR30
  article-title: Porous biomaterials for tissue engineering: a review
  publication-title: Journal of Materials Chemistry B: Materials for Biology and Medicine
  doi: 10.1039/D1TB02628C
– volume: 33
  start-page: 4069
  issue: 16
  year: 2012
  end-page: 4077
  ident: CR38
  article-title: Injectable PLGA porous beads cellularized by hAFSCs for cellular cardiomyoplasty
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.02.024
– volume: 78
  start-page: 249
  issue: 4
  year: 2015
  end-page: 254
  ident: CR42
  article-title: MRT letter: 3D culture of isolated cells: a fast and efficient method for optimizing their histochemical and immunocytochemical analyses
  publication-title: Microscopy Research and Technique
  doi: 10.1002/jemt.22470
– volume: 39
  start-page: 107459
  year: 2020
  ident: CR23
  article-title: Current advances in microsphere based cell culture and tissue engineering
  publication-title: Biotechnology Advances
  doi: 10.1016/j.biotechadv.2019.107459
– volume: 8
  start-page: 1900506
  issue: 18
  year: 2019
  ident: CR17
  article-title: Soft-nanoparticle functionalization of natural hydrogels for tissue engineering applications
  publication-title: Advanced Healthcare Materials
  doi: 10.1002/adhm.201900506
– volume: 6
  start-page: 499
  year: 2018
  ident: CR12
  article-title: Functional hydrogels with tunable structures and properties for tissue engineering applications
  publication-title: Frontiers in Chemistry
  doi: 10.3389/fchem.2018.00499
– volume: 30
  start-page: 4178
  issue: 25
  year: 2009
  end-page: 4186
  ident: CR25
  article-title: Controlled-release of rhBMP-2 carriers in the regeneration of osteonecrotic bone
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.04.029
– volume: 33
  start-page: 556
  issue: 2
  year: 2012
  end-page: 564
  ident: CR26
  article-title: Spontaneous osteogenesis of MSCs cultured on 3D microcarriers through alteration of cytoskeletal tension
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.09.090
– volume: 30
  start-page: 1453
  issue: 8
  year: 2009
  end-page: 1461
  ident: CR15
  article-title: Biodegradable poly(ethylene glycol)–peptide hydrogels with well-defined structure and properties for cell delivery
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2008.11.023
– volume: 356
  start-page: eaaf3627
  issue: 6337
  year: 2017
  ident: 682_CR1
  publication-title: Science
  doi: 10.1126/science.aaf3627
– volume: 104
  start-page: 1002
  issue: 4
  year: 2016
  ident: 682_CR20
  publication-title: Journal of Biomedical Materials Research Part A
  doi: 10.1002/jbm.a.35638
– volume: 11
  start-page: 1699
  issue: 11–12
  year: 2005
  ident: 682_CR43
  publication-title: Tissue Engineering
  doi: 10.1089/ten.2005.11.1699
– volume: 4
  start-page: 131
  issue: 2
  year: 2010
  ident: 682_CR21
  publication-title: Journal of Tissue Engineering and Regenerative Medicine
  doi: 10.1002/term.224
– volume: 7
  start-page: 1903718
  issue: 9
  year: 2020
  ident: 682_CR11
  publication-title: Advanced Science
  doi: 10.1002/advs.201903718
– ident: 682_CR35
  doi: 10.3724/SP.J.1105.2011.11113
– volume: 10
  start-page: 2576
  issue: 1
  year: 2020
  ident: 682_CR8
  publication-title: Scientific Reports
  doi: 10.1038/s41598-020-59148-3
– volume: 6
  start-page: 1600938
  issue: 1
  year: 2017
  ident: 682_CR16
  publication-title: Advanced Healthcare Materials
  doi: 10.1002/adhm.201600938
– volume: 7
  start-page: 537
  issue: 7
  year: 2013
  ident: 682_CR22
  publication-title: Journal of Tissue Engineering and Regenerative Medicine
  doi: 10.1002/term.545
– volume: 29
  start-page: 101560
  year: 2022
  ident: 682_CR5
  publication-title: Applied Materials Today
  doi: 10.1016/j.apmt.2022.101560
– volume: 30
  start-page: 534
  issue: 3
  year: 2010
  ident: 682_CR9
  publication-title: Journal of Cerebral Blood Flow and Metabolism
  doi: 10.1038/jcbfm.2009.219
– volume: 13
  start-page: 2302327
  issue: 3
  year: 2024
  ident: 682_CR28
  publication-title: Advanced Healthcare Materials
  doi: 10.1002/adhm.202302327
– volume: 6
  start-page: 499
  year: 2018
  ident: 682_CR12
  publication-title: Frontiers in Chemistry
  doi: 10.3389/fchem.2018.00499
– volume: 314
  start-page: 102866
  year: 2023
  ident: 682_CR3
  publication-title: Advances in Colloid and Interface Science
  doi: 10.1016/j.cis.2023.102866
– volume: 39
  start-page: 107459
  year: 2020
  ident: 682_CR23
  publication-title: Biotechnology Advances
  doi: 10.1016/j.biotechadv.2019.107459
– volume: 161
  start-page: 319
  year: 2019
  ident: 682_CR36
  publication-title: Polymer Degradation & Stability
  doi: 10.1016/j.polymdegradstab.2019.01.003
– volume: 30
  start-page: 4178
  issue: 25
  year: 2009
  ident: 682_CR25
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.04.029
– volume: 11
  start-page: 184
  issue: 2
  year: 2020
  ident: 682_CR2
  publication-title: Polymer Chemistry
  doi: 10.1039/C9PY01021A
– volume: 33
  start-page: 375
  issue: 5
  year: 1997
  ident: 682_CR6
  publication-title: In Vitro Cellular & Developmental Biology: Animal
  doi: 10.1007/s11626-997-0008-3
– volume: 85
  start-page: 73
  issue: 1
  year: 2011
  ident: 682_CR33
  publication-title: Colloids and Surfaces B: Biointerfaces
  doi: 10.1016/j.colsurfb.2010.11.016
– volume: 8
  start-page: 1900506
  issue: 18
  year: 2019
  ident: 682_CR17
  publication-title: Advanced Healthcare Materials
  doi: 10.1002/adhm.201900506
– volume: 33
  start-page: 556
  issue: 2
  year: 2012
  ident: 682_CR26
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.09.090
– volume: 33
  start-page: 4069
  issue: 16
  year: 2012
  ident: 682_CR38
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.02.024
– volume: 31
  start-page: 1148
  issue: 13
  year: 2010
  ident: 682_CR14
  publication-title: Macromolecular Rapid Communications
  doi: 10.1002/marc.200900818
– volume: 6
  start-page: 105
  issue: 2
  year: 2015
  ident: 682_CR18
  publication-title: Journal of Advanced Research
  doi: 10.1016/j.jare.2013.07.006
– volume: 28
  start-page: 3944
  issue: 27
  year: 2007
  ident: 682_CR40
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2007.05.030
– volume: 30
  start-page: 1453
  issue: 8
  year: 2009
  ident: 682_CR15
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2008.11.023
– volume: 54
  start-page: 24
  issue: 1
  year: 2013
  ident: 682_CR24
  publication-title: Journal of Pineal Research
  doi: 10.1111/j.1600-079X.2012.01016.x
– volume: 9
  start-page: 1211
  issue: 12
  year: 2009
  ident: 682_CR34
  publication-title: Macromolecular Bioscience
  doi: 10.1002/mabi.200900224
– volume: 78
  start-page: 249
  issue: 4
  year: 2015
  ident: 682_CR42
  publication-title: Microscopy Research and Technique
  doi: 10.1002/jemt.22470
– volume: 10
  start-page: 8111
  issue: 40
  year: 2022
  ident: 682_CR30
  publication-title: Journal of Materials Chemistry B: Materials for Biology and Medicine
  doi: 10.1039/D1TB02628C
– volume: 107
  start-page: 511
  issue: 3
  year: 2019
  ident: 682_CR27
  publication-title: Journal of Biomedical Materials Research Part B: Applied Biomaterials
  doi: 10.1002/jbm.b.34141
– volume: 8
  start-page: 314
  issue: 5
  year: 2023
  ident: 682_CR4
  publication-title: Nature Reviews Materials
  doi: 10.1038/s41578-023-00535-3
– volume: 31
  start-page: 7298
  issue: 28
  year: 2010
  ident: 682_CR13
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.06.001
– volume: 27
  start-page: 152
  issue: 2
  year: 2006
  ident: 682_CR32
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.05.081
– volume: 10
  start-page: 6464
  issue: 34
  year: 2022
  ident: 682_CR29
  publication-title: Journal of Materials Chemistry B: Materials for Biology and Medicine
  doi: 10.1039/D2TB01198K
– volume: 42
  start-page: 1391
  issue: 7
  year: 2014
  ident: 682_CR41
  publication-title: Annals of Biomedical Engineering
  doi: 10.1007/s10439-013-0966-4
– volume: 9
  start-page: 5162
  issue: 2
  year: 2013
  ident: 682_CR10
  publication-title: Acta Biomaterialia
  doi: 10.1016/j.actbio.2012.09.010
– volume: 32
  start-page: 6045
  issue: 26
  year: 2011
  ident: 682_CR37
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.04.066
– volume: 24
  start-page: 3427
  issue: 20
  year: 2003
  ident: 682_CR39
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(03)00208-4
– volume: 255
  start-page: 120176
  year: 2020
  ident: 682_CR7
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2020.120176
– volume: 4
  start-page: 120
  year: 2019
  ident: 682_CR19
  publication-title: Bioactive Materials
  doi: 10.1016/j.bioactmat.2019.01.002
– volume: 31
  start-page: 1032
  issue: 7
  year: 2013
  ident: 682_CR31
  publication-title: Biotechnology Advances
  doi: 10.1016/j.biotechadv.2013.03.006
SSID ssj0000515941
Score 2.2994277
Snippet The in vitro expansion of stem cells is important for their application in different life science fields such as cellular tissue and organ repair. An objective...
The in vitro expansion of stem cells is important for their application in different life science fields such as cellular tissue and organ repair. An objective...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Cell adhesion
Cell culture
Chemistry and Materials Science
Hydrogels
Materials Science
Microspheres
Peptides
Polylactic acid
Polystyrene resins
Pore size
Research Article
Scaffolds
Self-assembly
Stem cells
Title Hydrogel-supported poly(L-lactic acid) and polystyrene microsphere-based three-dimensional culture systems for in vitro cell expansion
URI https://link.springer.com/article/10.1007/s11706-024-0682-z
https://www.proquest.com/docview/3065335946
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagXWBAPEWhVB4YeMhSY8dpPFaopeI1UalMURLbqFJJqyZFtD-A383ZSQggGFgiJbE8-Dv7Pvt83yF0yriI_JgKmEjwcLXWRIQdRSIquIwYEGiL9P2DNxi6NyM-KvK40_K2exmStCt1lexmlF4I-BRTKIWS1Tqqc7N1ByMe0u7nwYopWiJsxUrattnHfFRGM3_r5bs_qkjmj7iodTf9bbRV8ETczYHdQWsq2UWbX9QD99D7YCnn02c1IeliZvXJJZ5NJ8uzOzKxqU84jMfyHIdJ_j01B86Jwi_mDl5q5ARgsMCJSZwBoIpII_Sfi3TgXJBD4VzoOcVAbfE4wa_jbD7F5rAfqzdYR0zrfTTs9x6vBqQoq0BiR_gZcbR0aUxZJ-74oVYu0z6XwgrHKEfI2OOSwvY0BPIhtWZuR0pw8pHnOu3YyPOxA1RLpok6RFhLYIexYlpzzw0j7lMJ_A7eolD4zA8b6KIc3GCWq2cElU6yQSIAJAKDRLBqoGY5_EExkdLAFLZnYFCu10CXJSTV7z87O_pX62O0QXOTIG2niWrZfKFOgGxkUQvVu9dPt72WNbIPGOXQdQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgDMCA-BSFAh4Y-JClxk7SeKwQVYC2Uyt1i5LYRpVKUjUpov0B_G7OTkMAwcASKbHlwe_se7Hv3iF0yRweeTHlsJDgYSulCA9bkkSUOyJiQKAN0r2-6w_tx5EzWuVxZ2W0e3klaXbqKtlNK70Q8Cm6UAoly3W0AVzA03FcQ9r-PFjRRUu4qVhJmyb72BmVt5m_jfLdH1Uk88e9qHE3nV20s-KJuF0Au4fWZLKPtr-oBx6gd38hZumznJBsPjX65AJP08niqksmJvUJh_FYXOMwKb5n-sA5kfhFx-BlWk4AJgucmMA5ACqJ0EL_hUgHLgQ5JC6EnjMM1BaPE_w6zmcp1of9WL7BPqJ7H6Jh535w55NVWQUSW9zLiaWETWPKWnHLC5W0mfIcwY1wjLS4iF1HUPg9DYF8CKWY3RICnHzk2lYz1vJ87AjVkjSRxwgrAewwlkwpx7XDyPGoAH4Hb1HIPeaFdXRTTm4wLdQzgkonWSMRABKBRiJY1lGjnP5gtZCyQBe2Z2BQtltHtyUkVfOfg538q_cF2vQHvW7Qfeg_naItWpgHaVoNVMtnc3kGxCOPzo2hfQCE19HU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgSAgOiFUUCvjAgUVWGzubjxVQFSgVByr1FiWxjSqVJGpSRPsBfDfjLBQQHLhESmz54Df2vHg8bxA6ZRYP3JByWEjwMJVShPuOJAHllggYEOgc6Ye-3R2Yd0NrWNY5Tavb7lVIsshp0CpNUdZMhGouEt-06gsB_6KLplAyX0YrsBsb2qwHtP15yKILmPC8eiVt5ZnI1rCKbP42ynfftCCcP2KkuevpbKKNkjPidgHyFlqS0TZa_6IkuIPeuzMxiZ_lmKTTJNcqFziJx7OzHhnnaVDYD0fiHPtR8T3Vh8-RxC_6Pl6qpQVg4sChCZwBuJIILfpfCHbgQpxD4kL0OcVAc_Eowq-jbBJjffCP5RvsKbr3Lhp0bp6uuqQssUBCg7sZMZQwaUiZEzqur6TJlGsJnovISIOL0LYEhV9VH4iIUIqZjhDg8APbNFqhlupje6gWxZHcR1gJYIqhZEpZtukHlksFcD14C3zuMtevo4tqcr2kUNLwFprJGgkPkPA0Et68jhrV9Hvloko9XeSegXGZdh1dVpAsmv8c7OBfvU_Q6uN1x-vd9u8P0RotrIO0jAaqZZOpPAIOkgXHuZ19AJnS1hA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrogel-supported+poly%28L-lactic+acid%29+and+polystyrene+microsphere-based+three-dimensional+culture+systems+for+in+vitro+cell+expansion&rft.jtitle=Frontiers+of+materials+science&rft.au=Hao%2C+Huaying&rft.au=Sun%2C+Lihong&rft.au=Chen%2C+Jiaxuan&rft.au=Liang%2C+Jun&rft.date=2024-06-01&rft.pub=Higher+Education+Press&rft.issn=2095-025X&rft.eissn=2095-0268&rft.volume=18&rft.issue=2&rft_id=info:doi/10.1007%2Fs11706-024-0682-z&rft.externalDocID=10_1007_s11706_024_0682_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-025X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-025X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-025X&client=summon