Generating Realistic Albumin Concentrations in Virtual Subjects Across A Spectrum of Renal Function to Account for Variability in Protein Binding Within PBPK Models
Use of physiologically-based pharmacokinetic (PBPK) modelling for extrapolation to organ impairment populations requires successful prediction for physiological changes. For drugs bound to human serum albumin (HSA), prediction of albumin concentrations is crucial to predict population differences in...
Saved in:
Published in | The AAPS journal Vol. 27; no. 4 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.07.2025
Springer |
Subjects | |
Online Access | Get full text |
ISSN | 1550-7416 1550-7416 |
DOI | 10.1208/s12248-025-01062-5 |
Cover
Loading…
Abstract | Use of physiologically-based pharmacokinetic (PBPK) modelling for extrapolation to organ impairment populations requires successful prediction for physiological changes. For drugs bound to human serum albumin (HSA), prediction of albumin concentrations is crucial to predict population differences in fraction unbound in plasma (fu). In this study, a multi-variable model was developed for prediction of HSA concentrations in renal impairment, using easily accessible variables (BMI, eGFR, age, sex, race and ethnicity) as predictors. An increase of eGFR from 15 to 90 mL/min/1.73m
2
was predicted to elevate HSA concentration by 0.30—0.32 g/dL regardless of subjects’ characteristics. Data from obese patients undergoing mini-gastric bypass surgery was used for external validation (observed BMI from 44.5 to 27.3 kg/m
2
, leading to predicted HSA concentration change of 0.3 versus 0.1–0.3 g/dL), highlighting the model’s potential to enhance PBPK simulations for a broader population. Application of the new albumin model for predicting fu in renal impairment was evaluated with the single binding protein model. Consideration of inter-individual variability predicted by the albumin model could explain some variability in the observed fu data between different drugs and studies (54% observed records within 2.5th—97.5th percentile range of prediction). However, overall underprediction of fold-change in fu between healthy and severe renal impairment (45% observed data exceeded 97.5th percentile of prediction) was noted. Although accounting for changes in binding affinity in predictive models of fu remains a challenge, the newly developed albumin model can support generation of realistic virtual subjects to support PBPK predictions of plasma protein binding.
Graphical Abstract |
---|---|
AbstractList | Use of physiologically-based pharmacokinetic (PBPK) modelling for extrapolation to organ impairment populations requires successful prediction for physiological changes. For drugs bound to human serum albumin (HSA), prediction of albumin concentrations is crucial to predict population differences in fraction unbound in plasma (fu). In this study, a multi-variable model was developed for prediction of HSA concentrations in renal impairment, using easily accessible variables (BMI, eGFR, age, sex, race and ethnicity) as predictors. An increase of eGFR from 15 to 90 mL/min/1.73m.sup.2 was predicted to elevate HSA concentration by 0.30-0.32 g/dL regardless of subjects' characteristics. Data from obese patients undergoing mini-gastric bypass surgery was used for external validation (observed BMI from 44.5 to 27.3 kg/m.sup.2, leading to predicted HSA concentration change of 0.3 versus 0.1-0.3 g/dL), highlighting the model's potential to enhance PBPK simulations for a broader population. Application of the new albumin model for predicting fu in renal impairment was evaluated with the single binding protein model. Consideration of inter-individual variability predicted by the albumin model could explain some variability in the observed fu data between different drugs and studies (54% observed records within 2.5th-97.5th percentile range of prediction). However, overall underprediction of fold-change in fu between healthy and severe renal impairment (45% observed data exceeded 97.5th percentile of prediction) was noted. Although accounting for changes in binding affinity in predictive models of fu remains a challenge, the newly developed albumin model can support generation of realistic virtual subjects to support PBPK predictions of plasma protein binding. Graphical Use of physiologically-based pharmacokinetic (PBPK) modelling for extrapolation to organ impairment populations requires successful prediction for physiological changes. For drugs bound to human serum albumin (HSA), prediction of albumin concentrations is crucial to predict population differences in fraction unbound in plasma (fu). In this study, a multi-variable model was developed for prediction of HSA concentrations in renal impairment, using easily accessible variables (BMI, eGFR, age, sex, race and ethnicity) as predictors. An increase of eGFR from 15 to 90 mL/min/1.73m 2 was predicted to elevate HSA concentration by 0.30—0.32 g/dL regardless of subjects’ characteristics. Data from obese patients undergoing mini-gastric bypass surgery was used for external validation (observed BMI from 44.5 to 27.3 kg/m 2 , leading to predicted HSA concentration change of 0.3 versus 0.1–0.3 g/dL), highlighting the model’s potential to enhance PBPK simulations for a broader population. Application of the new albumin model for predicting fu in renal impairment was evaluated with the single binding protein model. Consideration of inter-individual variability predicted by the albumin model could explain some variability in the observed fu data between different drugs and studies (54% observed records within 2.5th—97.5th percentile range of prediction). However, overall underprediction of fold-change in fu between healthy and severe renal impairment (45% observed data exceeded 97.5th percentile of prediction) was noted. Although accounting for changes in binding affinity in predictive models of fu remains a challenge, the newly developed albumin model can support generation of realistic virtual subjects to support PBPK predictions of plasma protein binding. Graphical Abstract Use of physiologically-based pharmacokinetic (PBPK) modelling for extrapolation to organ impairment populations requires successful prediction for physiological changes. For drugs bound to human serum albumin (HSA), prediction of albumin concentrations is crucial to predict population differences in fraction unbound in plasma (fu). In this study, a multi-variable model was developed for prediction of HSA concentrations in renal impairment, using easily accessible variables (BMI, eGFR, age, sex, race and ethnicity) as predictors. An increase of eGFR from 15 to 90 mL/min/1.73m 2 was predicted to elevate HSA concentration by 0.30—0.32 g/dL regardless of subjects’ characteristics. Data from obese patients undergoing mini-gastric bypass surgery was used for external validation (observed BMI from 44.5 to 27.3 kg/m 2 , leading to predicted HSA concentration change of 0.3 versus 0.1–0.3 g/dL), highlighting the model’s potential to enhance PBPK simulations for a broader population. Application of the new albumin model for predicting fu in renal impairment was evaluated with the single binding protein model. Consideration of inter-individual variability predicted by the albumin model could explain some variability in the observed fu data between different drugs and studies (54% observed records within 2.5th—97.5th percentile range of prediction). However, overall underprediction of fold-change in fu between healthy and severe renal impairment (45% observed data exceeded 97.5th percentile of prediction) was noted. Although accounting for changes in binding affinity in predictive models of fu remains a challenge, the newly developed albumin model can support generation of realistic virtual subjects to support PBPK predictions of plasma protein binding. Graphical Abstract Use of physiologically-based pharmacokinetic (PBPK) modelling for extrapolation to organ impairment populations requires successful prediction for physiological changes. For drugs bound to human serum albumin (HSA), prediction of albumin concentrations is crucial to predict population differences in fraction unbound in plasma (fu). In this study, a multi-variable model was developed for prediction of HSA concentrations in renal impairment, using easily accessible variables (BMI, eGFR, age, sex, race and ethnicity) as predictors. An increase of eGFR from 15 to 90 mL/min/1.73m.sup.2 was predicted to elevate HSA concentration by 0.30-0.32 g/dL regardless of subjects' characteristics. Data from obese patients undergoing mini-gastric bypass surgery was used for external validation (observed BMI from 44.5 to 27.3 kg/m.sup.2, leading to predicted HSA concentration change of 0.3 versus 0.1-0.3 g/dL), highlighting the model's potential to enhance PBPK simulations for a broader population. Application of the new albumin model for predicting fu in renal impairment was evaluated with the single binding protein model. Consideration of inter-individual variability predicted by the albumin model could explain some variability in the observed fu data between different drugs and studies (54% observed records within 2.5th-97.5th percentile range of prediction). However, overall underprediction of fold-change in fu between healthy and severe renal impairment (45% observed data exceeded 97.5th percentile of prediction) was noted. Although accounting for changes in binding affinity in predictive models of fu remains a challenge, the newly developed albumin model can support generation of realistic virtual subjects to support PBPK predictions of plasma protein binding. |
ArticleNumber | 82 |
Audience | Academic |
Author | Scotcher, Daniel Hu, Yuming |
Author_xml | – sequence: 1 givenname: Yuming surname: Hu fullname: Hu, Yuming organization: Division of Pharmacy and Optometry, The University of Manchester – sequence: 2 givenname: Daniel orcidid: 0000-0001-9144-3824 surname: Scotcher fullname: Scotcher, Daniel email: daniel.scotcher@manchester.ac.uk organization: Division of Pharmacy and Optometry, The University of Manchester, Centre for Applied Pharmacokinetic Research, The University of Manchester |
BookMark | eNp9Uc1O3DAYtCoqFWhfoCdLnEP9k2ST47KCpSpVUWnp0bKdz4tXiY1s58D78KD9wvbQSqjyYezxzMj-5oQchRiAkI-cnXPBuk-ZC1F3FRNNxThrRdW8Ice8aVi1qnl79Nf-HTnJec-YFJLzY_K8hQBJFx929Dvo0efiLV2PZp58oJsYLISy3MeQKTL3PpVZj_RuNnuwJdO1TTEj0LtHPKd5otFhUkDN1RzsYqQloszGORTqYqL3Onlt_OjL0xJ5m2IBxAsfhuUZv3x5WOiL2y_0axxgzO_JW6fHDB_-4Cn5eXX5Y3Nd3Xzbft6sbyrL-66pHLR9r1s71FKsDGio28ZB7ToJg5GmAcMHvdJDK4zWSBkDveuhlk6KfoBOnpKzQ-5Oj6B8cBG_biefrVp3ciV41zGOqvNXVLgGmLzFXpxH_h-DOBheRpXAqcfkJ52eFGdqqU8d6lNYn3qpTzVokgdTRnHYQVL7OCcca_6f6zdBnaJ0 |
Cites_doi | 10.3390/jcm8060775 10.2215/cjn.10251011 10.1208/ps040104 10.1038/s41598-025-90931-2 10.7326/0003-4819-130-6-199903160-00002 10.1159/000180580 10.1002/jcph.1713 10.1208/s12248-016-9959-1 10.1111/bcp.12234 10.1002/psp4.13202 10.2165/00003088-200645090-00005 10.1016/j.disamonth.2019.06.008 10.1136/bmjopen-2022-067386 10.1016/s0272-6386(00)70005-9 10.1002/psp4.12566 10.1053/ajkd.2001.22469 10.1152/ajprenal.00281.2020 10.1208/s12248-016-9942-x 10.1037/1082-989x.10.3.317 10.1586/ecp.10.143 10.5049/ebp.2021.19.2.29 10.1016/j.xphs.2019.03.018 10.7326/0003-4819-150-9-200905050-00006 10.1016/j.xphs.2024.02.024 10.1007/s11695-017-2912-2 10.1080/0886022x.2023.2170243 10.1007/s00228-014-1709-7 10.1002/cpt.337 10.1016/j.xphs.2024.08.020 10.1002/bdd.2510160709 10.1037/a0027127 10.1053/j.ajkd.2007.12.035 10.1016/s0899-9007(03)00061-3 10.1007/s00228-021-03098-w 10.1016/j.bbagen.2016.01.026 10.1136/bmjopen-2020-038423 10.1208/s12248-021-00654-1 10.1007/s40262-021-01072-4 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 corrected publication 2025 COPYRIGHT 2025 Springer |
Copyright_xml | – notice: The Author(s) 2025 corrected publication 2025 – notice: COPYRIGHT 2025 Springer |
DBID | C6C AAYXX CITATION |
DOI | 10.1208/s12248-025-01062-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1550-7416 |
ExternalDocumentID | A837218801 10_1208_s12248_025_01062_5 |
GroupedDBID | --- .86 .VR 06C 06D 0R~ 123 1N0 203 23M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 406 408 40D 40E 53G 67N 6J9 6NX 875 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AAKDD AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBRH ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMFV ACMJI ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACSTC ACZOJ ADHIR ADKNI ADKPE ADRFC ADURQ ADYFF ADYOE ADZKW AEFQL AEGAL AEGNC AEGXH AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHPBZ AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AOCGG ARMRJ ATHPR AXYYD AYFIA B-. BA0 BGNMA C6C CS3 CSCUP DDRTE DIK DNIVK DPUIP E3Z EBLON EBS EIOEI EJD ESBYG F5P FERAY FFXSO FIGPU FNLPD FRRFC FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GX1 HG6 HH5 HMJXF HRMNR HZ~ IAO IEA IHR IJ- IKXTQ IWAJR IXC IXD I~X I~Z J-C J0Z JBSCW JZLTJ KOV KPH LGEZI LLZTM LOTEE M4Y MA- NADUK NPVJJ NQJWS NXXTH O9- O93 O9I O9J P6G PF0 PT4 PT5 QOR QOS R89 R9I ROL RPM RPX RSV S16 S1Z S27 S3A S3B SAP SBL SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TSG TSV TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 XSB YLTOR Z45 ZMTXR ZOVNA ~A9 AAYXX CITATION |
ID | FETCH-LOGICAL-c1985-fe699a6cd4327beae465fe4f83edb3b5eb1da7ad62baaedbbbe9f9e43f329de83 |
IEDL.DBID | U2A |
ISSN | 1550-7416 |
IngestDate | Thu Jul 10 07:40:28 EDT 2025 Tue Jul 08 03:52:00 EDT 2025 Thu Jul 10 08:13:28 EDT 2025 Sat Jul 05 01:12:03 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Albumin PBPK Renal impairment Predictive model Protein binding |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1985-fe699a6cd4327beae465fe4f83edb3b5eb1da7ad62baaedbbbe9f9e43f329de83 |
ORCID | 0000-0001-9144-3824 |
OpenAccessLink | https://link.springer.com/10.1208/s12248-025-01062-5 |
ParticipantIDs | gale_infotracmisc_A837218801 gale_infotracacademiconefile_A837218801 crossref_primary_10_1208_s12248_025_01062_5 springer_journals_10_1208_s12248_025_01062_5 |
PublicationCentury | 2000 |
PublicationDate | 20250701 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: 20250701 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham |
PublicationSubtitle | An Official Journal of the American Association of Pharmaceutical Scientists |
PublicationTitle | The AAPS journal |
PublicationTitleAbbrev | AAPS J |
PublicationYear | 2025 |
Publisher | Springer International Publishing Springer |
Publisher_xml | – name: Springer International Publishing – name: Springer |
References | J Algina (1062_CR36) 2005; 10 K Rowland Yeo (1062_CR5) 2011; 4 D Scotcher (1062_CR16) 2021; 24 SI Vrieze (1062_CR35) 2012; 17 C Emoto (1062_CR42) 2021; 77 N Tsamandouras (1062_CR15) 2015; 79 BK Meijers (1062_CR45) 2008; 51 T Feng (1062_CR3) 2023; 45 L Curry (1062_CR25) 2024 1062_CR6 J Al-Qassabi (1062_CR21) 2024; 113 GF Li (1062_CR43) 2024; 113 D Scotcher (1062_CR17) 2016; 18 1062_CR23 AS Levey (1062_CR8) 2009; 150 K Yoshida (1062_CR19) 2016; 100 1062_CR22 YD Kwong (1062_CR33) 2020; 319 SH Lee (1062_CR47) 1995; 16 TN Johnson (1062_CR28) 2006; 45 S Mohapatra (1062_CR41) 2020; 66 PJ McNamara (1062_CR11) 2019; 108 F Locatelli (1062_CR39) 2001; 37 1062_CR1 N Tangri (1062_CR4) 2023; 13 PRV Malik (1062_CR10) 2020; 60 HJ Kim (1062_CR46) 2021; 19 JG Gerhart (1062_CR24) 2022; 61 M Karimi (1062_CR40) 2018; 28 I Sezİklİ (1062_CR27) 2025; 15 T Gama-Axelsson (1062_CR29) 2012; 7 DW Cockcroft (1062_CR7) 1976; 16 KJ Barnes (1062_CR9) 2014; 70 PJ McNamara (1062_CR12) 2002; 4 1062_CR18 JS Tayeb (1062_CR26) 2000; 35 1062_CR38 AA Thoppil (1062_CR44) 2016; 1860 1062_CR14 1062_CR37 1062_CR34 1062_CR13 1062_CR32 HO Hounkpatin (1062_CR2) 2020; 10 H Takita (1062_CR20) 2020; 9 1062_CR30 1062_CR31 |
References_xml | – ident: 1062_CR30 doi: 10.3390/jcm8060775 – volume: 7 start-page: 1446 issue: 9 year: 2012 ident: 1062_CR29 publication-title: Clin J Am Soc Nephrol doi: 10.2215/cjn.10251011 – volume: 4 start-page: 19 year: 2002 ident: 1062_CR12 publication-title: AAPS PharmSci doi: 10.1208/ps040104 – volume: 15 start-page: 6634 issue: 1 year: 2025 ident: 1062_CR27 publication-title: Sci Rep doi: 10.1038/s41598-025-90931-2 – ident: 1062_CR6 doi: 10.7326/0003-4819-130-6-199903160-00002 – volume: 16 start-page: 31 issue: 1 year: 1976 ident: 1062_CR7 publication-title: Nephron doi: 10.1159/000180580 – volume: 60 start-page: S52 issue: Suppl 1 year: 2020 ident: 1062_CR10 publication-title: J Clin Pharmacol doi: 10.1002/jcph.1713 – volume: 18 start-page: 1082 issue: 5 year: 2016 ident: 1062_CR17 publication-title: AAPS J doi: 10.1208/s12248-016-9959-1 – volume: 79 start-page: 48 issue: 1 year: 2015 ident: 1062_CR15 publication-title: Br J Clin Pharmacol doi: 10.1111/bcp.12234 – year: 2024 ident: 1062_CR25 publication-title: CPT Pharmacometrics Syst Pharmacol doi: 10.1002/psp4.13202 – volume: 45 start-page: 931 issue: 9 year: 2006 ident: 1062_CR28 publication-title: Clin Pharmacokinet doi: 10.2165/00003088-200645090-00005 – volume: 66 issue: 2 year: 2020 ident: 1062_CR41 publication-title: Dis Mon doi: 10.1016/j.disamonth.2019.06.008 – volume: 13 issue: 5 year: 2023 ident: 1062_CR4 publication-title: BMJ Open doi: 10.1136/bmjopen-2022-067386 – volume: 35 start-page: 606 issue: 4 year: 2000 ident: 1062_CR26 publication-title: Am J Kidney Dis doi: 10.1016/s0272-6386(00)70005-9 – volume: 9 start-page: 695 issue: 12 year: 2020 ident: 1062_CR20 publication-title: CPT Pharmacometrics Syst Pharmacol doi: 10.1002/psp4.12566 – ident: 1062_CR38 – volume: 37 start-page: 455 issue: 2 year: 2001 ident: 1062_CR39 publication-title: Am J Kidney Dis doi: 10.1053/ajkd.2001.22469 – ident: 1062_CR22 – volume: 319 start-page: F979 issue: 6 year: 2020 ident: 1062_CR33 publication-title: Am J Physiol Renal Physiol doi: 10.1152/ajprenal.00281.2020 – ident: 1062_CR18 doi: 10.1208/s12248-016-9942-x – volume: 10 start-page: 317 issue: 3 year: 2005 ident: 1062_CR36 publication-title: Psychol Methods doi: 10.1037/1082-989x.10.3.317 – ident: 1062_CR32 – volume: 4 start-page: 261 issue: 2 year: 2011 ident: 1062_CR5 publication-title: Expert Rev Clin Pharmacol doi: 10.1586/ecp.10.143 – ident: 1062_CR34 – volume: 19 start-page: 29 issue: 2 year: 2021 ident: 1062_CR46 publication-title: Electrolyte Blood Press doi: 10.5049/ebp.2021.19.2.29 – volume: 108 start-page: 2737 issue: 8 year: 2019 ident: 1062_CR11 publication-title: J Pharm Sci doi: 10.1016/j.xphs.2019.03.018 – ident: 1062_CR13 – volume: 150 start-page: 604 issue: 9 year: 2009 ident: 1062_CR8 publication-title: Ann Intern Med doi: 10.7326/0003-4819-150-9-200905050-00006 – volume: 113 start-page: 1664 issue: 6 year: 2024 ident: 1062_CR21 publication-title: J Pharm Sci doi: 10.1016/j.xphs.2024.02.024 – volume: 28 start-page: 671 issue: 3 year: 2018 ident: 1062_CR40 publication-title: Obes Surg doi: 10.1007/s11695-017-2912-2 – ident: 1062_CR1 – volume: 45 start-page: 2170243 issue: 1 year: 2023 ident: 1062_CR3 publication-title: Ren Fail doi: 10.1080/0886022x.2023.2170243 – volume: 70 start-page: 1097 issue: 9 year: 2014 ident: 1062_CR9 publication-title: Eur J Clin Pharmacol doi: 10.1007/s00228-014-1709-7 – ident: 1062_CR14 – volume: 100 start-page: 75 issue: 1 year: 2016 ident: 1062_CR19 publication-title: Clin Pharmacol Ther doi: 10.1002/cpt.337 – volume: 113 start-page: 3393 issue: 11 year: 2024 ident: 1062_CR43 publication-title: J Pharm Sci doi: 10.1016/j.xphs.2024.08.020 – volume: 16 start-page: 615 issue: 7 year: 1995 ident: 1062_CR47 publication-title: Biopharm Drug Dispos doi: 10.1002/bdd.2510160709 – ident: 1062_CR37 – ident: 1062_CR23 – volume: 17 start-page: 228 issue: 2 year: 2012 ident: 1062_CR35 publication-title: Psychol Methods doi: 10.1037/a0027127 – volume: 51 start-page: 839 issue: 5 year: 2008 ident: 1062_CR45 publication-title: Am J Kidney Dis doi: 10.1053/j.ajkd.2007.12.035 – ident: 1062_CR31 doi: 10.1016/s0899-9007(03)00061-3 – volume: 77 start-page: 1157 issue: 8 year: 2021 ident: 1062_CR42 publication-title: Eur J Clin Pharmacol doi: 10.1007/s00228-021-03098-w – volume: 1860 start-page: 917 issue: 5 year: 2016 ident: 1062_CR44 publication-title: Biochim Biophys Acta doi: 10.1016/j.bbagen.2016.01.026 – volume: 10 issue: 8 year: 2020 ident: 1062_CR2 publication-title: BMJ Open doi: 10.1136/bmjopen-2020-038423 – volume: 24 start-page: 13 issue: 1 year: 2021 ident: 1062_CR16 publication-title: AAPS J doi: 10.1208/s12248-021-00654-1 – volume: 61 start-page: 307 issue: 2 year: 2022 ident: 1062_CR24 publication-title: Clin Pharmacokinet doi: 10.1007/s40262-021-01072-4 |
SSID | ssj0032311 |
Score | 2.4338584 |
Snippet | Use of physiologically-based pharmacokinetic (PBPK) modelling for extrapolation to organ impairment populations requires successful prediction for... |
SourceID | gale crossref springer |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Albumin Analysis Biochemistry Biomedical and Life Sciences Biomedicine Biotechnology Pharmacology/Toxicology Pharmacy Physiological aspects Protein binding Research Article Simulation methods Theme: Recent Advances in PBPK to Accelerate Drug Discovery and Development |
Title | Generating Realistic Albumin Concentrations in Virtual Subjects Across A Spectrum of Renal Function to Account for Variability in Protein Binding Within PBPK Models |
URI | https://link.springer.com/article/10.1208/s12248-025-01062-5 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZNcumlJH3QbdJlDiU9dE0tS5ato7NkExpalpJNtych2RJZaLwh3h72__SHdsYPwkIo9GKDrBf-pNGMpPmGsQ-YyD0Kx8hmoYykzVWkY4ETTymZxtx5EchQ_PpNXS7kl2W67J3CmuG2-3Ak2UrqlgEhzj83dAaURxR-lewYNKH22EFKtjuO4kVSDPJXoMbCe_eYp8vtLEGDIN49Bm1Xl9khe9GrhVB0OB6xZ75-yU7nHa_0dgLXj25SzQROYf7IOL19xf505NF0gxm-e6I0xHzQ7r6vapiSZ2Ld0-M2gCk3qwdyGwGUGrQN00DR9hQKoHD0m4ffd7AOWBN1aYYLHxWEzRr60BKAii7coJHdcXxvqco58T3g-2zVusnAj9XmlpLP5ldA8dZ-Na_ZYnZ-Pb2M-vALUcl1nkbBK62tKispksx566VKg5chF75ywqUo5Sub2UolzlpMcs7roL0UQSS68rl4w_brde3fMkC7pLRBcZ9mTnLHbcJ9IrJYVkJ7HcsR-zQgYu47lg1D1gniZzr8DOJnWvxMOmIfCTRDUxB_Xml7TwJsi8isTIFGd0I8c3zETnZy4tQpdz5PBthNP3Wbf7T77v-yH7PnSTvq6G7vCdtH9Px71GA2bswOioufV-djtjdVU3xeLPm4HcR_Afd074s |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9swDBa27rBdinUPLG3X8jB0h8WYbcmyfUyDBtn6QDCkXW-CZFNogNYp4vSQ_7MfOtJ20AUYCvRkgNYL-iRKlMSPQnwhYYSkHAOb-iJQNtNBHkqaeFqrJIwcSs-G4vmFHl-qn9fJdUeTw74w_97fx2H2veabnyzgoKtsvZDh9FK8UmQp8_O9oR6uta6kfUrUOcX8P9_GwrNWv5uXn82aMnortrvNIAxa9HbEC6zeiaNJyya96sP00Tmq7sMRTB55plfvxZ-WMprfLcMvZCJDSgfNmfusgiH7I1YdKW4NJLmaLdhZBEhX8OFLDYOmpTAADkK_XDzcwdxTSdykES13nBGWc-gCSgBtb-GKTOuW2XvFRU6Y5YG-x7PGOQZ-z5Y3LD6enAJHWbutP4jL0cl0OA66oAtBwb0aeNR5bnVRKhmnDi0qnXhUPpNYOukS0u2lTW2pY2ctiZzD3OeopJdxXmImP4qtal7hJwFkjRTW6wiT1KnIRTaOMJZpqEqZYx6qnvi2RsTct9wahm0Sws-0-BnCzzT4maQnvjJohicedV5hO_8BqosprMyATO2Y2eWintjfSEkTptj43V_DbroJWz9R7-7zkh-K1-Pp-Zk5-3FxuifexM0I5Ne9-2KLkMTPtIdZuoNm8P4FDPLq-w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWgSIgL4lMsLXQOqBzYqEnsOPFxu-2qUKgi1JbeLDux1ZUgWzXpYf8PP5QZJ1FZCVXiFGliO1aePfZ4PG8Y-4DCxKFyjEzuq0iYQkYq5jjxpBRZnFjHPRmK307l8bn4cpld_hXFH267jy7JPqaBWJqabv-69j0bQlzst-QPKiJKxUo2DZpTD9kjtFSCo3Yu56Mu5rh7SYZQmX_X21iORqW86RINK83iGXs6bBFh1mP6nD1wzQu2V_Yc0-spnN2FTLVT2IPyjn16_ZL97omk6TYzfHdEb4jlIJzELxuYU5RiM1DltoCSi-UNhZAAahA6kmlhFnoKM6DU9N3N7S9YeWyJurTARZAqQreCIc0E4KYXLtDg7vm-19RkSdwP-DxYhpAZ-LHsrkh8UJ4A5V772b5i54ujs_lxNKRiiKpEFVnknVTKyKoWPM2tM07IzDvhC-5qy22GGr82uallao1BkbVOeeUE9zxVtSv4a7bVrBr3hgHaKJXxMnFZbkViE5MmLuV5LGqunIrFhH0aEdHXPeOGJksF8dM9fhrx0wE_nU3YRwJN03TEn1eZIaoAv0XEVnqGBnhKnHPJhO1slMRpVG28no6w62Eat_d89-3_Fd9lj8vDhf76-fRkmz1JwwCkK787bAuBdO9wY9PZ92Hs_gEPsfNC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generating+Realistic+Albumin+Concentrations+in+Virtual+Subjects+Across+A+Spectrum+of+Renal+Function+to+Account+for+Variability+in+Protein+Binding+Within+PBPK+Models&rft.jtitle=The+AAPS+journal&rft.au=Hu%2C+Yuming&rft.au=Scotcher%2C+Daniel&rft.date=2025-07-01&rft.issn=1550-7416&rft.eissn=1550-7416&rft.volume=27&rft.issue=4&rft_id=info:doi/10.1208%2Fs12248-025-01062-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1208_s12248_025_01062_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-7416&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-7416&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-7416&client=summon |