Generating Realistic Albumin Concentrations in Virtual Subjects Across A Spectrum of Renal Function to Account for Variability in Protein Binding Within PBPK Models

Use of physiologically-based pharmacokinetic (PBPK) modelling for extrapolation to organ impairment populations requires successful prediction for physiological changes. For drugs bound to human serum albumin (HSA), prediction of albumin concentrations is crucial to predict population differences in...

Full description

Saved in:
Bibliographic Details
Published inThe AAPS journal Vol. 27; no. 4
Main Authors Hu, Yuming, Scotcher, Daniel
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.07.2025
Springer
Subjects
Online AccessGet full text
ISSN1550-7416
1550-7416
DOI10.1208/s12248-025-01062-5

Cover

Loading…
Abstract Use of physiologically-based pharmacokinetic (PBPK) modelling for extrapolation to organ impairment populations requires successful prediction for physiological changes. For drugs bound to human serum albumin (HSA), prediction of albumin concentrations is crucial to predict population differences in fraction unbound in plasma (fu). In this study, a multi-variable model was developed for prediction of HSA concentrations in renal impairment, using easily accessible variables (BMI, eGFR, age, sex, race and ethnicity) as predictors. An increase of eGFR from 15 to 90 mL/min/1.73m 2 was predicted to elevate HSA concentration by 0.30—0.32 g/dL regardless of subjects’ characteristics. Data from obese patients undergoing mini-gastric bypass surgery was used for external validation (observed BMI from 44.5 to 27.3 kg/m 2 , leading to predicted HSA concentration change of 0.3 versus 0.1–0.3 g/dL), highlighting the model’s potential to enhance PBPK simulations for a broader population. Application of the new albumin model for predicting fu in renal impairment was evaluated with the single binding protein model. Consideration of inter-individual variability predicted by the albumin model could explain some variability in the observed fu data between different drugs and studies (54% observed records within 2.5th—97.5th percentile range of prediction). However, overall underprediction of fold-change in fu between healthy and severe renal impairment (45% observed data exceeded 97.5th percentile of prediction) was noted. Although accounting for changes in binding affinity in predictive models of fu remains a challenge, the newly developed albumin model can support generation of realistic virtual subjects to support PBPK predictions of plasma protein binding. Graphical Abstract
AbstractList Use of physiologically-based pharmacokinetic (PBPK) modelling for extrapolation to organ impairment populations requires successful prediction for physiological changes. For drugs bound to human serum albumin (HSA), prediction of albumin concentrations is crucial to predict population differences in fraction unbound in plasma (fu). In this study, a multi-variable model was developed for prediction of HSA concentrations in renal impairment, using easily accessible variables (BMI, eGFR, age, sex, race and ethnicity) as predictors. An increase of eGFR from 15 to 90 mL/min/1.73m.sup.2 was predicted to elevate HSA concentration by 0.30-0.32 g/dL regardless of subjects' characteristics. Data from obese patients undergoing mini-gastric bypass surgery was used for external validation (observed BMI from 44.5 to 27.3 kg/m.sup.2, leading to predicted HSA concentration change of 0.3 versus 0.1-0.3 g/dL), highlighting the model's potential to enhance PBPK simulations for a broader population. Application of the new albumin model for predicting fu in renal impairment was evaluated with the single binding protein model. Consideration of inter-individual variability predicted by the albumin model could explain some variability in the observed fu data between different drugs and studies (54% observed records within 2.5th-97.5th percentile range of prediction). However, overall underprediction of fold-change in fu between healthy and severe renal impairment (45% observed data exceeded 97.5th percentile of prediction) was noted. Although accounting for changes in binding affinity in predictive models of fu remains a challenge, the newly developed albumin model can support generation of realistic virtual subjects to support PBPK predictions of plasma protein binding. Graphical
Use of physiologically-based pharmacokinetic (PBPK) modelling for extrapolation to organ impairment populations requires successful prediction for physiological changes. For drugs bound to human serum albumin (HSA), prediction of albumin concentrations is crucial to predict population differences in fraction unbound in plasma (fu). In this study, a multi-variable model was developed for prediction of HSA concentrations in renal impairment, using easily accessible variables (BMI, eGFR, age, sex, race and ethnicity) as predictors. An increase of eGFR from 15 to 90 mL/min/1.73m 2 was predicted to elevate HSA concentration by 0.30—0.32 g/dL regardless of subjects’ characteristics. Data from obese patients undergoing mini-gastric bypass surgery was used for external validation (observed BMI from 44.5 to 27.3 kg/m 2 , leading to predicted HSA concentration change of 0.3 versus 0.1–0.3 g/dL), highlighting the model’s potential to enhance PBPK simulations for a broader population. Application of the new albumin model for predicting fu in renal impairment was evaluated with the single binding protein model. Consideration of inter-individual variability predicted by the albumin model could explain some variability in the observed fu data between different drugs and studies (54% observed records within 2.5th—97.5th percentile range of prediction). However, overall underprediction of fold-change in fu between healthy and severe renal impairment (45% observed data exceeded 97.5th percentile of prediction) was noted. Although accounting for changes in binding affinity in predictive models of fu remains a challenge, the newly developed albumin model can support generation of realistic virtual subjects to support PBPK predictions of plasma protein binding. Graphical Abstract
Use of physiologically-based pharmacokinetic (PBPK) modelling for extrapolation to organ impairment populations requires successful prediction for physiological changes. For drugs bound to human serum albumin (HSA), prediction of albumin concentrations is crucial to predict population differences in fraction unbound in plasma (fu). In this study, a multi-variable model was developed for prediction of HSA concentrations in renal impairment, using easily accessible variables (BMI, eGFR, age, sex, race and ethnicity) as predictors. An increase of eGFR from 15 to 90 mL/min/1.73m 2 was predicted to elevate HSA concentration by 0.30—0.32 g/dL regardless of subjects’ characteristics. Data from obese patients undergoing mini-gastric bypass surgery was used for external validation (observed BMI from 44.5 to 27.3 kg/m 2 , leading to predicted HSA concentration change of 0.3 versus 0.1–0.3 g/dL), highlighting the model’s potential to enhance PBPK simulations for a broader population. Application of the new albumin model for predicting fu in renal impairment was evaluated with the single binding protein model. Consideration of inter-individual variability predicted by the albumin model could explain some variability in the observed fu data between different drugs and studies (54% observed records within 2.5th—97.5th percentile range of prediction). However, overall underprediction of fold-change in fu between healthy and severe renal impairment (45% observed data exceeded 97.5th percentile of prediction) was noted. Although accounting for changes in binding affinity in predictive models of fu remains a challenge, the newly developed albumin model can support generation of realistic virtual subjects to support PBPK predictions of plasma protein binding. Graphical Abstract
Use of physiologically-based pharmacokinetic (PBPK) modelling for extrapolation to organ impairment populations requires successful prediction for physiological changes. For drugs bound to human serum albumin (HSA), prediction of albumin concentrations is crucial to predict population differences in fraction unbound in plasma (fu). In this study, a multi-variable model was developed for prediction of HSA concentrations in renal impairment, using easily accessible variables (BMI, eGFR, age, sex, race and ethnicity) as predictors. An increase of eGFR from 15 to 90 mL/min/1.73m.sup.2 was predicted to elevate HSA concentration by 0.30-0.32 g/dL regardless of subjects' characteristics. Data from obese patients undergoing mini-gastric bypass surgery was used for external validation (observed BMI from 44.5 to 27.3 kg/m.sup.2, leading to predicted HSA concentration change of 0.3 versus 0.1-0.3 g/dL), highlighting the model's potential to enhance PBPK simulations for a broader population. Application of the new albumin model for predicting fu in renal impairment was evaluated with the single binding protein model. Consideration of inter-individual variability predicted by the albumin model could explain some variability in the observed fu data between different drugs and studies (54% observed records within 2.5th-97.5th percentile range of prediction). However, overall underprediction of fold-change in fu between healthy and severe renal impairment (45% observed data exceeded 97.5th percentile of prediction) was noted. Although accounting for changes in binding affinity in predictive models of fu remains a challenge, the newly developed albumin model can support generation of realistic virtual subjects to support PBPK predictions of plasma protein binding.
ArticleNumber 82
Audience Academic
Author Scotcher, Daniel
Hu, Yuming
Author_xml – sequence: 1
  givenname: Yuming
  surname: Hu
  fullname: Hu, Yuming
  organization: Division of Pharmacy and Optometry, The University of Manchester
– sequence: 2
  givenname: Daniel
  orcidid: 0000-0001-9144-3824
  surname: Scotcher
  fullname: Scotcher, Daniel
  email: daniel.scotcher@manchester.ac.uk
  organization: Division of Pharmacy and Optometry, The University of Manchester, Centre for Applied Pharmacokinetic Research, The University of Manchester
BookMark eNp9Uc1O3DAYtCoqFWhfoCdLnEP9k2ST47KCpSpVUWnp0bKdz4tXiY1s58D78KD9wvbQSqjyYezxzMj-5oQchRiAkI-cnXPBuk-ZC1F3FRNNxThrRdW8Ice8aVi1qnl79Nf-HTnJec-YFJLzY_K8hQBJFx929Dvo0efiLV2PZp58oJsYLISy3MeQKTL3PpVZj_RuNnuwJdO1TTEj0LtHPKd5otFhUkDN1RzsYqQloszGORTqYqL3Onlt_OjL0xJ5m2IBxAsfhuUZv3x5WOiL2y_0axxgzO_JW6fHDB_-4Cn5eXX5Y3Nd3Xzbft6sbyrL-66pHLR9r1s71FKsDGio28ZB7ToJg5GmAcMHvdJDK4zWSBkDveuhlk6KfoBOnpKzQ-5Oj6B8cBG_biefrVp3ciV41zGOqvNXVLgGmLzFXpxH_h-DOBheRpXAqcfkJ52eFGdqqU8d6lNYn3qpTzVokgdTRnHYQVL7OCcca_6f6zdBnaJ0
Cites_doi 10.3390/jcm8060775
10.2215/cjn.10251011
10.1208/ps040104
10.1038/s41598-025-90931-2
10.7326/0003-4819-130-6-199903160-00002
10.1159/000180580
10.1002/jcph.1713
10.1208/s12248-016-9959-1
10.1111/bcp.12234
10.1002/psp4.13202
10.2165/00003088-200645090-00005
10.1016/j.disamonth.2019.06.008
10.1136/bmjopen-2022-067386
10.1016/s0272-6386(00)70005-9
10.1002/psp4.12566
10.1053/ajkd.2001.22469
10.1152/ajprenal.00281.2020
10.1208/s12248-016-9942-x
10.1037/1082-989x.10.3.317
10.1586/ecp.10.143
10.5049/ebp.2021.19.2.29
10.1016/j.xphs.2019.03.018
10.7326/0003-4819-150-9-200905050-00006
10.1016/j.xphs.2024.02.024
10.1007/s11695-017-2912-2
10.1080/0886022x.2023.2170243
10.1007/s00228-014-1709-7
10.1002/cpt.337
10.1016/j.xphs.2024.08.020
10.1002/bdd.2510160709
10.1037/a0027127
10.1053/j.ajkd.2007.12.035
10.1016/s0899-9007(03)00061-3
10.1007/s00228-021-03098-w
10.1016/j.bbagen.2016.01.026
10.1136/bmjopen-2020-038423
10.1208/s12248-021-00654-1
10.1007/s40262-021-01072-4
ContentType Journal Article
Copyright The Author(s) 2025 corrected publication 2025
COPYRIGHT 2025 Springer
Copyright_xml – notice: The Author(s) 2025 corrected publication 2025
– notice: COPYRIGHT 2025 Springer
DBID C6C
AAYXX
CITATION
DOI 10.1208/s12248-025-01062-5
DatabaseName Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1550-7416
ExternalDocumentID A837218801
10_1208_s12248_025_01062_5
GroupedDBID ---
.86
.VR
06C
06D
0R~
123
1N0
203
23M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
406
408
40D
40E
53G
67N
6J9
6NX
875
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AAKDD
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBRH
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMFV
ACMJI
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACSTC
ACZOJ
ADHIR
ADKNI
ADKPE
ADRFC
ADURQ
ADYFF
ADYOE
ADZKW
AEFQL
AEGAL
AEGNC
AEGXH
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARMRJ
ATHPR
AXYYD
AYFIA
B-.
BA0
BGNMA
C6C
CS3
CSCUP
DDRTE
DIK
DNIVK
DPUIP
E3Z
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GX1
HG6
HH5
HMJXF
HRMNR
HZ~
IAO
IEA
IHR
IJ-
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
KPH
LGEZI
LLZTM
LOTEE
M4Y
MA-
NADUK
NPVJJ
NQJWS
NXXTH
O9-
O93
O9I
O9J
P6G
PF0
PT4
PT5
QOR
QOS
R89
R9I
ROL
RPM
RPX
RSV
S16
S1Z
S27
S3A
S3B
SAP
SBL
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
TSG
TSV
TUC
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
XSB
YLTOR
Z45
ZMTXR
ZOVNA
~A9
AAYXX
CITATION
ID FETCH-LOGICAL-c1985-fe699a6cd4327beae465fe4f83edb3b5eb1da7ad62baaedbbbe9f9e43f329de83
IEDL.DBID U2A
ISSN 1550-7416
IngestDate Thu Jul 10 07:40:28 EDT 2025
Tue Jul 08 03:52:00 EDT 2025
Thu Jul 10 08:13:28 EDT 2025
Sat Jul 05 01:12:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Albumin
PBPK
Renal impairment
Predictive model
Protein binding
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1985-fe699a6cd4327beae465fe4f83edb3b5eb1da7ad62baaedbbbe9f9e43f329de83
ORCID 0000-0001-9144-3824
OpenAccessLink https://link.springer.com/10.1208/s12248-025-01062-5
ParticipantIDs gale_infotracmisc_A837218801
gale_infotracacademiconefile_A837218801
crossref_primary_10_1208_s12248_025_01062_5
springer_journals_10_1208_s12248_025_01062_5
PublicationCentury 2000
PublicationDate 20250701
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 20250701
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationSubtitle An Official Journal of the American Association of Pharmaceutical Scientists
PublicationTitle The AAPS journal
PublicationTitleAbbrev AAPS J
PublicationYear 2025
Publisher Springer International Publishing
Springer
Publisher_xml – name: Springer International Publishing
– name: Springer
References J Algina (1062_CR36) 2005; 10
K Rowland Yeo (1062_CR5) 2011; 4
D Scotcher (1062_CR16) 2021; 24
SI Vrieze (1062_CR35) 2012; 17
C Emoto (1062_CR42) 2021; 77
N Tsamandouras (1062_CR15) 2015; 79
BK Meijers (1062_CR45) 2008; 51
T Feng (1062_CR3) 2023; 45
L Curry (1062_CR25) 2024
1062_CR6
J Al-Qassabi (1062_CR21) 2024; 113
GF Li (1062_CR43) 2024; 113
D Scotcher (1062_CR17) 2016; 18
1062_CR23
AS Levey (1062_CR8) 2009; 150
K Yoshida (1062_CR19) 2016; 100
1062_CR22
YD Kwong (1062_CR33) 2020; 319
SH Lee (1062_CR47) 1995; 16
TN Johnson (1062_CR28) 2006; 45
S Mohapatra (1062_CR41) 2020; 66
PJ McNamara (1062_CR11) 2019; 108
F Locatelli (1062_CR39) 2001; 37
1062_CR1
N Tangri (1062_CR4) 2023; 13
PRV Malik (1062_CR10) 2020; 60
HJ Kim (1062_CR46) 2021; 19
JG Gerhart (1062_CR24) 2022; 61
M Karimi (1062_CR40) 2018; 28
I Sezİklİ (1062_CR27) 2025; 15
T Gama-Axelsson (1062_CR29) 2012; 7
DW Cockcroft (1062_CR7) 1976; 16
KJ Barnes (1062_CR9) 2014; 70
PJ McNamara (1062_CR12) 2002; 4
1062_CR18
JS Tayeb (1062_CR26) 2000; 35
1062_CR38
AA Thoppil (1062_CR44) 2016; 1860
1062_CR14
1062_CR37
1062_CR34
1062_CR13
1062_CR32
HO Hounkpatin (1062_CR2) 2020; 10
H Takita (1062_CR20) 2020; 9
1062_CR30
1062_CR31
References_xml – ident: 1062_CR30
  doi: 10.3390/jcm8060775
– volume: 7
  start-page: 1446
  issue: 9
  year: 2012
  ident: 1062_CR29
  publication-title: Clin J Am Soc Nephrol
  doi: 10.2215/cjn.10251011
– volume: 4
  start-page: 19
  year: 2002
  ident: 1062_CR12
  publication-title: AAPS PharmSci
  doi: 10.1208/ps040104
– volume: 15
  start-page: 6634
  issue: 1
  year: 2025
  ident: 1062_CR27
  publication-title: Sci Rep
  doi: 10.1038/s41598-025-90931-2
– ident: 1062_CR6
  doi: 10.7326/0003-4819-130-6-199903160-00002
– volume: 16
  start-page: 31
  issue: 1
  year: 1976
  ident: 1062_CR7
  publication-title: Nephron
  doi: 10.1159/000180580
– volume: 60
  start-page: S52
  issue: Suppl 1
  year: 2020
  ident: 1062_CR10
  publication-title: J Clin Pharmacol
  doi: 10.1002/jcph.1713
– volume: 18
  start-page: 1082
  issue: 5
  year: 2016
  ident: 1062_CR17
  publication-title: AAPS J
  doi: 10.1208/s12248-016-9959-1
– volume: 79
  start-page: 48
  issue: 1
  year: 2015
  ident: 1062_CR15
  publication-title: Br J Clin Pharmacol
  doi: 10.1111/bcp.12234
– year: 2024
  ident: 1062_CR25
  publication-title: CPT Pharmacometrics Syst Pharmacol
  doi: 10.1002/psp4.13202
– volume: 45
  start-page: 931
  issue: 9
  year: 2006
  ident: 1062_CR28
  publication-title: Clin Pharmacokinet
  doi: 10.2165/00003088-200645090-00005
– volume: 66
  issue: 2
  year: 2020
  ident: 1062_CR41
  publication-title: Dis Mon
  doi: 10.1016/j.disamonth.2019.06.008
– volume: 13
  issue: 5
  year: 2023
  ident: 1062_CR4
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2022-067386
– volume: 35
  start-page: 606
  issue: 4
  year: 2000
  ident: 1062_CR26
  publication-title: Am J Kidney Dis
  doi: 10.1016/s0272-6386(00)70005-9
– volume: 9
  start-page: 695
  issue: 12
  year: 2020
  ident: 1062_CR20
  publication-title: CPT Pharmacometrics Syst Pharmacol
  doi: 10.1002/psp4.12566
– ident: 1062_CR38
– volume: 37
  start-page: 455
  issue: 2
  year: 2001
  ident: 1062_CR39
  publication-title: Am J Kidney Dis
  doi: 10.1053/ajkd.2001.22469
– ident: 1062_CR22
– volume: 319
  start-page: F979
  issue: 6
  year: 2020
  ident: 1062_CR33
  publication-title: Am J Physiol Renal Physiol
  doi: 10.1152/ajprenal.00281.2020
– ident: 1062_CR18
  doi: 10.1208/s12248-016-9942-x
– volume: 10
  start-page: 317
  issue: 3
  year: 2005
  ident: 1062_CR36
  publication-title: Psychol Methods
  doi: 10.1037/1082-989x.10.3.317
– ident: 1062_CR32
– volume: 4
  start-page: 261
  issue: 2
  year: 2011
  ident: 1062_CR5
  publication-title: Expert Rev Clin Pharmacol
  doi: 10.1586/ecp.10.143
– ident: 1062_CR34
– volume: 19
  start-page: 29
  issue: 2
  year: 2021
  ident: 1062_CR46
  publication-title: Electrolyte Blood Press
  doi: 10.5049/ebp.2021.19.2.29
– volume: 108
  start-page: 2737
  issue: 8
  year: 2019
  ident: 1062_CR11
  publication-title: J Pharm Sci
  doi: 10.1016/j.xphs.2019.03.018
– ident: 1062_CR13
– volume: 150
  start-page: 604
  issue: 9
  year: 2009
  ident: 1062_CR8
  publication-title: Ann Intern Med
  doi: 10.7326/0003-4819-150-9-200905050-00006
– volume: 113
  start-page: 1664
  issue: 6
  year: 2024
  ident: 1062_CR21
  publication-title: J Pharm Sci
  doi: 10.1016/j.xphs.2024.02.024
– volume: 28
  start-page: 671
  issue: 3
  year: 2018
  ident: 1062_CR40
  publication-title: Obes Surg
  doi: 10.1007/s11695-017-2912-2
– ident: 1062_CR1
– volume: 45
  start-page: 2170243
  issue: 1
  year: 2023
  ident: 1062_CR3
  publication-title: Ren Fail
  doi: 10.1080/0886022x.2023.2170243
– volume: 70
  start-page: 1097
  issue: 9
  year: 2014
  ident: 1062_CR9
  publication-title: Eur J Clin Pharmacol
  doi: 10.1007/s00228-014-1709-7
– ident: 1062_CR14
– volume: 100
  start-page: 75
  issue: 1
  year: 2016
  ident: 1062_CR19
  publication-title: Clin Pharmacol Ther
  doi: 10.1002/cpt.337
– volume: 113
  start-page: 3393
  issue: 11
  year: 2024
  ident: 1062_CR43
  publication-title: J Pharm Sci
  doi: 10.1016/j.xphs.2024.08.020
– volume: 16
  start-page: 615
  issue: 7
  year: 1995
  ident: 1062_CR47
  publication-title: Biopharm Drug Dispos
  doi: 10.1002/bdd.2510160709
– ident: 1062_CR37
– ident: 1062_CR23
– volume: 17
  start-page: 228
  issue: 2
  year: 2012
  ident: 1062_CR35
  publication-title: Psychol Methods
  doi: 10.1037/a0027127
– volume: 51
  start-page: 839
  issue: 5
  year: 2008
  ident: 1062_CR45
  publication-title: Am J Kidney Dis
  doi: 10.1053/j.ajkd.2007.12.035
– ident: 1062_CR31
  doi: 10.1016/s0899-9007(03)00061-3
– volume: 77
  start-page: 1157
  issue: 8
  year: 2021
  ident: 1062_CR42
  publication-title: Eur J Clin Pharmacol
  doi: 10.1007/s00228-021-03098-w
– volume: 1860
  start-page: 917
  issue: 5
  year: 2016
  ident: 1062_CR44
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbagen.2016.01.026
– volume: 10
  issue: 8
  year: 2020
  ident: 1062_CR2
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2020-038423
– volume: 24
  start-page: 13
  issue: 1
  year: 2021
  ident: 1062_CR16
  publication-title: AAPS J
  doi: 10.1208/s12248-021-00654-1
– volume: 61
  start-page: 307
  issue: 2
  year: 2022
  ident: 1062_CR24
  publication-title: Clin Pharmacokinet
  doi: 10.1007/s40262-021-01072-4
SSID ssj0032311
Score 2.4338584
Snippet Use of physiologically-based pharmacokinetic (PBPK) modelling for extrapolation to organ impairment populations requires successful prediction for...
SourceID gale
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Albumin
Analysis
Biochemistry
Biomedical and Life Sciences
Biomedicine
Biotechnology
Pharmacology/Toxicology
Pharmacy
Physiological aspects
Protein binding
Research Article
Simulation methods
Theme: Recent Advances in PBPK to Accelerate Drug Discovery and Development
Title Generating Realistic Albumin Concentrations in Virtual Subjects Across A Spectrum of Renal Function to Account for Variability in Protein Binding Within PBPK Models
URI https://link.springer.com/article/10.1208/s12248-025-01062-5
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZNcumlJH3QbdJlDiU9dE0tS5ato7NkExpalpJNtych2RJZaLwh3h72__SHdsYPwkIo9GKDrBf-pNGMpPmGsQ-YyD0Kx8hmoYykzVWkY4ETTymZxtx5EchQ_PpNXS7kl2W67J3CmuG2-3Ak2UrqlgEhzj83dAaURxR-lewYNKH22EFKtjuO4kVSDPJXoMbCe_eYp8vtLEGDIN49Bm1Xl9khe9GrhVB0OB6xZ75-yU7nHa_0dgLXj25SzQROYf7IOL19xf505NF0gxm-e6I0xHzQ7r6vapiSZ2Ld0-M2gCk3qwdyGwGUGrQN00DR9hQKoHD0m4ffd7AOWBN1aYYLHxWEzRr60BKAii7coJHdcXxvqco58T3g-2zVusnAj9XmlpLP5ldA8dZ-Na_ZYnZ-Pb2M-vALUcl1nkbBK62tKispksx566VKg5chF75ywqUo5Sub2UolzlpMcs7roL0UQSS68rl4w_brde3fMkC7pLRBcZ9mTnLHbcJ9IrJYVkJ7HcsR-zQgYu47lg1D1gniZzr8DOJnWvxMOmIfCTRDUxB_Xml7TwJsi8isTIFGd0I8c3zETnZy4tQpdz5PBthNP3Wbf7T77v-yH7PnSTvq6G7vCdtH9Px71GA2bswOioufV-djtjdVU3xeLPm4HcR_Afd074s
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9swDBa27rBdinUPLG3X8jB0h8WYbcmyfUyDBtn6QDCkXW-CZFNogNYp4vSQ_7MfOtJ20AUYCvRkgNYL-iRKlMSPQnwhYYSkHAOb-iJQNtNBHkqaeFqrJIwcSs-G4vmFHl-qn9fJdUeTw74w_97fx2H2veabnyzgoKtsvZDh9FK8UmQp8_O9oR6uta6kfUrUOcX8P9_GwrNWv5uXn82aMnortrvNIAxa9HbEC6zeiaNJyya96sP00Tmq7sMRTB55plfvxZ-WMprfLcMvZCJDSgfNmfusgiH7I1YdKW4NJLmaLdhZBEhX8OFLDYOmpTAADkK_XDzcwdxTSdykES13nBGWc-gCSgBtb-GKTOuW2XvFRU6Y5YG-x7PGOQZ-z5Y3LD6enAJHWbutP4jL0cl0OA66oAtBwb0aeNR5bnVRKhmnDi0qnXhUPpNYOukS0u2lTW2pY2ctiZzD3OeopJdxXmImP4qtal7hJwFkjRTW6wiT1KnIRTaOMJZpqEqZYx6qnvi2RsTct9wahm0Sws-0-BnCzzT4maQnvjJohicedV5hO_8BqosprMyATO2Y2eWintjfSEkTptj43V_DbroJWz9R7-7zkh-K1-Pp-Zk5-3FxuifexM0I5Ne9-2KLkMTPtIdZuoNm8P4FDPLq-w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWgSIgL4lMsLXQOqBzYqEnsOPFxu-2qUKgi1JbeLDux1ZUgWzXpYf8PP5QZJ1FZCVXiFGliO1aePfZ4PG8Y-4DCxKFyjEzuq0iYQkYq5jjxpBRZnFjHPRmK307l8bn4cpld_hXFH267jy7JPqaBWJqabv-69j0bQlzst-QPKiJKxUo2DZpTD9kjtFSCo3Yu56Mu5rh7SYZQmX_X21iORqW86RINK83iGXs6bBFh1mP6nD1wzQu2V_Yc0-spnN2FTLVT2IPyjn16_ZL97omk6TYzfHdEb4jlIJzELxuYU5RiM1DltoCSi-UNhZAAahA6kmlhFnoKM6DU9N3N7S9YeWyJurTARZAqQreCIc0E4KYXLtDg7vm-19RkSdwP-DxYhpAZ-LHsrkh8UJ4A5V772b5i54ujs_lxNKRiiKpEFVnknVTKyKoWPM2tM07IzDvhC-5qy22GGr82uallao1BkbVOeeUE9zxVtSv4a7bVrBr3hgHaKJXxMnFZbkViE5MmLuV5LGqunIrFhH0aEdHXPeOGJksF8dM9fhrx0wE_nU3YRwJN03TEn1eZIaoAv0XEVnqGBnhKnHPJhO1slMRpVG28no6w62Eat_d89-3_Fd9lj8vDhf76-fRkmz1JwwCkK787bAuBdO9wY9PZ92Hs_gEPsfNC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generating+Realistic+Albumin+Concentrations+in+Virtual+Subjects+Across+A+Spectrum+of+Renal+Function+to+Account+for+Variability+in+Protein+Binding+Within+PBPK+Models&rft.jtitle=The+AAPS+journal&rft.au=Hu%2C+Yuming&rft.au=Scotcher%2C+Daniel&rft.date=2025-07-01&rft.issn=1550-7416&rft.eissn=1550-7416&rft.volume=27&rft.issue=4&rft_id=info:doi/10.1208%2Fs12248-025-01062-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1208_s12248_025_01062_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-7416&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-7416&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-7416&client=summon