Pipeline impact force observation-based intelligent measurement method for liquid flow
This paper proposes an innovative measurement method that uses the impact force generated when the liquid flows through the pipe as an observation indicator, and successfully establishes a non-linear mapping relationship between the impact force sequence and the weight of the flowing liquid by train...
Saved in:
Published in | Flow measurement and instrumentation Vol. 100; p. 102700 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper proposes an innovative measurement method that uses the impact force generated when the liquid flows through the pipe as an observation indicator, and successfully establishes a non-linear mapping relationship between the impact force sequence and the weight of the flowing liquid by training and learning the collected impact force sequence through the CLCD (CNN-LSTM-CNN-Double) network architecture. In response to the challenges such as the prevalent interference factors and inconsistent flow time lengths in the collected data, this paper introduces a new weight ratio algorithm, WRP (Weight-Ratio-Process), which effectively improves the robustness and accuracy of data processing. The experimental results show that the effective detection rate of the method reaches 90 % when the weighing error is set to ±5g on the constructed fluid impact force test platform. When the error range is relaxed to ±15g, the effective detection rate is increased to 98 %. This achievement demonstrates the broad application potential and practical value of the method in the field of fluid transport measurement.
•In this paper, an intelligent soft sensing method based on impact force is proposed to measure the cumulative flow rate of molten liquid flowing through the measurement point.•A CLCD training model is designed that combines the eigenvalues of the original data time series to model the relationship between impact force and flow rate.•Furthermore, a novel data normalisation method is proposed to address the issue of varying input impact force sequence lengths during model training. |
---|---|
AbstractList | This paper proposes an innovative measurement method that uses the impact force generated when the liquid flows through the pipe as an observation indicator, and successfully establishes a non-linear mapping relationship between the impact force sequence and the weight of the flowing liquid by training and learning the collected impact force sequence through the CLCD (CNN-LSTM-CNN-Double) network architecture. In response to the challenges such as the prevalent interference factors and inconsistent flow time lengths in the collected data, this paper introduces a new weight ratio algorithm, WRP (Weight-Ratio-Process), which effectively improves the robustness and accuracy of data processing. The experimental results show that the effective detection rate of the method reaches 90 % when the weighing error is set to ±5g on the constructed fluid impact force test platform. When the error range is relaxed to ±15g, the effective detection rate is increased to 98 %. This achievement demonstrates the broad application potential and practical value of the method in the field of fluid transport measurement.
•In this paper, an intelligent soft sensing method based on impact force is proposed to measure the cumulative flow rate of molten liquid flowing through the measurement point.•A CLCD training model is designed that combines the eigenvalues of the original data time series to model the relationship between impact force and flow rate.•Furthermore, a novel data normalisation method is proposed to address the issue of varying input impact force sequence lengths during model training. |
ArticleNumber | 102700 |
Author | Xu, Fangmin Li, Qiguang Zheng, Xiru Kuang, Yongkun Chen, Zhihua Zeng, Bingji Duan, Bofang He, Yu |
Author_xml | – sequence: 1 givenname: Qiguang surname: Li fullname: Li, Qiguang email: 19950201@bistu.edu.cn organization: Beijing Information Science and Technology University, No.12 Xiaoying East Road, Beijing, 100192, China – sequence: 2 givenname: Xiru surname: Zheng fullname: Zheng, Xiru organization: Beijing Information Science and Technology University, No.12 Xiaoying East Road, Beijing, 100192, China – sequence: 3 givenname: Yu surname: He fullname: He, Yu organization: Beijing Information Science and Technology University, No.12 Xiaoying East Road, Beijing, 100192, China – sequence: 4 givenname: Fangmin surname: Xu fullname: Xu, Fangmin organization: Beijing Information Science and Technology University, No.12 Xiaoying East Road, Beijing, 100192, China – sequence: 5 givenname: Bingji surname: Zeng fullname: Zeng, Bingji organization: Beijing Information Science and Technology University, No.12 Xiaoying East Road, Beijing, 100192, China – sequence: 6 givenname: Bofang surname: Duan fullname: Duan, Bofang organization: Beijing Information Science and Technology University, No.12 Xiaoying East Road, Beijing, 100192, China – sequence: 7 givenname: Yongkun surname: Kuang fullname: Kuang, Yongkun organization: Beijing University of Posts and Telecommunications, Beijing, 100876, China – sequence: 8 givenname: Zhihua surname: Chen fullname: Chen, Zhihua email: zhihua.chen@nchu.edu.cn organization: Key Laboratory of Jiangxi Province for Image Processing and Pattern Recognition, Nanchang Hangkong University, Nanchang, 330063, China |
BookMark | eNqNkEtPwzAQhH0oEm3hP0TcU-w8aocbKk-pEhyAq2Vv1uAqsYvtFvHvSRQOHDntrFYzO_oWZOa8Q0IuGF0xytaXu5Xp_FePKloX06qgRTUcCk7pjMxpU9d53Yj1KVnEuKOUClryOXl7tnvsrMPM9nsFKTM-AGZeRwxHlax3uVYR28y6hF1n39GlbPxxCNhPOn34drRlnf082EEOLc7IiVFdxPPfuSSvd7cvm4d8-3T_uLne5sAannKFhnHQes2pKVqgjagMZxoaYQBA6cJUpWBlVbdNYRTlxqhaVMNSQQmV0OWSXE25EHyMAY3cB9ur8C0ZlSMVuZN_qciRipyoDOabyYxDw6PFICNYdICtDQhJtt7-J-YHElN5fg |
Cites_doi | 10.1007/s12046-015-0375-5 10.1016/j.ijmultiphaseflow.2021.103875 10.3390/s20205922 10.1002/2015JB012245 10.1016/0959-1524(91)87002-F 10.3390/s17020425 10.1016/j.jma.2021.05.012 10.1016/0005-1098(92)90134-2 10.1140/epjst/e2013-01797-y 10.1016/S0165-0114(98)00238-3 10.3390/s22197470 10.1016/j.jnucmat.2006.05.020 10.1016/j.nucengdes.2009.11.017 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.flowmeasinst.2024.102700 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
ExternalDocumentID | 10_1016_j_flowmeasinst_2024_102700 S0955598624001808 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO ABJNI ABMAC ABXDB ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SET SEW SPC SPCBC SPD SST SSZ T5K UHS WH7 WUQ XPP ZMT ~G- AAYXX CITATION |
ID | FETCH-LOGICAL-c197t-aef17cbb670f2dc0984f71bc98fcccab2f4381345d92fa07ffa584d924c3c48b3 |
IEDL.DBID | AIKHN |
ISSN | 0955-5986 |
IngestDate | Wed Nov 06 13:19:30 EST 2024 Sat Oct 12 15:52:13 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep network Liquid weight weighing Pipe impact force Data normalisation Time series |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c197t-aef17cbb670f2dc0984f71bc98fcccab2f4381345d92fa07ffa584d924c3c48b3 |
ParticipantIDs | crossref_primary_10_1016_j_flowmeasinst_2024_102700 elsevier_sciencedirect_doi_10_1016_j_flowmeasinst_2024_102700 |
PublicationCentury | 2000 |
PublicationDate | December 2024 2024-12-00 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: December 2024 |
PublicationDecade | 2020 |
PublicationTitle | Flow measurement and instrumentation |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Massaroni, Schena, Silvestri (bib4) 2017 Jagad, Puranik (bib12) 2015; 40 Shi, Mizumoto (bib18) 2000; 112 Schulenberg, Stieglitz (bib5) 2010; 240 Wang, Hu, Yang, Zhang (bib20) 2022; 146 Ikeuchi, Minegishi, Kawamata (bib2) 2001-03-06 Tham, Montague (bib16) 1991; 1 Jaiswal, Yadav, Agarwal (bib14) 2015; 30 Jin, Chung, Park (bib23) 2020; 20 Zhou, Ye, Lu (bib17) 1992; 3 Hu, Yan, Hang (bib24) 2020; 935 Zhang, Peng, Li (bib26) 2017; 17 Sun, Jin (bib15) 2005 Zhang, Yang, Yang (bib21) 2018 Kadlec (bib6) 2017; 133 Buchenau, Eckert, Lenk (bib9) 2014; 81 Foletti, Scaddozzo (bib7) 2006; 356 Ho, Chiu (bib22) 2023 Yaw, Koh (bib27) 2023; 23 Ikeuchi, Minegishi, Kawamata (bib3) 2015; 120 Shevchenko, Boden (bib10) 2013; 220 Zhao, Zhao, Yue (bib13) 2012; 443–440 Prasad, Prasad, Verma (bib1) 2022; 10 Ren, Wang (bib8) 2022; 22 Imani, Abdoli, Beyram (bib25) 2022 Mcavoy (bib11) 1992; 28 Kadlec (10.1016/j.flowmeasinst.2024.102700_bib6) 2017; 133 Shevchenko (10.1016/j.flowmeasinst.2024.102700_bib10) 2013; 220 Ho (10.1016/j.flowmeasinst.2024.102700_bib22) 2023 Sun (10.1016/j.flowmeasinst.2024.102700_bib15) 2005 Zhang (10.1016/j.flowmeasinst.2024.102700_bib21) 2018 Buchenau (10.1016/j.flowmeasinst.2024.102700_bib9) 2014; 81 Zhao (10.1016/j.flowmeasinst.2024.102700_bib13) 2012; 443–440 Zhang (10.1016/j.flowmeasinst.2024.102700_bib26) 2017; 17 Ren (10.1016/j.flowmeasinst.2024.102700_bib8) 2022; 22 Ikeuchi (10.1016/j.flowmeasinst.2024.102700_bib2) 2001 Schulenberg (10.1016/j.flowmeasinst.2024.102700_bib5) 2010; 240 Mcavoy (10.1016/j.flowmeasinst.2024.102700_bib11) 1992; 28 Jagad (10.1016/j.flowmeasinst.2024.102700_bib12) 2015; 40 Jin (10.1016/j.flowmeasinst.2024.102700_bib23) 2020; 20 Massaroni (10.1016/j.flowmeasinst.2024.102700_bib4) 2017 Tham (10.1016/j.flowmeasinst.2024.102700_bib16) 1991; 1 Imani (10.1016/j.flowmeasinst.2024.102700_bib25) 2022 Jaiswal (10.1016/j.flowmeasinst.2024.102700_bib14) 2015; 30 Wang (10.1016/j.flowmeasinst.2024.102700_bib20) 2022; 146 Ikeuchi (10.1016/j.flowmeasinst.2024.102700_bib3) 2015; 120 Hu (10.1016/j.flowmeasinst.2024.102700_bib24) 2020; 935 Yaw (10.1016/j.flowmeasinst.2024.102700_bib27) 2023; 23 Prasad (10.1016/j.flowmeasinst.2024.102700_bib1) 2022; 10 Shi (10.1016/j.flowmeasinst.2024.102700_bib18) 2000; 112 Zhou (10.1016/j.flowmeasinst.2024.102700_bib17) 1992; 3 Foletti (10.1016/j.flowmeasinst.2024.102700_bib7) 2006; 356 |
References_xml | – volume: 240 start-page: 2077 year: 2010 end-page: 2087 ident: bib5 article-title: Flow measurement techniques in heavy liquid metals publication-title: Nucl. Eng. Des. contributor: fullname: Stieglitz – year: 2022 ident: bib25 article-title: Multi-window-finder: domain agnostic window size for time series data publication-title: ACM Comput. Surv. contributor: fullname: Beyram – volume: 120 start-page: 8031 year: 2015 end-page: 8055 ident: bib3 article-title: Measuring fluid flow and heat output in seafloor hydrothermal environments publication-title: J. Geophys. Res. Solid Earth contributor: fullname: Kawamata – volume: 112 start-page: 99 year: 2000 end-page: 116 ident: bib18 article-title: A new approach of neuro-fuzzy learning algorithm for tuning fuzzy rules publication-title: Fuzzy Set Syst. contributor: fullname: Mizumoto – volume: 443–440 start-page: 2629 year: 2012 end-page: 2634 ident: bib13 article-title: [C] publication-title: International Conference on Materials Science and Information Technology contributor: fullname: Yue – volume: 22 start-page: 7470 year: 2022 ident: bib8 article-title: Design and implementation of an ultrasonic flowmeter based on the cross-correlation method publication-title: Sensors contributor: fullname: Wang – volume: 28 start-page: 441 year: 1992 end-page: 442 ident: bib11 article-title: Contemplative stance for chemical process control publication-title: Automatic contributor: fullname: Mcavoy – volume: 10 start-page: 1 year: 2022 end-page: 61 ident: bib1 article-title: The role and significance of Magnesium in modern day research-A review publication-title: J. Magnesium Alloys contributor: fullname: Verma – volume: 20 year: 2020 ident: bib23 article-title: Development of a flowmeter using vibration interaction between gauge plate and external flow analyzed by LSTM publication-title: Sensors contributor: fullname: Park – volume: 220 start-page: 63 year: 2013 end-page: 77 ident: bib10 article-title: Application of X-ay radioscopic methods for characterization of two-phase phenomena and solidification processes in metallic melts publication-title: Eur. Phys. J. Spec. Top. contributor: fullname: Boden – year: 2001-03-06 ident: bib2 article-title: Apparatus for Supplying Molten Magnesium and Method for Supplying Molten Metal: JP 11236580 contributor: fullname: Kawamata – volume: 30 start-page: 119 year: 2015 end-page: 123 ident: bib14 article-title: Multiple weighing based method for realizing flow publication-title: MAPAN-J. Metrol. Soc. India contributor: fullname: Agarwal – volume: 356 start-page: 264 year: 2006 end-page: 272 ident: bib7 article-title: ENEA experience in LBE technology publication-title: J. Nucl. Mater. contributor: fullname: Scaddozzo – start-page: 182 year: 2018 end-page: 187 ident: bib21 article-title: A novel CNN modeling algorithm for the instantaneous flow rate measurement of gas-liquid multiphase flow[C] publication-title: 12th International Conference on Machine Learning and Computing (ICMLC) contributor: fullname: Yang – volume: 81 start-page: 74 year: 2014 end-page: 78 ident: bib9 article-title: Contactless flow rate measurements in metallic melts publication-title: TM - Tech. Mess. contributor: fullname: Lenk – start-page: 881 year: 2017 end-page: 884 ident: bib4 article-title: Temperature influence on the response at low airflow of a variable orifice flowmeter[C] publication-title: Engineering in Medicine & Biology Society contributor: fullname: Silvestri – volume: 133 start-page: 317 year: 2017 end-page: 321 ident: bib6 article-title: Measurement of process variables in sugar industry: flow measurement (part 5) publication-title: Listy Cukrov. a Reparske contributor: fullname: Kadlec – volume: 23 start-page: 1424 year: 2023 end-page: 8220 ident: bib27 article-title: Detection of corona faults in switchgear by using 1D-CNN, LSTM, and 1D-CNN-LSTM methods publication-title: Sensors contributor: fullname: Koh – volume: 1 start-page: 3 year: 1991 end-page: 14 ident: bib16 article-title: Soft-sensor for process estimation and inferential control publication-title: J. Process Control contributor: fullname: Montague – volume: 17 start-page: 425 year: 2017 ident: bib26 article-title: A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals publication-title: Sensors contributor: fullname: Li – volume: 146 start-page: 1879 year: 2022 end-page: 3533 ident: bib20 article-title: Multiphase flowrate measurement with time series sensing data and sequential model publication-title: Int. J. Multiphas. Flow contributor: fullname: Zhang – volume: 3 start-page: 991 year: 1992 end-page: 997 ident: bib17 article-title: Modeling and control for nonlinear time-delay system via pattern recognition publication-title: IEEE Trans. Neural Networks contributor: fullname: Lu – start-page: 618 year: 2023 ident: bib22 article-title: Flow measurement in open channels using imaging techniques in conjunction with a convolutional neural network publication-title: J. Hydrol. contributor: fullname: Chiu – volume: 40 year: 2015 ident: bib12 article-title: Date A W. A novel concept of measuring mass flow rates using flow induced stresses publication-title: Sadhana contributor: fullname: Puranik – volume: 935 start-page: 1006 year: 2020 end-page: 1014 ident: bib24 article-title: Stream-flow forecasting of small rivers based on LSTM publication-title: Semantic Scholar contributor: fullname: Hang – start-page: 268 year: 2005 end-page: 277 ident: bib15 article-title: [C] publication-title: II ICAPR contributor: fullname: Jin – volume: 40 issue: 5 year: 2015 ident: 10.1016/j.flowmeasinst.2024.102700_bib12 article-title: Date A W. A novel concept of measuring mass flow rates using flow induced stresses publication-title: Sadhana doi: 10.1007/s12046-015-0375-5 contributor: fullname: Jagad – volume: 3 start-page: 991 issue: 6 year: 1992 ident: 10.1016/j.flowmeasinst.2024.102700_bib17 article-title: Modeling and control for nonlinear time-delay system via pattern recognition publication-title: IEEE Trans. Neural Networks contributor: fullname: Zhou – volume: 23 start-page: 1424 issue: 6 year: 2023 ident: 10.1016/j.flowmeasinst.2024.102700_bib27 article-title: Detection of corona faults in switchgear by using 1D-CNN, LSTM, and 1D-CNN-LSTM methods publication-title: Sensors contributor: fullname: Yaw – volume: 146 start-page: 1879 year: 2022 ident: 10.1016/j.flowmeasinst.2024.102700_bib20 article-title: Multiphase flowrate measurement with time series sensing data and sequential model publication-title: Int. J. Multiphas. Flow doi: 10.1016/j.ijmultiphaseflow.2021.103875 contributor: fullname: Wang – volume: 133 start-page: 317 issue: 9–10 year: 2017 ident: 10.1016/j.flowmeasinst.2024.102700_bib6 article-title: Measurement of process variables in sugar industry: flow measurement (part 5) publication-title: Listy Cukrov. a Reparske contributor: fullname: Kadlec – volume: 20 issue: 20 year: 2020 ident: 10.1016/j.flowmeasinst.2024.102700_bib23 article-title: Development of a flowmeter using vibration interaction between gauge plate and external flow analyzed by LSTM publication-title: Sensors doi: 10.3390/s20205922 contributor: fullname: Jin – volume: 120 start-page: 8031 issue: 12 year: 2015 ident: 10.1016/j.flowmeasinst.2024.102700_bib3 article-title: Measuring fluid flow and heat output in seafloor hydrothermal environments publication-title: J. Geophys. Res. Solid Earth doi: 10.1002/2015JB012245 contributor: fullname: Ikeuchi – volume: 1 start-page: 3 issue: 1 year: 1991 ident: 10.1016/j.flowmeasinst.2024.102700_bib16 article-title: Soft-sensor for process estimation and inferential control publication-title: J. Process Control doi: 10.1016/0959-1524(91)87002-F contributor: fullname: Tham – volume: 30 start-page: 119 issue: 2 year: 2015 ident: 10.1016/j.flowmeasinst.2024.102700_bib14 article-title: Multiple weighing based method for realizing flow publication-title: MAPAN-J. Metrol. Soc. India contributor: fullname: Jaiswal – year: 2022 ident: 10.1016/j.flowmeasinst.2024.102700_bib25 article-title: Multi-window-finder: domain agnostic window size for time series data publication-title: ACM Comput. Surv. contributor: fullname: Imani – volume: 17 start-page: 425 year: 2017 ident: 10.1016/j.flowmeasinst.2024.102700_bib26 article-title: A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals publication-title: Sensors doi: 10.3390/s17020425 contributor: fullname: Zhang – volume: 81 start-page: 74 issue: 2 year: 2014 ident: 10.1016/j.flowmeasinst.2024.102700_bib9 article-title: Contactless flow rate measurements in metallic melts publication-title: TM - Tech. Mess. contributor: fullname: Buchenau – volume: 10 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.flowmeasinst.2024.102700_bib1 article-title: The role and significance of Magnesium in modern day research-A review publication-title: J. Magnesium Alloys doi: 10.1016/j.jma.2021.05.012 contributor: fullname: Prasad – volume: 28 start-page: 441 issue: 2 year: 1992 ident: 10.1016/j.flowmeasinst.2024.102700_bib11 article-title: Contemplative stance for chemical process control publication-title: Automatic doi: 10.1016/0005-1098(92)90134-2 contributor: fullname: Mcavoy – start-page: 182 year: 2018 ident: 10.1016/j.flowmeasinst.2024.102700_bib21 article-title: A novel CNN modeling algorithm for the instantaneous flow rate measurement of gas-liquid multiphase flow[C] contributor: fullname: Zhang – year: 2001 ident: 10.1016/j.flowmeasinst.2024.102700_bib2 contributor: fullname: Ikeuchi – volume: 443–440 start-page: 2629 year: 2012 ident: 10.1016/j.flowmeasinst.2024.102700_bib13 article-title: Soot mass flow measurement system using Triboelectricity and ultrasonic[C] publication-title: International Conference on Materials Science and Information Technology contributor: fullname: Zhao – volume: 220 start-page: 63 issue: 1 year: 2013 ident: 10.1016/j.flowmeasinst.2024.102700_bib10 article-title: Application of X-ay radioscopic methods for characterization of two-phase phenomena and solidification processes in metallic melts publication-title: Eur. Phys. J. Spec. Top. doi: 10.1140/epjst/e2013-01797-y contributor: fullname: Shevchenko – start-page: 618 year: 2023 ident: 10.1016/j.flowmeasinst.2024.102700_bib22 article-title: Flow measurement in open channels using imaging techniques in conjunction with a convolutional neural network publication-title: J. Hydrol. contributor: fullname: Ho – volume: 112 start-page: 99 year: 2000 ident: 10.1016/j.flowmeasinst.2024.102700_bib18 article-title: A new approach of neuro-fuzzy learning algorithm for tuning fuzzy rules publication-title: Fuzzy Set Syst. doi: 10.1016/S0165-0114(98)00238-3 contributor: fullname: Shi – start-page: 881 year: 2017 ident: 10.1016/j.flowmeasinst.2024.102700_bib4 article-title: Temperature influence on the response at low airflow of a variable orifice flowmeter[C] publication-title: Engineering in Medicine & Biology Society contributor: fullname: Massaroni – volume: 22 start-page: 7470 issue: 19 year: 2022 ident: 10.1016/j.flowmeasinst.2024.102700_bib8 article-title: Design and implementation of an ultrasonic flowmeter based on the cross-correlation method publication-title: Sensors doi: 10.3390/s22197470 contributor: fullname: Ren – volume: 356 start-page: 264 issue: 1 year: 2006 ident: 10.1016/j.flowmeasinst.2024.102700_bib7 article-title: ENEA experience in LBE technology publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2006.05.020 contributor: fullname: Foletti – volume: 935 start-page: 1006 year: 2020 ident: 10.1016/j.flowmeasinst.2024.102700_bib24 article-title: Stream-flow forecasting of small rivers based on LSTM publication-title: Semantic Scholar contributor: fullname: Hu – volume: 240 start-page: 2077 issue: 9 year: 2010 ident: 10.1016/j.flowmeasinst.2024.102700_bib5 article-title: Flow measurement techniques in heavy liquid metals publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2009.11.017 contributor: fullname: Schulenberg – start-page: 268 year: 2005 ident: 10.1016/j.flowmeasinst.2024.102700_bib15 article-title: A novel feature fusion method Based on partial least squares regression[C] publication-title: II ICAPR contributor: fullname: Sun |
SSID | ssj0008037 |
Score | 2.4095821 |
Snippet | This paper proposes an innovative measurement method that uses the impact force generated when the liquid flows through the pipe as an observation indicator,... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 102700 |
SubjectTerms | Data normalisation Deep network Liquid weight weighing Pipe impact force Time series |
Title | Pipeline impact force observation-based intelligent measurement method for liquid flow |
URI | https://dx.doi.org/10.1016/j.flowmeasinst.2024.102700 |
Volume | 100 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8MwGH7RDUEPolNxfowcvNatadqkBw9jOKbCEHSyW2m-oLIvXYc3f7tJ084JHgRvSegL4Ul5P8LzPgG4CjkzhZUiHlam0iHKl14aUemFMiLUxLNQqoLlO4wGI3I_Dsdb0Kt6YSytsvT9zqcX3rpcaZdothdZ1n6y4mlWXdyyIH1mG37rJhxhVoN69-5hMFw7ZNZx0pnme88aVNqjBc1LT-YfU5WawnxpqZWYWDEDahvefotTG7GnfwD7ZdKIum5fh7ClZg3Y25ASbMBOQeUUyyN4ecwWtslcIdcBiUxaKhSa8_X9q2dDl0TZWo0zR9Pvq0LkHpW2ZmiSva0yMzS7P4ZR__a5N_DK1xM84cc091KlfSo4j2hHYyk6MSOa-lzETAtzbBxrq-4VkFDGWKcdqnVqkhEzISIQhPHgBGqz-UydAsJBxEytxiNfSFPOUaYx5TJNSVH_kLQJQYVVsnAiGUnFHntNNhFOLMKJQ7gJNxWsyY8jT4w3_4P92T_tz2HXzhw35QJq-ftKXZoMI-ct2L7-9Fvlf_QF6hDTdw |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFB5Ki6gH0apY1zl4Dc0yySQHD6Uoqa1FsJXehswGkW7aFP--b7LUCh4Eb0kmD4ZvkrcM3_sGoVufh1BYKWK5CiodohxpJQGVli8DQiGe-VLlLN9hEI_J48Sf1FC36oUxtMrS9xc-PffW5ZN2iWZ7mabtFyOeZtTFDQvSCU3DbwOygQj-zkan14-HG4cc2oV0JrxvGYNKezSneenp4nOmEijMV4Za6RIjZkBNw9tvcWor9jwcooMyacSdYl5HqKbmTbS_JSXYRDs5lVOsjtHrc7o0TeYKFx2QGNJSofCCb_ZfLRO6JE43apwZnn1vFeLiUGljhqfp-zqFS5j9CRo_3I-6sVWenmAJJ6KZlSjtUMF5QG3tSmFHIdHU4SIKtYBl46426l4e8WXk6sSmWieQjMANEZ4gIfdOUX2-mKszhF0vCKFW44EjJJRzNNQu5TJJSF7_kKSFvAortixEMljFHntj2wgzgzArEG6huwpW9mPJGXjzP9if_9P-Bu3Go6cBG_SG_Qu0Z0YKnsolqmcfa3UF2UbGr8uv6QsLC9Vr |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pipeline+impact+force+observation-based+intelligent+measurement+method+for+liquid+flow&rft.jtitle=Flow+measurement+and+instrumentation&rft.au=Li%2C+Qiguang&rft.au=Zheng%2C+Xiru&rft.au=He%2C+Yu&rft.au=Xu%2C+Fangmin&rft.date=2024-12-01&rft.pub=Elsevier+Ltd&rft.issn=0955-5986&rft.volume=100&rft_id=info:doi/10.1016%2Fj.flowmeasinst.2024.102700&rft.externalDocID=S0955598624001808 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0955-5986&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0955-5986&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0955-5986&client=summon |